JPH0692733A - Production of silicon carbide heating element - Google Patents
Production of silicon carbide heating elementInfo
- Publication number
- JPH0692733A JPH0692733A JP4271181A JP27118192A JPH0692733A JP H0692733 A JPH0692733 A JP H0692733A JP 4271181 A JP4271181 A JP 4271181A JP 27118192 A JP27118192 A JP 27118192A JP H0692733 A JPH0692733 A JP H0692733A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- powder
- nitrogen
- heating element
- nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Resistance Heating (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、窒素固溶量が多く、低
位の電気比抵抗を備える炭化珪素発熱体の製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide heating element having a large amount of nitrogen solid solution and a low electric resistivity.
【0002】[0002]
【従来の技術】炭化珪素は、良導電性の化合物半導体で
あり、材質的に優れた熱的および化学的な安定性を具備
しているため、高温電気炉用の発熱体として古くから有
用されている。一般に、炭化珪素発熱体は炭化珪素原料
粉に有機バインダーを混合し、所定形状に成形したのち
焼結処理して組織を再結晶SiCに転化させることによ
り製造されるが、炭化珪素のバンドギャップは約3eVと
広い関係で電気抵抗を通電可能なレベルまで引き下げる
必要がある。このためには、炭化珪素中に3族元素や5
族元素を固溶させる手段が有効とされている。2. Description of the Related Art Silicon carbide is a compound semiconductor having good conductivity, and has excellent thermal and chemical stability in terms of material. Therefore, it has long been useful as a heating element for a high temperature electric furnace. ing. Generally, a silicon carbide heating element is manufactured by mixing a raw material powder of silicon carbide with an organic binder, shaping it into a predetermined shape, and then performing a sintering treatment to convert the structure into recrystallized SiC. With a wide relationship of about 3 eV, it is necessary to lower the electric resistance to a level at which it can carry electricity. For this purpose, a Group 3 element or 5
Means for forming a solid solution of a group element is effective.
【0003】炭化珪素は、3族元素を固溶させるとP型
半導体となり、また5族元素を固溶させた場合にはN型
半導体となる。このうちP型半導体のキャリアはホール
であり、N型半導体のキャリアは電子であるが、電子は
ホールに比べて一般に移動度が速いため、5族元素を固
溶させてN型半導体とした方が比抵抗を下げるためには
有効である。炭化珪素に固溶可能な5族元素としては、
窒素、リン、ヒ素、アンチモンまたはビスマスのような
窒素族が挙げられるが、この中では窒素が最も固溶し易
く、固溶限界も高い。このため、炭化珪素の電気抵抗を
下げる目的で組織中に窒素を固溶させる試みが提案され
ている。Silicon carbide becomes a P-type semiconductor when a Group 3 element is solid-solved, and becomes an N-type semiconductor when a Group 5 element is solid-solved. Of these, the P-type semiconductor carrier is a hole and the N-type semiconductor carrier is an electron. However, since the electron generally has a higher mobility than the hole, the group 5 element is solid-solved to form an N-type semiconductor. Is effective for lowering the specific resistance. As the Group 5 element capable of forming a solid solution in silicon carbide,
The nitrogen group such as nitrogen, phosphorus, arsenic, antimony or bismuth may be mentioned. Among them, nitrogen is most easily solid-solubilized and has a high solid-solution limit. For this reason, an attempt has been proposed in which nitrogen is solid-dissolved in the tissue in order to reduce the electric resistance of silicon carbide.
