JPH07148133A - アンジオグラフィ方法及び装置 - Google Patents

アンジオグラフィ方法及び装置

Info

Publication number
JPH07148133A
JPH07148133A JP6081861A JP8186194A JPH07148133A JP H07148133 A JPH07148133 A JP H07148133A JP 6081861 A JP6081861 A JP 6081861A JP 8186194 A JP8186194 A JP 8186194A JP H07148133 A JPH07148133 A JP H07148133A
Authority
JP
Japan
Prior art keywords
array
dimensional array
voxel
voxels
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6081861A
Other languages
English (en)
Inventor
Mehran Moshfeghi
モスフェギー メーラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Electronics NV filed Critical Philips Electronics NV
Publication of JPH07148133A publication Critical patent/JPH07148133A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Vascular Medicine (AREA)
  • Computer Graphics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

(57)【要約】 【目的】 背景雑音により妨害されず、血管の重なりお
よび深さキュー情報を含む解明に重要なディテールを含
むアンジオグラムを発生するアンジオグラフィ方法およ
び装置を提供するものである。 【構成】 飛行時間(タイム−オブ−フライト)または
位相コントラストMRAボリュームイメージデータから
ピクセル強度の2次元アレイの形態のアンジオグラムを
決定する磁気共鳴アンジオグラフィ(MRA)方法およ
び装置は積分投影(IP)法および同一の視野方向にお
ける最大強度投影(MIP)法の2次元アレイのピクセ
ル毎の荷重和を用いる。積分投影ピクセルアレイは任意
の背景抑圧および視野方向に沿って変化する深さキュー
強度荷重関数の任意の適用によって形成する。背景抑圧
処理は非線形アンシャープフィルタ処理と、これに続く
強度しきい値ステップを含む。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は検査下にある被検体のあ
る領域から生ずる放射の信号サンプルから得られた、血
流および静止組織間のコントラストを示す体積測定デー
タセットから投影またはレイキャスティングによってア
ンジオグラムとして表示されるピクセルの2次元アレイ
を決定するアンジオグラフィ方法および装置に関するも
のである。特に本発明は積分投影法を用いるアンジオグ
ラフィに関するものである。
【0002】
【従来の技術】メディカルイメージの分野では、3次元
イメージデータセット又は体積測定イメージを、X線コ
ンピュータトモグラフィー(CT)、核磁気共鳴イメー
ジング(MRI)、ポジトロンエミッショントモグラフ
ィ(PET)、シングルフォトンエミッションコンピュ
ータトモグラフィ(SPECT)、ニュクリアメディシ
ントモグラフィ及び超音波形式のものにより収集するこ
とができる。更に、体積測定イメージは比較的薄い断層
の積層体の各々について2次元イメージデータとして収
集するのが一般的である。しかし、収集された体積測定
イメージはほぼ規則正しい3D格子又はアレイ内の格子
点に位置する強度値又はボクセル(体積要素)を有す
る。これらの方法は、血流中に造影剤を注入する予備ス
テップを用いることにより、血流と静止組織との間の向
上したコントラストを示す強度値を有する収集体積測定
イメージデータセットからアンジオグラムを発生させる
のに有用である。
【0003】磁気共鳴アンジオグラフィ(MRA)は、
磁気共鳴イメージング(MRI)装置により、RF及び
傾斜磁場パルスシーケンスを用いて、流れ効果又は速度
効果により血流と静止組織との間の向上したコントラス
トを発生するボクセルの3次元データセットを収集する
ことによって実施される。一般に、アンジオグラフィに
使用するRF及び傾斜磁場パルスシーケンスは2D飛行
時間(time-of-flight)法又は3D位相コントラスト法
を用いる。2D飛行時間法では、多数の平行断層に対す
るスピン共鳴の収集が得られる。血流感知コントラスト
は断層内のほぼ飽和する静止スピンにより生じ、これら
のスピンから、ほぼ90°のフリップ角度断層選択RF
励起パルスの比較的急速なくり返しによりスピン共鳴信
号が収集され、これは断層内を流れる血液中の不飽和ス
ピンのみが励起パルスを受ける直前に比較的強い縦方向
磁化を有するためである。これにより流れる血液から高
い強度のスピン共鳴信号が導出され、これら信号の強度
は断層に垂直な流入速度成分の量とともに増大する。ボ
クセル強度の3次元データセットは、種々の位相エンコ
ーティング傾斜磁場積分の反復シーケンスに対する読出
し傾斜磁場中に受信されるスピン共鳴信号の各断層のサ
ンプルに対する2次元フーリエ変換により得られる振幅
として計算される。位相コントラスト法では、バイポー
ラ傾斜パルスを用いて傾斜方向の速度に位相が依存する
スピン共鳴信号を発生させる。3D法では、スピン共鳴
サンプルの3次元データセットを収集する。これらのサ
ンプルから、ボクセル強度の3次元データセットを3次
元フーリエ変換により発生された位相値から得る。しか
し、得られた初期3次元データセットを、追加のボクセ
ルの介挿断層を補間することにより拡張して3次元デー
タセットを観察用にボクセルの2次元データセットに変
換することができる。
【0004】3次元磁気共鳴アンジオグラフィ(MR
A)データを2次元データに変換処理するディス予備イ
アルゴリズムは、「Magn. Res. Med. 18」PP.38
4−394(1991)のH. Cline等の論文“Volume
Rendering and ConnectivityAlgorithms for MR A
ngiography”から既知である。代表的な変換法は、投影
方向又は観察方向の投影像の形成を用いる。投影法で
は、一般に、平行レイを3次元データセットを経て観察
方向に投影又は投射し、これらのレイを投影像のピクセ
ルと1対1に関連させ、各レイがインタセプトする又は
各レイに沿って補間された又はリサンプルされたボクセ
ルの強度から関連するピクセルの値を決定する。更に、
投影変換法により決定される2次元ピクセルアレイは、
観察前に、追加の介挿ピクセル行及び/又は列を補間す
ることによりサイズ拡張することができる。また、ゆっ
くり回転する観察方向に対応する種々の観察角度から見
た投影像を発生させ、これらの像をシネループに表示す
ることも有用である。このようなシネループは観察者が
アンジオグラムを血管の重なり及び深さ不明を解決する
のに役に立つ。
【0005】最も広く使用されている投影法は最大強度
投影法(MIP)である。高速計算であるこの方法で
は、各レイに沿うボクセル又は各レイに沿って補間され
たボクセル(ここで“補間”とはリサンプリングと同様
の処理を意味する)のうち最大強度を関連するピクセル
の強度として取り出す。MIP像は原体積測定像内に存
在する多くの情報を除去したものである。単一MIP像
は深さキュー又は血管の重なり情報を与えない。従っ
て、深さ不明及び血管の重なりを一つの像から解決する
ことは困難である。更に、血管エッジにおける信号の損
失(これにより血管が見かけ上細くなる)及び血管の太
さ情報の損失がある。この方法の他の欠点は、曲がりく
ねったループ状血管を血管動脈瘤と区別することが困難
であることにある。
【0006】他の投影法は、いわゆる積分投影(IP)
法であり、この方法では各レイに沿うボクセル(又は各
レイに沿って補間されたボクセル)の強度の和を関連す
るピクセルの値として取り出す。高速実施は、3Dデー
タセットの投影方向の2D積分投影像が、3Dデータセ
ットのフーリエ変換の原点を通る、投影方向に垂直な平
面によりインタセプトされた(又はこの平面に沿って補
