JPH0712100B2 - 半導体発光素子 - Google Patents

半導体発光素子

Info

Publication number
JPH0712100B2
JPH0712100B2 JP60058397A JP5839785A JPH0712100B2 JP H0712100 B2 JPH0712100 B2 JP H0712100B2 JP 60058397 A JP60058397 A JP 60058397A JP 5839785 A JP5839785 A JP 5839785A JP H0712100 B2 JPH0712100 B2 JP H0712100B2
Authority
JP
Japan
Prior art keywords
semiconductor
emitting device
light emitting
semiconductor light
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60058397A
Other languages
English (en)
Other versions
JPS61218192A (ja
Inventor
董 福沢
栄三郎 山田
健之 比留間
宏善 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60058397A priority Critical patent/JPH0712100B2/ja
Priority to PCT/JP1986/000051 priority patent/WO1986005925A1/ja
Priority to DE8686901137T priority patent/DE3688490T2/de
Priority to EP86901137A priority patent/EP0215125B1/en
Publication of JPS61218192A publication Critical patent/JPS61218192A/ja
Priority to US07/309,929 priority patent/US4933728A/en
Publication of JPH0712100B2 publication Critical patent/JPH0712100B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は波長、位相の良くそろつた光を発光せしめ得る
半導体発光素子に関する。
〔発明の背景〕
第1図は、従来の半導体レーザで用いられているダブル
ヘテロ構造(レーザ活性層10、n型クラツド層4、p型
クラツド層5)に対し、順方向にバイアスを印加した場
合のエネルギー・バンド・ダイアグラムである。クラツ
ド層4から注入された電子6と、クラツド層5から注入
された正孔7とが、活性層領域10で再結合し、光11が放
射される。この系においては、電子及び正孔は、フエル
ミ粒子であり、バンド内のキヤリアの分布は、状態密度
と、フエルミ分布により決められる。なお、バンド構造
図において8は伝導帯の底を、9は価電子帯の上端を示
している。この分布が拡がつていれば、レーザ発振の閾
電流値が大きくなる。レーザの活性層を量子井戸構造と
すると、状態密度が、対物線状から、階段状に変り、量
子準位ができる。従つて、その発光スペクトルも狭くな
り、レーザ発振の閾値も1/2〜1/3程度に下る。しかしな
がら、この場合でも、キヤリアは、フエルミ粒子であ
る。したがつて、個々の電子及び正孔は、まつたく独立
であり、完全に位相をそろえ集団運動をすることもな
い。したがつて、信号をレーザ光で伝達する場合には、
全体の平均値を変動させる必要があり、多くのキヤリア
を変調しなければならない。
〔発明の目的〕
本発明の目的は、位相及び波長の良くそろつた発光せし
め得る半導体発光素子を提供するにある。
〔発明の概要〕
本発明は電子及び正孔をボーズ粒子化し、冷却しながら
粒子の濃度を増大させることで、ボーズ凝縮させ、完全
に位相のそろつた系を実現せしめる。こうした系の発光
は波長,位相とも極めて良くそろつた光となる。
第2図は、ボーズ凝縮を起させるために必要な半導体レ
ーザのエネルギー・バンド・ダイアグラムである。伝導