【0004】例えば、特公昭57−18682号公報に
は炭化珪素を窒素雰囲気中で焼結する方法が示され、同
様に特開昭52−110499号公報には炭化珪素を窒
素雰囲気中でホットプレス焼結する方法が開示されてい
る。しかし、単に窒素ガス中で焼結するだけでは窒素の
固溶化は円滑に進まず、比抵抗を十分に低減させること
はできない。特公昭64−4312号公報では窒素の固
溶度合を増大させるため、炭化珪素焼結時の窒素ガス圧
を80〜500気圧まで高め、窒素を強制的に固溶させ
る方法が記載されている。この方法によれば窒素固溶量
が増大するため炭化珪素の電気比抵抗を効果的に低下さ
せることが可能となるが、前記条件の窒素ガス圧を確保
するには例えば熱間静水圧プレス(HIP)のような高
価な装置を適用しなければならず、設備やコストなどの
面で工業的手段としての難点がある。For example, Japanese Patent Publication No. 57-18682 discloses a method of sintering silicon carbide in a nitrogen atmosphere. Similarly, Japanese Laid-Open Patent Publication No. 52-110499 discloses hot pressing silicon carbide in a nitrogen atmosphere. A method of sintering is disclosed. However, simply sintering in nitrogen gas does not allow the solid solution of nitrogen to proceed smoothly and the specific resistance cannot be sufficiently reduced. Japanese Patent Publication No. 64-4312 describes a method for increasing the solid solubility of nitrogen so that the nitrogen gas pressure during the sintering of silicon carbide is increased to 80 to 500 atm and nitrogen is forced to form a solid solution. According to this method, the solid solution amount of nitrogen increases, so that the electrical resistivity of silicon carbide can be effectively reduced. However, in order to secure the nitrogen gas pressure under the above conditions, for example, a hot isostatic press ( Since an expensive device such as HIP) has to be applied, there is a problem as an industrial means in terms of equipment and cost.
【0005】[0005]
【発明が解決しようとする課題】本発明者は、このよう
な実情に鑑み、炭化珪素に対する窒素固溶度合を高める
ための簡便な手段について多角的な研究を進めた結果、
発熱体の製造時に炭化珪素原料粉に特定量の窒化物と炭
素の粉末を混合し、更に特定された条件で焼結処理をお
こなうと、特別な装置設備を必要とせずに窒素固溶量を
効果的に増大することができ、材質強度を損ねることな
しに炭化珪素発熱体の比抵抗低下を図ることができるこ
とを解明した。In view of such circumstances, the present inventor has carried out multifaceted research on a simple means for increasing the solid solubility of nitrogen in silicon carbide, and as a result,
When a specific amount of nitride and carbon powder is mixed with the silicon carbide raw material powder when the heating element is manufactured, and the sintering process is performed under the specified conditions, the nitrogen solid solution amount can be reduced without the need for special equipment. It was clarified that the specific resistance of the silicon carbide heating element can be effectively increased and the specific resistance of the silicon carbide heating element can be reduced without deteriorating the material strength.
【0006】本発明はかかる知見に基づいて開発された
もので、その目的は、簡便なプロセスにより材質強度を
損ねずに多量の窒素固溶量を確保することができる低比
抵抗性の炭化珪素発熱体を効率的に製造するための方法
を提供することにある。The present invention was developed on the basis of such findings, and its object is to provide a low specific resistance silicon carbide capable of ensuring a large amount of nitrogen solid solution by a simple process without deteriorating the material strength. It is to provide a method for efficiently producing a heating element.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めの本発明による炭化珪素発熱体の製造方法は、炭化珪
素原料粉に、窒化物粉末1〜30重量%と前記窒化物粉
末の5〜30重量%に相当する量の炭素質粉末を混合
し、バインダーとともに所定形状に成形したのち、窒素
ガス雰囲気中で1900〜2400℃の温度により焼結
処理することを構成上の特徴とする。In order to achieve the above object, a method of manufacturing a silicon carbide heating element according to the present invention comprises a raw material powder of silicon carbide having 1 to 30% by weight of a nitride powder and 5 parts by weight of the nitride powder. A characteristic feature is that a carbonaceous powder in an amount corresponding to ˜30 wt% is mixed, shaped into a predetermined shape with a binder, and then sintered at a temperature of 1900 to 2400 ° C. in a nitrogen gas atmosphere.