間された)2Dデータセットの逆2Dフーリエ変換に比
例するという関係を用いて達成することができる。IP
法は血管の太さ情報を保持する。その理由は、ピクセル
強度が投影方向の血管の太さの増大につれて大きくなる
からである。しかし、あいにく、積分された背景ボクセ
ルがアンジオグラム像内の重要な血管のディテールをか
くしてしまうことが生ずる。IP法の既知の変形法で
は、オペレータがセットした所定の強度しきい値以上の
強度を有するボクセルのみを加算する。この場合、しき
い値を低くセットしすぎると、背景ボクセルが依然とし
て血管のディテールを見えなくする。逆にしきい値を高
くセットしすぎると、小血管及びエッジ情報の損失を生
ずる。
【0007】「Proceedings of Annual Meeting of
the Society of Magnetic Resonance in Medic
ine 」(1991),P.201のP.J.Keller等の論文
“SIMP:An Integrative Combination with MIP ”
に、IP法とMIP法の組合せ方法が開示されている。
この方法では、ユーザ決定しきい値以上の強度を有する
少なくとも2個のボクセルをインターセプトする各レイ
に対しスケールド積分投影法を用いる。少なくとも2個
のこのようなボクセルとインタセプトしないレイに対し
ては最大強度投影法を用いる。低すぎるしき値は主とし
てIP像の特性を有するアンジオグラムを発生するが、
高すぎるしきい値は主としてMIP像の特性を有するア
ンジオグラムを発生する。
【0008】「Proceedings of Annual Meeting of
the Society of Magnetic Resonance in Medic
ine 」(1991),P.820のF.R.Korosec 等の論
文“A Data Adaptive Reprojection Technique fo
r MR Angiography”に、積分投影法と最大強度投影法
を組み合わせた別の方法が開示されている。この方法で
は、原体積測定イメージデータを第1強度しきい値と比
較してぼやけた2進形態の血管マスクを決定する。この
ばやけた2進マスクを原体積測定イメージデータに適用
した後に、第2の(おそらく高い)強度しきい値を適用
して処理済体積測定イメージデータを形成する。最終画
像は、非線形強度変換により丸めた後の処理済体積測定
イメージデータの積分投影像と、原体積測定イメージデ
ータの最大強度投影像との加重平均とする。この方法は
しきい値に対しセットされた値に臨界的に依存し、更
に、深さキューがないために重なり合う血管の相対位置
が不明確のままであり、重なり合う血管の相対位置はイ
ンクリメント角度での一連の投影により決定する必要が
ある。更に、背景を抑圧するためにしきい値を十分高く
セットすると、最終画像に寄与する積分投影像内の血管
のディテールが除去され、は観察方向に沿う積分がない
場合にはこのようなディテールが最終画像に寄与する最
大強度投影像内に見えなくなる。
【0009】「Proceedings of Annual Meeting of
the Society of Magnetic Resonance in Medic
ine 」(1991),P.757のJ.Listerud等の論文
“TRAP:Traced Ray by Array Processor ”に、最
大強度投影の前に、ダイナミックレンジ圧縮及び人工的
照明を用いる擬−表面変換法が開示されている。レンジ
イメージの人工的照明は近くにある構造を遠くにある構
造の前に重ねてそれより明るく観察者に見せるものであ
る。しかし、レンジイメージの最大強度投影は人工照明
により発生された深部情報の大部分を破壊すると共に、
MIPの既に述べた欠点をこうむる。
【0010】
【発明が解決しようとする課題】本発明の目的は、背景
雑音により妨害されずに、血管の重なり及び深さキュー
情報を含む、解明に重要なディテールを含むアンジオグ
ラムを発生するアンジオグラフィ方法及び装置を提供す
ることにある。
【0011】本発明の目的は、更に、積分投影の前に、
深さキューイングを用いるアンジオグラフィ方法及び装
置を提供することにある。
【0012】本発明の他の目的は、積分投影の前に、血
管のディテール又はエッジを保存する背景抑圧手段を用
いるアンジオグラフィ方法及び装置を提供することにあ
る。
【0013】本発明の更に他の目的は、積分投影及び最
大強度投影を組み合わせ、積分投影前に深さキューイン
グ及び/又は背景抑圧手段を用いるアンジオグラフィ方
法及び装置を提供することにある。
【0014】
【課題を解決するための手段】簡単に説明すると、本発
明は、上述した目的及びその他の目的を達成するため
に、ピクセル強度の2次元アレイを決定するアンジオグ
ラフィ方法及び装置において、放射、例えばMRスピン
共鳴信号を誘起させ、被検体の一領域のボクセルから発
生させる。前記放射はボクセル内の血流により影響され
た特性、例えば振幅又は位相を有する。前記血流は血管
を含む心血管構造内にあるものとする。ボクセルは3つ
の互いに独立の直線方向、例えば直交方向の各方向に中
心間隔を有する。一領域のボクセルから射出する放射を
受信し、サンプリングして信号サンプルを収集する。こ
の信号サンプルの収集をボクセル強度の初期3次元アレ
イに変換する。このアレイの各次元は3つの直交方向の
各々に対応する。このアレイから他の3次元アレイ(こ
こでは予備深さキューアレイという)を、場合により追
加の介挿断層の補間によるアレイのサイズ拡張を含む所
望の予備処理を実行し且/又背景抑圧処理を実行するこ
とにより取り出す。この予備深さキュー3次元アレイの
ボクセル強度を所定の方向に与えられた深さキュー関数
に従って変更してボクセル強度の3次元深さキューアレ
イを形成する。次に、計算されたボクセル強度の深さキ
ューアレイに所定の方向に投影された各平行アレイがイ
ンタセプトするボクセル又は各平行レイに沿って補間さ
れたボクセルの強度から各レイに対するそれぞれの強度
の和を形成する。各レイは決定すべき2次元アレイのピ
クセルの一つとそれぞれ関連する。最后に、2次元アレ
イのそれぞれのピクセルの値をそれぞれのピクセルと関
連するレイに対するそれぞれの和の関数として決定す
る。
【0015】本発明の他の特徴は、積分背景ボクセルが
血管ディテールを見えなくするのを阻止するとともに血
管のエッジを保存するために、背景抑圧プロレージャ
を、場合により補間による前述のアレイサイズ拡張を含
む所望の予備処理により初期3次元アレイから取り出さ
れた予備背景抑圧3次元アレイに適用して背景抑圧3次
元アレイを発生させることにある。この背景抑圧プロシ
ージャは非線形のアンシャープフィルタリングとこれに
続く強度しきい値ステップとを具える。非線形アンシャ
ープフィルタリングは、予備背景抑圧アレイのボクセル
の強度を第1強度値、即ち最大背景強度値と比較してボ
クセルを血流ボクセル及び背景ボクセルに区分し、予備
背景抑圧アレイの血流ボクセルを第1強度値より低い第
2強度値、即ち背景ボクセルの強度の平均値と置き替え
ることによりボクセルのクリップアレイを形成し、この
クリップアレイを低域空間フィルタ処理して平滑クリッ
プアレイを形成し、この平滑クリップアレイを予備背景
抑圧アレイからボクセルごとに差し引くことにより達成
する。強度しきい値ステップにより予備深さキューアレ
イ又は背景抑圧アレイを形成する。このステップは、し
きい値として(第1強度値−第2強度値)として計算さ
れる第3強度値を用いる。本発明の他の特徴は、ボクセ
ルの予備MIP3次元アレイの投影時に、2次元アレイ
のそれぞれのピクセルと関連する同一方向のそれぞれの
平行レイがインタセプトするボクセル又はこれらレイに
沿って補間されたボクセルのそれぞれの最大強度を深さ
キューの関数として決定することにある。3次元予備M
IPアレイは、場合により前述の補間によるアレイサイ
ズ拡張を含む予備処理により初期3次元アレイから取り
出す。更に、前述の2次元アレイのそれぞれのピクセル
の値の決定は、それぞれのピクセルと関連するレイに対
するそれぞれの最大強度及びそれぞれの和の加重結合を
形成することにより達成する。
【0016】背景抑圧及び深さキューイング後の積分投
影は血管の重なりを含む血管のディテールを容易に解明
し得る態様に示す。この積分投影と最大強度投影の組合
せは、積分投影の形成時に過度に抑圧されてしまうディ
テールを提示するのに有用である。
【0017】
【実施例】図1は磁気共鳴撮像装置(MRI)10の一