帯8と、価電子帯9の、厚さ方向の変化を、順方向にバ
イアス電圧を印加した状態で示してある。図中で、半導
体層2及び3は、半導体層4及び5よりもバンド・ギヤ
ツプが小さいレーザ活性層である。導電型は、(1)半
導体層2,3ともにアンドープ、(2)一方のみアンドー
プで、もう一方は、それに接するクラツド層4又は5と
同じ導電型、(3)半導体層2と4及び半導体層3と5
が、それぞれ同じ導電型の場合が可能である。
なお、図において、4はn型クラツド層、5はp型クラ
ツド層である。
従来の半導体レーザと異なる点は、レーザ活性層の内
に、電子6と正孔7を空間的に分離するバリア層1を設
けていることである。
この系で、ボーズ凝縮が生じる過程を以下に説明する。
バリア層を介して対向した電子と正孔がボーズ凝縮を起
す条件の論理的検討は、1975年にユ・イー・ロゴビク
(Yu.E.Lozovik)達により行なわれている(たとえばソ
ビエト・フイジクス(JETP.Lett.)第22巻274頁1975
年)。
第3図に示した様なバリア層12をはさんで相対している
電子と正孔(層13,14は超伝導薄膜)は、層12の厚さd
が薄い場合には、クーロン力で互に引き合つたまま、層
12の面内を運動する一種の励起子状態15,16となる。こ
れは、ボーズ粒子であるため、低温にし、励起子の濃度
を高めることで、ボーズ凝縮をおこす。励起子間の距離
をlとすると、バリアの厚さdとlとが、100Å程度の
場合、トンネル効果によるキヤリアの再結合の確率は1
×10-26程度で事実上無視でき凝縮を起す温度100K程度
になると、ロゴビク(Lozovik)達は、見積つている。
なお、彼達の意図したことは、ボーズ凝縮を起した系に
おける超伝導の実現であつたため、バリア層の厚さを電
子と正孔がトンネル効果により再結合しないように厚く
選んでいる。この点は本発明と本質的に異なつている。
即ち、本発明は、ボーズ凝縮を起こす原理的過程は前述
のロゴビク等の論理と同様であるが、バリア層の厚さd
を薄くして、適度のトンネル効果による電子と正孔の再
結合過程をうながしており、ロゴビク(Lozovik)達の
系と異なる。
ロゴビク(Lozovik)達の系では、超伝導のみを興味の
対象としているため、トンネル効果による電子と正孔の
再結合過程は、不要な経路であり、バリア層の厚みを厚
くすることで再結合過程を抑制している。一方、バリア
層のポテンシヤル障壁を低くしすぎたりバリア層の厚み
を薄くしすぎたり、電子と正孔は、次々とトンネル効果
により再結合してしまい、ポーズ凝縮を起すのに充分な
電子・正孔対の濃度が得られない。本発明の主眼点は、
このバリア層の厚みを最適化することで、励起子のボー
ズ凝縮と、再結合発光過程を時系列的に起させることに
ある。第2図において、活性層2に注入された電子6
と、活性層3に注入された正孔7の内、バリア層1に近
いものは、クーロン力により、互に引き合い励起子とな
る。低温に冷却し、ボーズ凝縮を起させれば、バリア近
傍の電子と正孔は、次々と対をつくつて高い面密度でか
つ、位相のそろつた励起子からの発光が得られる。
本発明の骨子をまとめると次の通りである。
1.半導体又は絶縁体からなる薄膜(バリア層となる)を
はさんで相対し、かつその禁制帯エネルギ・ギヤツプが
前記薄膜よりも小さい第1の半導体層及び第2の半導体
層を有するヘテロ構造を有し、このヘテロ構造は同一の
半導体層中に含まれる電子と正孔がトンネル再結合に基
づいた発光が主となる如く構成され、かつ外部から電場
を印加することで、このトンネル再結合発光過程の確率
を制御せしめる手段を有することを特徴とする半導体発
光素子である。
前述のトンネル再結合発光は電子と正孔がクーロン力に
より形成された励起子の再結合発光となつている。
又、当該半導体発光素子を150K以下に冷却した時、前述
の再結合発光は、ボーズ凝縮を起こした励起子からの超
輻射(Super-radiance)となつている。
前述のバリア層を介して電子を正孔がトンネル結合する
確率は0.6から1×10-5の範囲が通例である。
前記薄膜の厚さは150Å以下、好ましくは単原子層から1
00Åの範囲となすのが通例である。
また、前記第1および第2の半導体層の厚さが200Å以
上(好ましくは400Å以上)であり、結晶組成或いは結