般的な簡単化した構成を示す。この装置において、主磁
場コイル12により伸長状の測定空間14内に安定で均
一な長手方向に向く磁場を形成する。このMRI装置の
近接範囲の磁場強度は0.1〜4.0テスラである。主
磁場コイル12は抵抗性材料又は超電導材料で構成で
き、超電導材料で構成する場合電源16は必要なコイル
電流を最初に供給するためにだけ用いる。測定空間14
に作用する磁場は3個の独立して制御可能な傾斜磁場コ
イル18の系により形成し、この傾斜磁場コイルは、電
源20によって駆動された各コイル電流に比例して3つ
の直交方向の各方向に線形に変化する強度を有する長手
方向磁界を発生する。RFコイル22は、RF送信段2
4で形成されたRFパルスを送信/受信スイッチ26を
介して受信しこれらパルスを測定空間14に送信する。
すでに知られているように、これらRFパルスは主磁場
の強度及び注目する原子核(通常は水のプロトン)によ
って決定されるラーモア周波数とする。RFコイル22
は測定空間からの発生したスピン共鳴信号を受信し、こ
れらの信号をスイッチ26を介して受信段28に供給
し、この受信段においてスピン共鳴信号を検出しサンプ
リングしてからA/D変換器30によりディジタル化す
る。シーケンスコントローラ31は、傾斜磁場用の電源
20、送信/受信スイッチ26、RF送信段24及びR
F受信段28を制御して測定空間について一連のサブ測
定を行なう。各サブ測定では、一部又は全部の長手方向
磁化を直交磁化に変換する少なくとも1個の読出すなわ
ち励起RFパルスと、1個又はそれ以上の位相エンコー
ド傾斜パルス(この傾斜パルスの時間積分は各サブ測定
から次のサブ測定へとステップする)として機能する傾
斜パルスと、その後共鳴信号かA/D変換器30によっ
てサンプリングされる期間中続く読出傾斜パルスとが含
まれる。
【0018】典型的なものとして、飛行時間法を用いる
アンジオグラフィの場合、上記シーケンス制御は、静止
した組織だけを含むボクセルからではなく血液が流れる
ボルセルから比較的大きな振幅のスピン共鳴信号を誘導
するように構成する。いわゆる2D“マルチスライス”
収集が通常用いられており、この収集では、スライス選
択シーケンスを多数の(例えば5個)等間隔で厚さが既
知の平行スライスの積層体に順次に通用する。スライス
選択シーケンスにおいて、少なくともRF読出パルスを
スライス選択傾斜パルスと同時に供給する。マルチスラ
イス収集の結果は各スライス毎に信号サンプルの2次元
アレイ(例えば、K空間として既知の空間周波数空間に
おいて256×256個の点を含む)となるので、この
マルチスライス収集はA/D変換器30によってディジ
タルメモリ32に供給される信号サンプルの有効な3次
元アレイとなる。各スライス毎の信号サンプルデータは
アレイプロセッサを構成するブロック34において、個
別に2次フーリエ変換処理され、各スライス毎にピクセ
ル強度の2次アレイが発生する。この結果、ブロック3
4からディジタルメモリ36に供給される多重平行スラ
イスに対するピクセルの収集は、ボクセル強度の3次元
アレイ(例えば、5×256×256個の点)と考える
ことができる。
【0019】3D飛行時間法又は3D位相感知法のいず
れかを用いる場合、K空間のサンプル点の三次元アレイ
はメモリ32に通常1個の次元について(ここでは、垂
直と称することにする)読み込まれ、別の次元より少な
い数の点で量子化される。この3次元K空間アレイは、
次にブロック34において3次元フーリエ変換処理さ
れ、メモリ36にボクセル強度の3次元アレイが形成さ
れる。
【0020】このボクセル強度の3次元アレイはイメー
ジプロセッサ38により処理され、CRTのような表示
装置42上に表示されるピクセル強度の2次元アレイと
してディジタルメモリ40に供給される。本発明による
イメージプロセッサは、アンジオグラフィに関連する背
景抑制38a,補間38b,投影38c及び深さキュー
イング38dのような種々の機能を達成するためのプロ
グラムモジュールを含む。
【0021】図2はアンジオグラム44として表示され
るピクセルの2次元アレイを発生させる投影モジュール
38cの例を示す。このアンジオグラムは、5個の積層
スライス50a〜50eのピクセルであるボクセルの3
次元アレイ48を通る視方向の平行レイを投射すること
によって得られ、各レイはアンジオグラムの関連するピ
クセルを発生する。説明のために、血管内の血流52に
対応する3次元強度パターンを3次元アレイ48と交差
する位置に示す。投影の結果、スライス50a内の血管
52a,52bのディスク状のボリューム54a,54
bを構成するボクセルによりアンジオグラム44の部分
55a,55bを構成するピクセルがそれぞれ投影され
る。MRアンジオグラフィの最も一般的な投影技術は、
最大強度投影法(MIP)である。MIPでは、アンジ
オグラムの各ピクセルの強度は、関連するレイが通過す
るボクセル強度のうちの最大強度のものが取出される。
あまり一般的でない投影技術は積分投影法(IP)であ
り、この積分投影法ではアジオグラムの各ピクセルの強
度は関連する光線が通過するボクセルの強度の和として
取り出される。上記の例では、投影の前又は後のいずれ
かにおいて補間を行わない場合、スライス50a〜50
eの図示の積層体の水平観察方向に生ずるアンジオグラ
ムは5個のピクセル分だけの高さとなること明らかであ
る。
【0022】図3はイメージプロセッサ38の動作を示
す血流チャートである。メモリ36に記憶されているボ
リュームデータセット56がイメージプロセッサの入力
であり、メモリ40に記憶されているアンジオグラム5
7がその出力である。初めに、ステップ58において、
ボリュームデータセットのボクセルの数が拡張するか否
かを決定する。この決定は操作者入力によって決定する
ことができるが、好ましくは補間するか否かのデフォル
ト条件を与え、介挿スライ又は補間すべき層の数及び向
きを存在するボリュームデータセット56の空間形態に
基くデフォルト条件によって与える。補間処理60は、
ステップ58の決定がYESの場合だけモジュール38
bにより実行する。少数のスライスだけが収集される場
合、付加的なボクセルを少なくともスライス方向に補間
することによって見掛上の解像度を改善することが望ま
しい。もとの隣接するスライス間に挿入される各スライ
ス又は各層を補間する望ましい技術は、欧州特許出願公
開第571026号“Directional Inrectional For
Magnetic Resonace Angiography”に記載されてい
る。上記公報に記載されている方向性補間処理において
は、隣接する原スライスの一方のスライスの各ボクセル
について、局部的な強度パターンに対する位置に関して
上記ボクセルと対応する他方の隣接するスライスのボク
セルが存在するか否かを決定している。対応関係が見い
出された場合、これらボクセル間を結ぶ局部的方向の補
間が用いられる。そうでない場合には、スライスと直交
する通常の局部的方向の補間が用いられる。この方向性
補間は、他の場合に傾斜する血管のエッジに沿って現わ
れ得る階段次の為像を除去する。
【0023】次に、ステップ62において、背景が強す
ぎ、モジュール38aによる背景抑圧処理64が必要か
否かを決定する。この処理は図4及び表1に詳細に説明
されており、これから明らかなようにステップ64a〜
64fの非線形アンシャープフィルタリング処理及びこ
れに後続する強度閾値処理64gを有している。この背
景抑圧処理を実行するか否かの決定は操作者が入力する
こともできる。ステップ64bにおいて、入力アレイの
ボクセルを血流ボクセル及び背景ボクセルに区分し、背
景ボクセルの平均強度を決定する。この区分化はボクセ
ル強度を最大背景強度と比較することにより行なわれ、
血流ボクセルは最大背景強度よりも高い強度を有し、背
景ボクセルは最大背景ボクセル強度よりも低いか同等の
強度を有する。
【0024】最大背景強度は操作者が入力する値とする
ことができるが、好ましくは最大背景強度は、操作者に
よって指定された血管構造を含む関心領域(ROI)に
ついてステップ64aにおいて決定する。この領域の典
型的なヒストグラムを図5に示す。このヒストグラム
は、平均背景強度Ibg,mean 付近の低濃度において発生
する多数のボクセルピークと、最大背景強度Ibg,max
り高い濃度で生ずる血流に対応する少数のピークを有し
ている。Imean及びIsdがROIの全てのボクセルの強
度の平均及び標準偏差とすると、最大背景強度はステッ
プ64aにおいて以下のようにして決定される。 Ibg,max=Imean+C・Isd ここで、Cは定数である。飛行時間法によるイメージの
場合、C=2.0の値は、微小な血管を損失することな
く背景を抑圧できることが確かめられた。前述した区分
化の後、背景の平均強度Ibg,mean を、Ibg,max以下の
強度を有するROI中の全てのボクセル強度の平均とし
てステップ64cで決定する。ステップ64dにおい
て、処理64で入力されたアレイ中の血流に対応する全
てのボクセル(最大背景強度Ibg,maxよりも高い強度を
有するボクセル)の強度を平均背景強度Ibg,mean にセ
ットすることにより、クリップされたアレイを形成す
る。次に、ステップ64eにおいて、クリップされたア
レイに低域フィルタ処理を行ない平滑クリップアレイを
形成する。各次元において3個のボクセル幅でフィルタ
リングするボックスカー(boxcar)平均フィルタが好適
である。その後、ステップ64fにおいて、平滑化クリ
ップアレイを入力アレイから減算する。前述した非線形
アンシャープフィルタ部分は、血管エッジをぼかさない
高域フィルタ処理に影響を与える。上記低域フィルタ処
理は、一般的に背景強度の範囲をIbg,max−Ibg,mean
処理により零にする。次に、強度閾値ステップ64gに
おいて、Ithresh=Ibg,max−Ibg,mean に等しいか又
はそれ以下の強度のボクセルを零にする。
【0025】ステップ66において、深さキューを行な
うか否かを操作者入力により決定する。深さキューが選
択されると、ステップ68において、ボリュームイメー
ジに関して固定された背面側基準深さ位置から前側基準
深さ位置までの観察方向の距離に亘って単調に増加する
強度増倍スケール因子を有するスケール関数を用いてコ
ントラストを導出し、これにより近い位置の被観察物が
遠い側の被観察物よりも一層明るくなるようにする。種
々の単調な関数を用いることができ、現在想定される好
適な関数は図6に示す線形に増加する関数である。
【0026】図6を参照するに、観察方向はY軸方向と
する。前側及び後側の深さキュー基準面はそれぞれY=
f ,Y=Yb で示す。位置Yにおける2個の面間のボ
クセルの強度を増倍するスケール因子Sは次式で与えら
れる。 S=Sb +(Y−Yb )・(Sf −Sb )/(Yf −Yb ) ここで、前側及び後側の深さキュー基準面におけるボク
セルに対するスケール因子を、それぞれS=Sf 及びS
=Sb とする。Yb よりも後側の位置に対する因子はS
b とし、Yf よりも前側位置に対する因子はSf とす
る。
【0027】選択的な深さキュー処理の後、ステップ7
0において、観察方向(一般的に図2に示す)のボリュ
ームイメージを経て投影される平行レイと関連するピク
セルに各光線が交差するボクセルの強度の和を割り当て
ることにより積分投影を行なう。投影処理において、平
行レイがボクセルの中心を正確に通過しない場合、レイ
上に位置するボクセル強度を補間し、又は等価的にボリ
ュームイメージを再サンプタング(補間処理により)し
てレイ上に位置する新しいボクセルを決定するのが好都
合である。ボクセル強度の投影レイに沿う3−リニア補
間が周知であり好都合である。
【0028】次に得られた2次元イメージを強度につい
てスケーリングし、以下の線形式を用いて零からI
new,max の範囲内に位置させる。 Inew = I new,max×(Iold −Ithresb )/(Iold,max −Ithresb) ここで、 Iold =スケーリングする前の非零強度を有するピクセ
ルの強度 Inew =スケーリング後のピクセルの強度 Inew,max =スケーリング後の最大許容強度値(通常バ
イトスケール画像では255) Iold,max =スケーリング前のピクセルの最大強度 Ithresh=ステップ64gで用いた強度閾値 スケーリング前の零強度を有するピクセルはスケーリン
グ処理によって処理されず、従ってスケーリング後も零
強度を維持する。
【0029】スケーリングされた積分投影(IP)像は
血管の重なり合いおよび太さを示す。背景抑圧処理手順
64を用いた場合にはIP像は従来の最大強度投影(M
IP)像よりも低い背景レベルを有する。さらに、深さ
キューステップ68を用いた場合には深さキューによっ
て重なり合う血管の関連する部分を可視化することがで
きる。IP像は小血管に関してはMIP像より好ましく
ない。その理由はこれら像が細く且つ暗いからである。
得られるIP像の欠点は最大強度投影により追加のピク
セル強度成分を導入することにより補償し得ることを確
かめた。
【0030】従って、ステップ74では、最大強度投影
を予備背景抑圧ボリュームイメージ(背景抑圧選択ステ
ップ62へのボリュームイメージ入力)に対して同一方
向に、積分投影(IP)ステップ70で用いる場合と同
様の形態の平行投影レイにより行う。慣例のように、各
投影レイに関連するピクセルの強度は、各レイがインタ
セプトする、または各レイに沿って補間されたボクセル
強度の最大値として決めるようにする。次いで、ステッ
プ76では得られたMIP像およびスケーリングされた
IP像のピクセル毎の荷重和を次式に従って形成する。 Isum =(Imip +D・Inew )/(I+D) ここに Imip =MIP像のピクセルの強度 Inew =スケーリングされたIP像の同一ピクセルの強
度 D=1〜4の範囲で好適な定数
【0031】スケーリング76で荷重和を形成する前
に、ステップ72においてMIP像の強度Imip も0〜
newmaxの範囲内にスケーリングする。
【0032】荷重和の2次元像を形成した後、ステップ
78において、荷重和像のピクセル数を拡張するか否か
を、例えばディス予備イ42においてROIによりスパ
ンすべき多数のラインの数またはピクセルの数から決め
る。ピクセルの拡張が指示された場合にはこれを2D補
間ステップ80で行い、現在のライン間にピクセルのさ
らに他のラインを決めるようにする。好適にはこのステ
ップも3次元補間ステップ60につき説明した本願人の
前の特許出願の方向性補間技術を用いる。
【0033】最終アンジオグラフィ像57はMIP像の
小血管のディテール並びに深さキューされた積分投影像
の血管交差、太さおよび深さ情報を有する。背景抑圧処
理64は背景値の高い飛行時間ボリューム像のデータに
対して有効であることを確かめた。しかし、位相コント
ラストボエューム像のデータは高い血管対背景コントラ
ストをを有し、背景抑圧を必要としない。深さキュース
テップは湾曲した大脳動脈を可視化するのに極めて有利
であることを確かめた。
【0034】本発明によれば各投影に多数の情報を提供
し、従ってアンジオグラムの解明を行うために異なる視
野方向からの少数の投影を少数必要とするだけである。
本発明はウイリス輪、洞、頸動脈分岐、頸動脈サイフォ
ン、肺動脈および抹消血管に好適に適用することができ
る。
【0035】本発明はMRアンジオグラフィにつき詳細
に説明したが、その多くの原理はCTおよび核医療断層
撮影に限定されない他の医療像物理療法にも適用するこ
とができる。本発明は上述した例にのみ限定されるもの
ではなく要旨を変更しない範囲内で種々の変形や変更が
可能である。
【図面の簡単な説明】
【図1】本発明の実施に使用し得るイメージプロセッサ
を具えた磁気共鳴イメージング装置の簡略図である。
【図2】投影によるアンジオグラムの発生の説明図であ
る。
【図3】図1のイメージプロセッサにより実行される背
景抑圧プロシージャ及び深さキューイングプロシージャ
を含む処理を示す血流チャートである。
【図4】図3の背景抑圧プロシージャの血流チャートで
ある。
【図5】図3の背景抑圧プロシージャに対する入力アレ
イの代表的なヒストグラムを示す図である。
【図6】図3の深さキューイングプロシージャに使用す
る深さキュー関数のグラフを示す図である。
【符号の説明】
12 磁場コイル 14 測定空間 18 傾斜磁場コイル 22 RFコイル 16,20 電源 24 RF送信段 26 送/受スイッチ 28 受信数 30 A/D変換器 31 シーケンス コントローラ 32 ディジタルメモリ 34 アレイプロセッサ 36 ディジタルメモリ 38 イメージプロセッサ 38a 背景抑圧モジュール 38b 補間モジュール 38c 投影モジュール 38d 深さキューイングモジュール 40 ディジタルメモリ 42 表示装置 44 アンジオグラム 48 スライス積層体 50a〜50e スライス 52a,52d 血管 54a,54b ボクセル 55a,55b ピクセル