晶中の不純物組成或いはその両者により生じる凝似ポテ
ンシヤル又は外部電界或いは凝似ポテンシヤルと外部電
界の両者によつて電子及び正孔をそれぞれの前記各半導
体層の反対側に押しつけることで、同一半導体中におけ
る電子と正孔の波動函数の重なり部分と比べ前記薄層を
介した電子の波動函数と正孔の波動函数の重なりの方が
大きくせしめるのが好ましい。
更に下記の如き形態も好ましいものである。
前記薄膜をはさんで相対する前記半導体層に、前記薄膜
に対して垂直な向きに電場を印加することで、前記薄膜
と半導体の界面の一方に電子を、もう一方に正孔を集め
る手段を有する半導体発光素子。
前記第1および第2の半導体層の一方又は両者の半導体
の組成或いは不純物濃度のいずれか一方又は両者を前記
薄膜の厚さ方向に対し一様でなくすることにより、電子
及び正孔を前記膜の近傍に集めたことを特徴とする半導
体発光素子。
前記第1の半導体層及び前記第2の半導体層よりも禁制
帯エネルギー・ギヤツプが大きくかつ導電型の互に相異
なる第3および第4の半導体層で少なくとも前記薄膜、
第1および第2の半導体層を含む積層構造体をはさんだ
ことを特徴とする半導体発光素子。
前記薄膜がGa1-xAlxAs前記第1の半導体層が Ga1-yAlyAs前記第2の半導体層が Ga1-zAlzAs;x>y,z;1≧x>0.1;0.4>y,z≧0なること
を特徴とする半導体発光素子。
前記薄膜がGaxIn1-xPyAs1-y(x=0,y=0を含む)前記
第1;第2の半導体層が GamIn1-mPXAs1-xであることを特徴とする半導体発光素
子。
〔発明の実施例〕
以下、本発明の実施例にそつて説明する。
実施例1 第4図は本発明の実施例における素子の伝導帯の底17、
及び価電子帯の上端18のバンド・ギヤツプの厚さ方向の
変化を模式的に示したものである。第9図は本例の半導
体発光素子の放射される光に対して垂直な面での断面図
である。この状態は次の方法によつて実現する。n型Ga
As基板40上に、分子線エピタキシ法を用いて、n型GaAs
バツフア層41 0.5μmを成長し、さらにアンドープGa0.
7Al0.3Asクラツド層22(2μm)、アンドープGaAs層20
(0.1μm)、アンドープGa0.5Al0.5Asバリア層19(厚
さ20Å)、アンドープGaAs層21(0.1μm)、アンドー
プGa0.7Al0.3Asクラツド層23(2μm)、キヤツプ層と
してp型GaAs層42(0.2μm)を順次成長させた。
n型基板を裏面研磨及び化学エツチングした後n側電極
43を形成する。更にp側電極44を、幅10μmのストライ
プ状に被着し、電極をマスクとして、前記のエピタキシ
層を23から22層までエツチング除去した。
さらにレーサの共振器長が300μmとなるように劈開し
た。
型の上では、メサストライプ型半導体レーザと同一であ
る。
得られたチツプをサブマウントにボンテイングし、室温
から10Kまで冷却できるクライオスタツト中に固定す
る。Krイオンレーザの647〜676nm帯のレーザ光を、メサ
ストライプの横方向から照射した。この成長の光は、半
導体層20及び半導体層21に吸収され、それぞれの層に、
電子24と正孔25を生じさせる。この様子は第2図に示し
たものである。このままの状態では、電子と正孔の分離
はなされず、GaAs層20及び21において再結合し、発光す
る。励起光を増加させることで、通常のレーザ発振が起
る。
今、光励起を行なつた状態で、p側及びn側の電極に対
し、逆方向となるよう電場をかけた場合のバンド・ギヤ
ツプの変化を第5図に示す。
GaAs層20及び21のそれぞれの端に、電子と正孔が押しつ
けられている。それぞれの層は、厚さが0.1μmあるた
め、同一層中にある電子と正孔(26と29及び27と28)
は、互に再結合することができない。しかしながら、電
子26と正孔28は、厚さ20Åのバリア層が間に存在するの
みであるため、クーロン力により電子・正孔対となる。
電場を印加した状態で励起光の強度を変え、レーザから
の出力光の変化を、素子温度をパラメータとして測定し
たものを第6図に示す。低温に冷却するにつれ、レーザ
発振のしきい値は減少していくが、100Kよりも低温にな
つた場合に、レーザの閾値が飛躍的減少し、発光効率の
増加が生じている。この温度でポーズ凝縮が生じ、励起
子の位相がそろつた状態からのレーザ発振が観測され
た。この光のスペクトル幅は、従来の半導体レーザ光の
スペクトル幅の1/10であつた。
第10図は発光せしめるための半導体積層体の両側を更に
半導体層45で埋め込んだ状態を示している。通常のBH
(Buried Hetero-structure)型レーザの場合と同様の
考え方を採用した列である。図の符号は第9図と同一部
位を示している。
実施例2 第7図に示した構造の半導体レーザをMO-CVD法(Metal-
Organic Chemical-Vapour Deposition)で作製した。n
型GaAs基板32上に、n型GaAs/Ga0.7Al0.3As超格子バツ
フア層33を1μm成長後、n型Ga0.7Al0.3Asクラツド層
4を2μm、アンドープGaAs活性層2(厚さ0.1μ
m)、アンドープAlAsバリア層1(厚さ30Å)、アンド
ープGaAs活性層3(厚さ0.1μm)、p型Ga0.7Al0.3As
クラツド層5(厚さ1.5μm)、p型GaAsキヤツプ層34
(厚さ0.2μm)を順次成長する。前述の超格子バツフ
ア層33は通常の超格子層で十分である。
通常の半導体レーザのプロセスと同様のプロセスを用い
て、p側及びn側の電極35,36を形成し、共振器の反対
面を劈開、電極へのボンデイング等を行なう。
得られた半導体レーザ素子にpn接合に対し、順方向にバ
イアスをかけ、キヤリアを注入した場合のエネルギー・
バンド・ダイアグラムは第2図で示したものである。素
子を低温に冷却しながら、注入電流を変化させ特性を調
べた。92Kにおいて、半導体レーザの発振しきい値が、
1μAのものが得られた。
実施例3 実施例2で述べた半導体レーザにおいて、絶縁膜1の両
側にあるレーザ活性層2及び3のバンドギヤツプをGa1-
xAlxAsのAl混晶比xと、不純物の濃度を結晶の厚さ方向
に変化させることで、第8図の様にバリア側を小さくす
ることができる。伝導帯と、価電子帯を傾けることによ
り生じる電場により、キヤリアは、バリア側におしつけ
られ、励起子を形成する確率が増大する。第8図ではpn
接合に対し順方向にバイアスを印加している。
〔発明の効果〕
本発明は新しい原理に基づいて、波長、位相のよくそろ
つた発光を得ることが出来る。
本発明は、発光デバイスにおいて、信号の発生を、ボー
ズ凝縮を起した系で行なつているため、きわめて少ない
フオトン数で情報を伝達することができる。ボーズ凝縮
を起した励起子の超輻射(Superradiance)は、スペク
トル幅が従来の半導体レーザの1/10でレーザ発振のしき
い電流値は、1/10000であり、半導体レーザの性能を飛
躍的に向上させている。しかも、薄膜バリア層を介した
励起子のボーズ凝縮であるため、 100Kという高温(通常の超伝導状態の得られる温度は約
1ケタ)低い程度である)で凝縮が起る点も、実用上有
利である。バリア層を有しない場合の励起子の凝縮は、
いくら低温にして、高密度励起しても起らない。電子、
正孔液滴になるか、励起子分子になつてしまうからであ
る。励起子分子自身は、数度Kの極低温で、ポーズ凝縮
するが、励起子分子の発光の過程で励起子に解離し、か
つ、両者の発光が波長的に異なるため、これまでに、レ
ーザ発振した報告はない。
以上をまとめると、本発明は、電子と正孔をバリア層を
介して、人為的にコントロールしながら再結合させるこ
とで、狭いスペクトル幅を持つ半導体発光素子を提供出
来る。更に低しきい値の実現も可能となし得る。
【図面の簡単な説明】
第1図は従来の半導体レーザのエネルギー・バンド・ダ
イアグラム、第2図は本発明による電子、正孔分離型半
導体レーザのエネルギー・バンド・ダイアグラム、第3
図は電子と正孔をバリアを介して励起子化した場合に、
ボーズ凝縮を起すことを説明するための図、第4図及び
第5図は本発明の実施例による半導体発光素子の動作原
理を説明する図、第6図は第4図で述べたレーザ発振の
温度特性を示す図、第7図は第9図および第10図は各々
本発明の半導体発光素子の断面図、第8図は電子と正孔
のバリア側への押しつけ効果を持つ半導体発光素子のエ
ネルギー・バンド・ダイアグラムである。 1…バリア層、2,3…アンドープ半導体層、4,5…クラツ
ド層、6…電子、7…正孔、8…伝導帯の下端、9…価
電子帯の上端。