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 検査下にある被検体のある領域の3つの
    独立した直線方向の各方向に中心間隔を有する体積要素
    (ボクセル)から、血管を含む心臓血管構造内にある前
    記ボクセル内の血流によって影響された特性を有する放
    射を誘導放出させ;前記領域のボクセルからでる放射を
    受け、且つサンプリングして信号サンプルを収集し;前
    記信号サンプルの収集を各次元が前記3つの独立した直
    線方向の各々に対応するピクセル強度の初期3次元アレ
    イに変換し;所定の方向に適用される深さキュー関数に
    従って前記初期アレイから取出したピクセル強度の予備
    深さキュー3次元アレイのボクセル強度を修正してボク
    セル強度の3次元深さキューアレイを形成し;計算され
    たボクセル強度の前記深さキューアレイを経て所定方向
    に投影された、決定すべき2次元アレイのピクセルの各
    々と関連するそれぞれの平行レイがインタセプトする、
    またはそれぞれの平行レイに沿って補間されたボクセル
    の強度を加算してそれぞれの平行レイに対するボクセル
    強度の和を形成し;前記2次元アレイの各ピクセルの値
    をそれぞれのピクセルと関連するレイに対するそれぞれ
    の和の関数として決めることを特徴とするピクセル強度
    の2次元アレイを決定するアンジオグラフィ方法。
  2. 【請求項2】 前記初期3次元アレイから取出したボク
    セル強度の予備最大強度投影(MIP)3次元アレイを
    投影する際、前記それぞれのピクセルと関連する、所定
    方向に向けられたそれぞれの平行レイがインタセプトす
    る、またはそれぞれの平行レイに沿って補間されたボク
    セルのそれぞれの最大強度を決め、且つ、前記2次元ア
    レイのそれぞれのピクセルの値をそれぞれのピクセルに
    関連するレイに対するそれぞれの最大強度およびそれぞ
    れの和の荷重結合を形成することによって決定すること
    を特徴とする請求項1に記載のアンジオグラフィ方法。
  3. 【請求項3】 前記初期3次元アレイから予備背景抑圧
    3次元アレイを取出し、且つ前記予備深さキュー3次元
    アレイを予備背景抑圧3次元アレイから次の操作:前記
    予備背景抑圧3次元アレイのボクセルの強度を第1強度
    値と比較してこのボクセルを血流ボクセルおよび背景ボ
    クセルに区分し;前記予備背景抑圧3次元アレイの前記
    血流ボクセルを第1強度値より低い第2強度値と置換し
    てボクセルのクリップアレイを形成し;前記クリップア
    レイに低域空間フィルタを適用して平滑クリップアレイ
    を形成し;前記予備背景抑圧3次元アレイから前記平滑
    ボクセルアレイをボクセル毎に減算して予備しきい値処
    理アレイを形成し;この予備しきい値処理アレイを第3
    強度値に対して強度しきい値処理して予備深さキューア
    レイを形成する;ことによって取出すことを特徴とする
    請求項1に記載のアンジオグラフィ方法。
  4. 【請求項4】 検査下にある被検体のある領域の3つの
    独立した直線方向の各方向に中心間隔を有する体積要素
    (ボクセル)から、血管を含む心臓血管構造内にある前
    記ボクセル内の血流によって影響された特性を有する放
    射を誘導放出させ;前記領域のボクセルからでる放射を
    受け、且つサンプリングして信号サンプルを収集し;前
    記信号サンプルの収集を各次元が前記3つの独立した直
    線方向の各々に対応するピクセル強度の初期3次元アレ
    イに変換し;前記初期3次元アレイから取出された予備
    背景抑圧3次元アレイからつぎの処理: (a)予備背景抑圧3次元アレイのボクセルの強度を第
    1強度値と比較して前記ボクセルを血流ボクセルおよび
    背景ボクセルに区分し; (b)前記予備背景抑圧3次元アレイの前記血流ボクセ
    ルを第1強度値以下の第2強度値と置換してボクセルの
    クリップアレイを形成し; (c)前記クリップアレイに低域空間フィルタを適用し
    て平滑クリップアレイを形成し; (d)前記予備背景抑圧3次元アレイから前記平滑ボク
    セルアレイをボクセル毎に減算して予備しきい値処理ア
    レイを形成し; (e)この予備しきい値処理アレイを第3強度値に対し
    て強度しきい値処理して予備深さキューアレイを形成す
    る処理;を施すことにより背景抑圧3次元アレイを取出
    し;計算されたボクセル強度の前記深さキューアレイを
    経て所定方向に投影された、2次元アレイのそれぞれの
    ピクセルと関連するそれぞれの平行レイがインタセプト
    する、またはそれぞれの平行レイに沿って補間されたボ
    クセルの強度を加算してそれぞれの平行レイに対するそ
    れぞれの和を形成し;2次元アレイのそれぞれのピクセ
    ルの値をそれぞれのピクセルと関連するレイに対するそ
    れぞれの和の関数として決めることを特徴とするピクセ
    ル強度の2次元アレイを決定するアンジオグラフィ方
    法。
  5. 【請求項5】 前記初期3次元アレイから取出したボク
    セル強度の予備最大強度投影(MIP)3次元アレイを
    投影する際、前記それぞれのピクセルに関連する、所定
    方向に向けられたそれぞれの平行レイがインタセプトす
    る、またはそれぞれの平行レイに沿って補間されたボク
    セルのそれぞれの最大強度を決め、且つ、前記2次元ア
    レイのそれぞれのピクセルの値の決定はそれぞれのピク
    セルと関連するレイに対するそれぞれの最大強度および
    それぞれの和の荷重結合を形成することによって行うこ
    とを特徴とする請求項4に記載のアンジオグラフィ方
    法。
  6. 【請求項6】 前記誘導され且つ受信される放射はMR
    スピンRF信号であることを特徴とする請求項1,2,
    3,4または5に記載のアンジオグラフィ方法。
  7. 【請求項7】 検査下にある被検体のある領域の3つの
    独立した直線方向の各方向に中心間隔を有する体積要素
    (ボクセル)から、血管を含む心臓血管構造内にある前
    記ボクセル内の血流によって影響された特性を有する放
    射を誘導放出する手段と;前記領域のボクセルからでる
    放射を受け、且つサンプリングして信号サンプルを収集
    する手段と;前記信号サンプルの収集を各次元が前記3
    つの独立した直線方向の各方向に対応するピクセル強度
    の初期3次元アレイに変換する手段と;画像処理手段と
    を具え;この画像処理手段は、 (a)所定の方向に適用される深さキュー関数に従って
    前記初期アレイから取出したピクセル強度の予備深さキ
    ュー3次元アレイのボクセル強度を修正してボクセル強
    度の3次元深さキューアレイを形成する手段と; (b)計算されたボクセル強度の前記深さキューアレイ
    を経て所定方向に投影された、決定すべき2次元アレイ
    のそれぞれのピクセルとに関連するそれぞれの平行レイ
    がインタセプトする、またはそれぞれの平行レイに沿っ
    て補間されたボクセルの強度を加算してそれぞれの平行
    レイに対するボクセル強度の和を形成する手段と; (c)2次元アレイのそれぞれのピクセルの値をそれぞ
    れのピクセルと関連するレイに対するそれぞれの和の関
    数として決める手段とを具えることを特徴とするピクセ
    ル強度の2次元アレイを決定するアンジオグラフィ装
    置。
  8. 【請求項8】 前記像処理手段は前記初期3次元アレイ
    から取出したボクセル強度の予備最大強度投影(MI
    P)3次元アレイを経て投影する際、前記それぞれのピ
    クセルと関連する、所定方向に向けられたそれぞれの平
    行レイがインタセプトする、またはそれぞれの平行レイ
    に沿って補間されたそれぞれの最大強度を決める手段を
    更に具え、且つ、前記2次元アレイのそれぞれのピクセ
    ルの値の決定する手段はそれぞれのピクセルと関連する
    レイに対するそれぞれの最大強度およびそれぞれの和の
    荷重結合を形成する手段を具えることを特徴とする請求
    項7に記載のアンジオグラフィ装置。
  9. 【請求項9】 予備背景抑圧3次元アレイを前記初期3
    次元アレイから取出すようにした請求項7又は8記載の
    装置において、前記像処理手段は前記予備背景抑圧3次
    元アレイを前記予備深さキューアレイに変換する背景抑
    圧手段を更に具え、この背景抑圧手段は:前記予備背景
    抑圧3次元アレイのボクセルの強度を第1強度値と比較
    してこのボクセルを血流ボクセルおよび背景ボクセルに
    区分する手段と;前記予備背景抑圧3次元アレイの前記
    血流ボクセルを第1強度値より低い第2強度値と置換し
    てボクセルのクリップアレイを形成する手段と;前記ク
    リップアレイに低域空間フィルタを適用して平滑クリッ
    プアレイを形成する手段と;前記予備背景抑圧3次元ア
    レイから前記平滑ボクセルアレイをボクセル毎に減算し
    て予備しきい値処理アレイを形成する手段と;この予備
    しきい値処理アレイを第3強度値に対して強度しきい値
    処理して予備深さキューアレイを形成する手段と;を具
    えることを特徴とするアンジオグラフィ装置。
  10. 【請求項10】 前記誘導させ受信するた放射はMRス
    ピンRF信号であることを特徴とする請求項7,8また
    は9に記載のピクセル強度の2次元アレイを決定するア
    ンジオグラフィ装置。
JP6081861A 1993-04-20 1994-04-20 アンジオグラフィ方法及び装置 Pending JPH07148133A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/049907 1993-04-20
US08/049,907 US5368033A (en) 1993-04-20 1993-04-20 Magnetic resonance angiography method and apparatus employing an integration projection