Claims (11)

    【特許請求の範囲】
  1. 【請求項1】半導体又は絶縁体からなる薄膜をはさんで
    相対し、かつその禁制帯エネルギー・ギヤツプが、前記
    薄膜よりも小さい第1の半導体層及び第2の半導体層を
    有するヘテロ構造を有し、このヘテロ構造は同一の半導
    体層中に含まれる電子と正孔の再結合発光よりも、薄膜
    を介して対向した電子と正孔がトンネル効果による再結
    合に基づいた発光が主となる如く構成され、かつ外部か
    ら電場を印加することで、このトンネル再結合発光過程
    の確率を制御せしむる手段を有することを特徴とする半
    導体発光素子。
  2. 【請求項2】特許請求の範囲第1項記載の半導体発光素
    子において、前記薄膜が構成するバリアを介して電子と
    正孔がトンネル結合する確率が、0.6から、1×10-5
    範囲であることを特徴とする半導体発光素子。
  3. 【請求項3】特許請求の範囲第1項又は第2項記載の半
    導体発光素子において前記第1および第2の半導体層の
    厚さが200Å以上(好ましくは400Å以上)であり、結晶
    組成或いは結晶中の不純物組成或いはその両者により生
    じる凝似ポテンシヤル又は外部電界或いは凝似ポテンシ
    ヤルと外部電界の両者によつて電子及び正孔をそれぞれ
    の前記各半導体層の反対側に押しつけることで、同一半
    導体中における電子と正孔の波動函数の重なり部分と比
    べ前記薄層を介した電子の波動函数と正孔の波動函数の
    重なりの方が大きいことを特徴とする半導体発光素子。
  4. 【請求項4】特許請求の範囲第1項〜第3項のいずれか
    に記載の半導体発光素子において、前記薄層が直接遷移
    型の半導体であることを特徴とする半導体発光素子。
  5. 【請求項5】特許請求の範囲第1項〜第4項のいずれか
    に記載の半導体発光素子において、前記薄層の厚さが、
    単原子層から、100Åであることを特徴とする半導体発
    光素子。
  6. 【請求項6】特許請求の範囲第1項記載の半導体発光素
    子において、前記薄膜の厚さが、150Å以下であること
    を特徴とする半導体発光素子。
  7. 【請求項7】特許請求の範囲第1項又は第5項記載の半
    導体発光素子において、前記薄膜をはさんで相対する前
    記半導体層に、前記薄膜に対して垂直な向きに電場を印
    加することで、前記薄膜と半導体の界面の一方に電子
    を、もう一方に正孔を集める手段を有する半導体発光素
    子。
  8. 【請求項8】特許請求の範囲第1項〜第7項のいずれか
    に記載の半導体発光素子において、前記第1および第2
    の半導体層の一方又は両者の半導体の組成或いは不純物
    濃度のいずれか一方又は両者を前記薄膜の厚さ方向に対
    し一様でなくすることにより、電子及び正孔を前記膜の
    近傍に集めたことを特徴とする半導体発光素子。
  9. 【請求項9】特許請求の範囲第1項〜第8項のいずれか
    に記載の半導体発光素子において、前記第1の半導体層
    及び前記第2の半導体層よりも禁制帯エネルギーギヤツ
    プが大きくかつ導電型の互に相異なる第3および第4の
    半導体層で少なくとも前記薄膜、第1および第2の半導
    体層を含む積層構造体をはさんだことを特徴とする半導
    体発光素子。
  10. 【請求項10】特許請求の範囲第1項〜第9項のいずれ
    かに記載の半導体発光素子において、前記薄膜がGa1-xA
    lxAs前記第1の半導体層が Ga1-yAlyAs前記第2の半導体層が Ga1-zAlzAs;x>y,z;1≧x>0.1;0.4>y,z≧0なること
    を特徴とする半導体発光素子。
  11. 【請求項11】特許請求の範囲第1項〜第10項のいずれ
    かに記載の半導体発光素子において、前記薄膜がGaxIn
    1-xPyAs1-y(x=0,y=0を含む)前記第1;第2の半導
    体層が GamIn1-mPXAs1-xであることを特徴とする半導体発光素
    子。
JP60058397A 1985-03-25 1985-03-25 半導体発光素子 Expired - Lifetime JPH0712100B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60058397A JPH0712100B2 (ja) 1985-03-25 1985-03-25 半導体発光素子
PCT/JP1986/000051 WO1986005925A1 (en) 1985-03-25 1986-02-07 Luminescent semiconductor element
DE8686901137T DE3688490T2 (de) 1985-03-25 1986-02-07 Lumineszentes halbleiterelement.
EP86901137A EP0215125B1 (en) 1985-03-25 1986-02-07 Luminescent semiconductor element
US07/309,929 US4933728A (en) 1985-03-25 1989-02-13 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058397A JPH0712100B2 (ja) 1985-03-25 1985-03-25 半導体発光素子

Publications (2)

Publication Number Publication Date
JPS61218192A JPS61218192A (ja) 1986-09-27
JPH0712100B2 true JPH0712100B2 (ja) 1995-02-08

Family

ID=13083216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058397A Expired - Lifetime JPH0712100B2 (ja) 1985-03-25 1985-03-25 半導体発光素子

Country Status (5)

Country Link
US (1) US4933728A (ja)
EP (1) EP0215125B1 (ja)
JP (1) JPH0712100B2 (ja)
DE (1) DE3688490T2 (ja)
WO (1) WO1986005925A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840717A1 (de) * 1988-12-02 1990-06-07 Max Planck Gesellschaft Lichtemittierendes bauelement aus verbindungs-halbleiter
JPH0327578A (ja) * 1989-06-23 1991-02-05 Eastman Kodatsuku Japan Kk 発光ダイオ―ドアレイ
EP0413333A3 (en) * 1989-08-18 1991-07-24 Hitachi, Ltd. A superconductized semiconductor device
US5051804A (en) * 1989-12-01 1991-09-24 The United States Of America As Represented By The United States Department Of Energy Photodetector having high speed and sensitivity
US5079601A (en) * 1989-12-20 1992-01-07 International Business Machines Corporation Optoelectronic devices based on intraband transitions in combinations of type i and type ii tunnel junctions
US5005176A (en) * 1990-04-04 1991-04-02 Hughes Aircraft Company Method and apparatus for Q-switching a laser
US5309003A (en) * 1992-02-28 1994-05-03 At&T Bell Laboratories Article comprising a real space transfer semiconductor device, and method of making the article
US5223704A (en) * 1992-03-31 1993-06-29 At&T Bell Laboratories Planar buried quantum well photodetector
US6728281B1 (en) * 2000-02-10 2004-04-27 The Board Of Trustees Of The Leland Stanford Junior University Quantum-dot photon turnstile device
JP2003092455A (ja) * 2001-09-17 2003-03-28 Japan Science & Technology Corp 半導体レーザ
JP2005294782A (ja) * 2004-03-31 2005-10-20 Takeshi Awaji 半導体超伝導素子
US10162120B2 (en) * 2013-03-22 2018-12-25 Canadian Microelectronics Corporation Wafer-level fiber to coupler connector
CN113161454B (zh) * 2021-03-23 2022-09-06 北京创盈光电医疗科技有限公司 一种光疗用红黄光芯片的外延结构及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172785A (ja) * 1983-03-22 1984-09-29 Nec Corp 半導体レ−ザ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353114A (en) * 1963-09-09 1967-11-14 Boeing Co Tunnel-injection light emitting devices
JPS515554B1 (ja) * 1969-11-26 1976-02-20
US3938172A (en) * 1974-05-22 1976-02-10 Rca Corporation Semiconductor injection laser
US4045749A (en) * 1975-11-24 1977-08-30 Xerox Corporation Corrugation coupled twin guide laser
US4184170A (en) * 1977-02-11 1980-01-15 Xerox Corporation Light emitting diode
JPS54146984A (en) * 1978-05-10 1979-11-16 Matsushita Electric Ind Co Ltd Luminous element
JPS5534445A (en) * 1978-08-31 1980-03-11 Fujitsu Ltd Semiconductor luminous device
US4195305A (en) * 1978-09-25 1980-03-25 Varian Associates, Inc. Lattice constant grading in the Aly Ga1-y As1-x Sbx alloy system
US4438446A (en) * 1981-05-29 1984-03-20 Bell Telephone Laboratories, Incorporated Double barrier double heterostructure laser
US4578127A (en) * 1982-08-13 1986-03-25 At&T Bell Laboratories Method of making an improved group III-V semiconductor device utilizing a getter-smoothing layer
DE3379441D1 (en) * 1982-09-23 1989-04-20 Secr Defence Brit Infrared detectors
GB2132016B (en) * 1982-12-07 1986-06-25 Kokusai Denshin Denwa Co Ltd A semiconductor device
US4496788A (en) * 1982-12-29 1985-01-29 Osaka Transformer Co., Ltd. Photovoltaic device
GB8333130D0 (en) * 1983-12-12 1984-01-18 Gen Electric Co Plc Semiconductor devices
DE3345214A1 (de) * 1983-12-14 1985-06-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Diode
US4671830A (en) * 1984-01-03 1987-06-09 Xerox Corporation Method of controlling the modeling of the well energy band profile by interdiffusion
US4626792A (en) * 1984-01-10 1986-12-02 Cornell Research Foundation, Inc. Pure crystal exciton laser amplifier and method of operation
US4672413A (en) * 1984-04-16 1987-06-09 Trw Inc. Barrier emitter transistor
US4817102A (en) * 1988-04-18 1989-03-28 Maurer Larry D Acousto-electromagnetic hologistic resonant system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172785A (ja) * 1983-03-22 1984-09-29 Nec Corp 半導体レ−ザ