Publications (1)

Publication Number Publication Date
JPH07148133A true JPH07148133A (ja) 1995-06-13

Family

ID=21962383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081861A Pending JPH07148133A (ja) 1993-04-20 1994-04-20 アンジオグラフィ方法及び装置

Country Status (3)

Country Link
US (1) US5368033A (ja)
EP (1) EP0621546A3 (ja)
JP (1) JPH07148133A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125951A (ja) * 2000-08-22 2002-05-08 Marconi Medical Systems Inc 画像診断方法
JP2006500099A (ja) * 2002-09-19 2006-01-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像データ情報の表示

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732701A (en) * 1992-12-15 1998-03-31 Ge Yokogawa Medical Systems, Limited Data collection method for MR angiography
JP3467285B2 (ja) * 1993-04-02 2003-11-17 コニカミノルタホールディングス株式会社 放射線画像処理方法
FR2708166A1 (fr) * 1993-07-22 1995-01-27 Philips Laboratoire Electroniq Procédé de traitement d'images numérisées pour la détection automatique de sténoses.
DE4405979C1 (de) * 1994-02-24 1995-10-05 Univ Ludwigs Albert Verfahren der bildgebenden magnetischen Kernresonanz nach dem Mehrschichtverfahren
WO1995030914A1 (en) * 1994-05-03 1995-11-16 The Trustees Of The University Of Pennsylvania Post-processing of mri images
JPH08138078A (ja) * 1994-11-09 1996-05-31 Toshiba Medical Eng Co Ltd 画像処理装置
JP3226153B2 (ja) * 1996-03-18 2001-11-05 シャープ株式会社 マルチメディアデータ表示装置
US5699799A (en) * 1996-03-26 1997-12-23 Siemens Corporate Research, Inc. Automatic determination of the curved axis of a 3-D tube-shaped object in image volume
US5825364A (en) * 1996-04-18 1998-10-20 Electronic Data Systems Corporation System and method for constructing a three dimensional model from two dimensional images using poissan probability
JPH1091811A (ja) * 1996-07-01 1998-04-10 Sun Microsyst Inc グラフィカル画像再スケジューリング・メカニズム
US5923789A (en) * 1996-08-07 1999-07-13 General Electric Company Band limited interpolation and projection of spatial 3-D images
US5891030A (en) * 1997-01-24 1999-04-06 Mayo Foundation For Medical Education And Research System for two dimensional and three dimensional imaging of tubular structures in the human body
JP3896188B2 (ja) * 1997-06-13 2007-03-22 株式会社日立製作所 放射線治療計画のための画像処理装置
US6058218A (en) * 1997-11-10 2000-05-02 General Electric Company Enhanced visualization of weak image sources in the vicinity of dominant sources
JP4035216B2 (ja) * 1997-12-25 2008-01-16 キヤノン株式会社 画像処理方法及び画像処理装置
US6928314B1 (en) 1998-01-23 2005-08-09 Mayo Foundation For Medical Education And Research System for two-dimensional and three-dimensional imaging of tubular structures in the human body
US6381486B1 (en) * 1999-01-08 2002-04-30 Wisconsin Alumni Research Foundation Magnetic resonance angiography with vessel segmentation
AU6145499A (en) * 1998-09-17 2000-04-03 Brigham And Women's Hospital Method and apparatus for projecting mr angiographic data
US6904163B1 (en) * 1999-03-19 2005-06-07 Nippon Telegraph And Telephone Corporation Tomographic image reading method, automatic alignment method, apparatus and computer readable medium
US6718054B1 (en) 1999-06-23 2004-04-06 Massachusetts Institute Of Technology MRA segmentation using active contour models
JP4889903B2 (ja) * 2000-03-30 2012-03-07 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン 患者の磁気共鳴血管造影図を作成するためのmriシステムの作動方法
US6771835B2 (en) * 2000-06-12 2004-08-03 Samsung Electronics Co., Ltd. Two-dimensional non-linear interpolation system based on edge information and two-dimensional mixing interpolation system using the same
JP3848082B2 (ja) * 2000-12-27 2006-11-22 キヤノン株式会社 X線画像撮影装置及び方法、制御装置及び方法
DE10100572A1 (de) * 2001-01-09 2002-07-11 Philips Corp Intellectual Pty Verfahren zur Darstellung des Blutflusses in einem Gefäßbaum
US6549798B2 (en) * 2001-02-07 2003-04-15 Epix Medical, Inc. Magnetic resonance angiography data
US7020318B2 (en) * 2001-05-22 2006-03-28 Advanced Mri Technologies, Llc Translucent intensity projection imaging
TWI221406B (en) 2001-07-30 2004-10-01 Epix Medical Inc Systems and methods for targeted magnetic resonance imaging of the vascular system
US6728569B2 (en) * 2001-10-25 2004-04-27 Evanston Northwestern Healthcare Corp. Scoutless whole-body imaging with fast positioning
JP3980374B2 (ja) * 2002-02-20 2007-09-26 株式会社東芝 Mri装置
US20050127910A1 (en) * 2002-04-08 2005-06-16 Frederik Visser Data-processing to form a compound object data set from a plurality of basis datasets
AU2003256925A1 (en) 2002-07-29 2004-02-16 William Gregory Hundley Cardiac diagnostics using wall motion and perfusion cardiac mri imaging and systems for cardiac diagnostics
JP2004070793A (ja) * 2002-08-08 2004-03-04 Ge Medical Systems Global Technology Co Llc 3次元空間フィルタ装置および方法
DE10253617B4 (de) * 2002-11-15 2005-06-30 Siemens Ag Verfahren zur Darstellung eines ineinem Volumendatensatz abgebildeten Objektes
US7250949B2 (en) * 2003-12-23 2007-07-31 General Electric Company Method and system for visualizing three-dimensional data
US7415145B2 (en) * 2003-12-30 2008-08-19 General Electric Company Methods and apparatus for artifact reduction
US7623728B2 (en) * 2004-03-24 2009-11-24 General Electric Company Method and product for processing digital images
US7653226B2 (en) * 2004-04-21 2010-01-26 Siemens Medical Solutions Usa, Inc. Flexible generation of digitally reconstructed radiographs
US8189002B1 (en) * 2004-10-29 2012-05-29 PME IP Australia Pty, Ltd. Method and apparatus for visualizing three-dimensional and higher-dimensional image data sets
US7412111B2 (en) * 2004-11-19 2008-08-12 General Electric Company Enhanced image processing method for the presentation of digitally-combined medical images
US8000768B2 (en) * 2005-01-10 2011-08-16 Vassol Inc. Method and system for displaying blood flow
EP1859412B1 (en) * 2005-02-14 2019-04-10 Mayo Foundation For Medical Education And Research Electronic stool subtraction in virtual colonoscopy
JP4212564B2 (ja) * 2005-02-28 2009-01-21 ザイオソフト株式会社 画像処理方法および画像処理プログラム
US20070038106A1 (en) * 2005-07-27 2007-02-15 Medison Co., Ltd. Ultrasound diagnostic system and method of automatically controlling brightness and contrast of a three-dimensional ultrasound image
CN101288102B (zh) 2005-08-01 2013-03-20 拜奥普蒂根公司 用于分析从样本所获得的三维数据集的方法和系统
US20070055138A1 (en) * 2005-08-22 2007-03-08 Edelman Robert R Accelerated whole body imaging with spatially non-selective radio frequency pulses
GB0523084D0 (en) * 2005-11-11 2005-12-21 Cancer Res Inst Royal Imaging method and apparatus
US7660481B2 (en) * 2005-11-17 2010-02-09 Vital Images, Inc. Image enhancement using anisotropic noise filtering
JP4869756B2 (ja) * 2006-03-24 2012-02-08 株式会社トプコン 眼底観察装置
JP4327171B2 (ja) * 2006-04-06 2009-09-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 最大値投影方法および装置
US8401257B2 (en) * 2007-01-19 2013-03-19 Bioptigen, Inc. Methods, systems and computer program products for processing images generated using Fourier domain optical coherence tomography (FDOCT)
US8392529B2 (en) 2007-08-27 2013-03-05 Pme Ip Australia Pty Ltd Fast file server methods and systems
US8068655B2 (en) * 2007-10-02 2011-11-29 Siemens Aktiengesellschaft Method and system for vessel enhancement and artifact reduction in TOF MR angiography of brain
WO2009067680A1 (en) 2007-11-23 2009-05-28 Mercury Computer Systems, Inc. Automatic image segmentation methods and apparartus
WO2011065929A1 (en) 2007-11-23 2011-06-03 Mercury Computer Systems, Inc. Multi-user multi-gpu render server apparatus and methods
US10311541B2 (en) 2007-11-23 2019-06-04 PME IP Pty Ltd Multi-user multi-GPU render server apparatus and methods
US9019287B2 (en) 2007-11-23 2015-04-28 Pme Ip Australia Pty Ltd Client-server visualization system with hybrid data processing
US9904969B1 (en) 2007-11-23 2018-02-27 PME IP Pty Ltd Multi-user multi-GPU render server apparatus and methods
CN101520499B (zh) * 2008-02-29 2011-12-07 西门子(中国)有限公司 磁共振成像中去除伪影的方法和装置
US8938104B2 (en) * 2008-08-29 2015-01-20 Varian Medical Systems International Ag Systems and methods for adaptive filtering
US8744159B2 (en) * 2010-03-05 2014-06-03 Bioptigen, Inc. Methods, systems and computer program products for collapsing volume data to lower dimensional representations thereof using histogram projection
US20120041737A1 (en) * 2010-08-13 2012-02-16 Kongsberg Oil & Gas Technologies As Dynamic reservoir characterization
EP2508842B1 (de) * 2011-04-06 2014-08-13 Agfa HealthCare N.V. Verfahren und System zur optischen Kohärenztomographie
GB201117807D0 (en) * 2011-10-14 2011-11-30 Siemens Medical Solutions Identifying hotspots hidden on mip
US20130328874A1 (en) * 2012-06-06 2013-12-12 Siemens Medical Solutions Usa, Inc. Clip Surface for Volume Rendering in Three-Dimensional Medical Imaging
US10070839B2 (en) 2013-03-15 2018-09-11 PME IP Pty Ltd Apparatus and system for rule based visualization of digital breast tomosynthesis and other volumetric images
US11183292B2 (en) 2013-03-15 2021-11-23 PME IP Pty Ltd Method and system for rule-based anonymized display and data export
US10540803B2 (en) 2013-03-15 2020-01-21 PME IP Pty Ltd Method and system for rule-based display of sets of images
US9509802B1 (en) 2013-03-15 2016-11-29 PME IP Pty Ltd Method and system FPOR transferring data to improve responsiveness when sending large data sets
US11244495B2 (en) 2013-03-15 2022-02-08 PME IP Pty Ltd Method and system for rule based display of sets of images using image content derived parameters
US8976190B1 (en) 2013-03-15 2015-03-10 Pme Ip Australia Pty Ltd Method and system for rule based display of sets of images
US10307056B2 (en) 2013-12-05 2019-06-04 Bioptigen, Inc. Systems and methods for quantitative doppler optical coherence tomography
US9377291B2 (en) 2013-12-05 2016-06-28 Bioptigen, Inc. Image registration, averaging, and compounding for high speed extended depth optical coherence tomography
US11599672B2 (en) 2015-07-31 2023-03-07 PME IP Pty Ltd Method and apparatus for anonymized display and data export
US9984478B2 (en) 2015-07-28 2018-05-29 PME IP Pty Ltd Apparatus and method for visualizing digital breast tomosynthesis and other volumetric images
CN109310320B (zh) * 2016-03-23 2022-09-06 宝洁公司 用于确定杂散纤维的成像方法
DE102016226336A1 (de) 2016-12-30 2018-07-05 Siemens Healthcare Gmbh Verfahren und Vorrichtung zur Erzeugung eines zweidimensionalen Projektionsbildes aus einem dreidimensionalen Bilddatensatz
US10909679B2 (en) 2017-09-24 2021-02-02 PME IP Pty Ltd Method and system for rule based display of sets of images using image content derived parameters