Also Published As

Publication number Publication date
EP0215125A1 (en) 1987-03-25
DE3688490D1 (de) 1993-07-01
EP0215125A4 (en) 1988-07-11
JPS61218192A (ja) 1986-09-27
US4933728A (en) 1990-06-12
EP0215125B1 (en) 1993-05-26
DE3688490T2 (de) 1993-09-16
WO1986005925A1 (en) 1986-10-09

Similar Documents

Publication Publication Date Title
US4439782A (en) Semiconductor device with heterojunction of Alx Ga1-x As--AlAs--Ga
JPH0418476B2 (ja)
JPH06104533A (ja) 青色発光素子およびその製造方法
JPH0712100B2 (ja) 半導体発光素子
JP2558744B2 (ja) 半導体レーザ素子及びその製造方法
JPH0143472B2 (ja)
JP5023419B2 (ja) 半導体量子ドット・デバイス
US4847573A (en) Optical modulator
US4802181A (en) Semiconductor superlattice light emitting sevice
US10277010B2 (en) Semiconductor laser
US10312666B2 (en) Semiconductor laser
JP2002368342A (ja) 多重量子井戸半導体素子
JP3146710B2 (ja) 発光素子
US4270094A (en) Semiconductor light emitting device
JP2819160B2 (ja) 多波長半導体レーザダイオード
JP3449751B2 (ja) 半導体発光素子
JPH04350988A (ja) 量子井戸構造発光素子
JP2748570B2 (ja) 半導体レーザ素子
JP3223969B2 (ja) 半導体レーザ
JPS63136591A (ja) 半導体レ−ザ
JP2504372B2 (ja) 超格子構造体
JP3044604B2 (ja) 半導体レーザ
KR900000021B1 (ko) 반도체 레이저
JPH0712101B2 (ja) 半導体発光装置
JPH0630399B2 (ja) 共鳴トンネル・ダイオ−ド

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term