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2614163B1 (fr) * 1987-04-17 1989-06-09 Thomson Cgr Procede de representation d'images de vues d'un objet
US4827413A (en) * 1987-06-16 1989-05-02 Kabushiki Kaisha Toshiba Modified back-to-front three dimensional reconstruction algorithm
US4879652A (en) * 1987-09-04 1989-11-07 General Electric Company Method for producing three-dimensional images from nuclear data
US5309356A (en) * 1987-09-29 1994-05-03 Kabushiki Kaisha Toshiba Three-dimensional reprojected image forming apparatus
US5079699A (en) * 1987-11-27 1992-01-07 Picker International, Inc. Quick three-dimensional display
JPH0212472A (ja) * 1988-06-30 1990-01-17 Yokogawa Medical Syst Ltd 2倍拡大機能を持った画像再構成方法及び装置
US4914589A (en) * 1988-10-24 1990-04-03 General Electric Company Three-dimensional images obtained from tomographic data using a variable threshold
US4985834A (en) * 1988-11-22 1991-01-15 General Electric Company System and method employing pipelined parallel circuit architecture for displaying surface structures of the interior region of a solid body
FR2641099B1 (ja) * 1988-12-22 1991-02-22 Gen Electric Cgr
GB2228849B (en) * 1989-03-03 1993-08-18 Sun Microsystems Inc Method and apparatus for optimized depth cueing using short vectors
US5187660A (en) * 1989-12-01 1993-02-16 At&T Bell Laboratories Arrangement for displaying on a display volumetric data
FR2656129B1 (fr) * 1989-12-20 1992-03-13 Gen Electric Cgr Procede de reconstruction multi-echelle de l'image de la structure d'un corps.
US5167232A (en) * 1990-08-07 1992-12-01 Ihc Hospitals, Inc. Magnetic resonance angiography by sequential multiple thin slab three dimensional acquisition
US5273040A (en) * 1991-11-14 1993-12-28 Picker International, Inc. Measurement of vetricle volumes with cardiac MRI
US5303706A (en) * 1992-05-21 1994-04-19 North American Philips Corporation Directional interpolation for magnetic resonance angiography
US5295488A (en) * 1992-08-05 1994-03-22 General Electric Company Method and apparatus for projecting diagnostic images from volumed diagnostic data
US5280428A (en) * 1992-07-14 1994-01-18 General Electric Company Method and apparatus for projecting diagnostic images from volumed diagnostic data accessed in data tubes
US5297550A (en) * 1992-08-06 1994-03-29 Picker International, Inc. Background darkening of magnetic resonance angiographic images
US5297551A (en) * 1992-08-06 1994-03-29 Picker International, Inc. Weighted ray projection imaging for MR angiography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125951A (ja) * 2000-08-22 2002-05-08 Marconi Medical Systems Inc 画像診断方法
JP2006500099A (ja) * 2002-09-19 2006-01-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像データ情報の表示

Also Published As

Publication number Publication date
EP0621546A2 (en) 1994-10-26
US5368033A (en) 1994-11-29
EP0621546A3 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JPH07148133A (ja) アンジオグラフィ方法及び装置
JP5737725B2 (ja) 局所化および高度に限定された画像再構成法
US6381486B1 (en) Magnetic resonance angiography with vessel segmentation
EP0521559B1 (en) Contour extraction in multi-phase, multislice cardiac MRI studies by propagation of seed contours between images
EP1269212B1 (en) Magnetic resonance angiography with automated vessel segmentation
EP1644751B1 (en) BACKGROUND REMOVAL METHOD FOR TIME RESOLVED MAGNETIC RESONANCE ANGIOGRAPHY
US6842638B1 (en) Angiography method and apparatus
JP5167125B2 (ja) アンダーサンプリングされたmriの限定的な逆投影再構成法
US6505064B1 (en) Diagnostic imaging systems and methods employing temporally resolved intensity tracing
US6556856B1 (en) Dual resolution acquisition of magnetic resonance angiography data with vessel segmentation
JP3976684B2 (ja) 画像における動きの影響を低減する方法および装置
US20030166999A1 (en) Automatic vessel identification for angiographic screening
US5923789A (en) Band limited interpolation and projection of spatial 3-D images
JP2009508634A (ja) 拍動している心臓の画像の再構成法
JPH11328395A (ja) 画像中のノイズの低減方法
KR100452644B1 (ko) 영상 처리 방법과 장치, 기록 매체 및 촬상 장치
WO2001075469A1 (en) Magnetic resonance angiography with automated vessel segmentation
JP2005522250A (ja) 複数の基礎データセットから複合オブジェクトデータセットを形成するデータ処理
JPH07194573A (ja) 磁気共鳴診断装置及び磁気共鳴血管画像の最大値投影法