【0008】本発明の炭化珪素原料粉には、通常、炭化
珪素発熱体の製造に使用されている粒径100μm 以下
のα型結晶系微粉末が用いられる。この炭化珪素原料粉
に対しては、予め窒化物粉末と炭素粉末が添加混合され
る。窒化物粉末としては、酸窒化珪素(Si2N2O)、窒化珪
素(Si3N4) などの微細粉末が対象となるが、分解温度が
余り高いと操作が煩雑となり、円滑な窒素固溶化が困難
となる。なお、窒化物でも窒化硼素(BN)や窒化アルミニ
ウム(AlN) のように3族元素を含むものは、N型半導体
を補償するため本発明の目的には好ましくない。本発明
の目的に最も好適な窒化物粉末は、窒化珪素の粉末であ
る。この理由は、窒化珪素は分解温度(約1900℃)
が比較的低いうえ、分解時に窒素と共に生成する珪素成
分が炭素粉末と化合して炭化珪素となり、これが炭化珪
素基材の組織を緻密化する機能を営むので、窒素の固溶
化と同時に材質強化を図ることができるからである。一
方、炭素質粉末には特に限定はなく、例えばコークス
粉、炭素粉、黒鉛粉またはカーボンブラックなどが使用
される。As the silicon carbide raw material powder of the present invention, α-type crystal system fine powder having a particle size of 100 μm or less, which is used for producing a silicon carbide heating element, is usually used. Nitride powder and carbon powder are previously added and mixed to this silicon carbide raw material powder. As the nitride powder, fine powders such as silicon oxynitride (Si 2 N 2 O) and silicon nitride (Si 3 N 4 ) are targeted, but if the decomposition temperature is too high, the operation becomes complicated and the nitrogen solid Solubilization becomes difficult. It should be noted that a nitride containing a Group 3 element such as boron nitride (BN) or aluminum nitride (AlN) is not preferable for the purpose of the present invention because it compensates the N-type semiconductor. The most suitable nitride powder for the purposes of the present invention is silicon nitride powder. The reason for this is that silicon nitride has a decomposition temperature (about 1900 ° C).
Is relatively low, and the silicon component produced along with nitrogen during decomposition combines with carbon powder to form silicon carbide, which functions to densify the structure of the silicon carbide base material. This is because it can be achieved. On the other hand, the carbonaceous powder is not particularly limited and, for example, coke powder, carbon powder, graphite powder or carbon black is used.
【0009】窒化物粉末は、炭化珪素原料粉に対し1〜
30重量%の範囲で添加される。この添加量が1重量%
未満であると分解生成する窒素の量が少なくなって比抵
抗を低めるに十分な窒素固溶量が確保できず、30重量
%を越えると逆に窒化物の分解量が多くなって材質強度
の劣化を招く。また、炭化珪素原料粉に対する炭素質粉
末の添加比率は、前記した窒化物粉末の5〜30重量%
に相当する量の範囲に設定する。これは添加量が5重量
%を下廻ると窒化物の分解によって生成した基材成分
(例えば珪素)が未反応物として残留し、30重量%を
越えると余剰の炭素質物質が残留して共に材質特性に悪
影響を与えるためである。The nitride powder is 1 to 1 with respect to the silicon carbide raw material powder.
It is added in the range of 30% by weight. This addition amount is 1% by weight
When the amount is less than the above, the amount of nitrogen produced by decomposition becomes small and it is not possible to secure a sufficient amount of solid solution of nitrogen for lowering the specific resistance. Cause deterioration. The addition ratio of the carbonaceous powder to the silicon carbide raw material powder is 5 to 30% by weight of the above-mentioned nitride powder.
Set to the range of the amount equivalent to. This is because when the addition amount is less than 5% by weight, the base material component (for example, silicon) generated by decomposition of the nitride remains as an unreacted material, and when the addition amount exceeds 30% by weight, excess carbonaceous material remains. This is because it adversely affects the material characteristics.
【0010】炭化珪素原料粉、窒化物粉末および炭素質
粉末は十分に撹拌混合したのち、ポリビニルアルコール
のような有機バインダーおよび水と混練し、押出、型込
などの手段を用いて所定の形状に成形する。The silicon carbide raw material powder, the nitride powder and the carbonaceous powder are sufficiently stirred and mixed, and then kneaded with an organic binder such as polyvinyl alcohol and water, and formed into a predetermined shape by means such as extrusion and molding. Mold.
【0011】ついで、成形体を窒素ガス雰囲気に保持さ
れて加熱炉に移し、1900〜2400℃の温度で焼結
処理を施す。加熱炉の系内を窒素ガス雰囲気を保持しな
いと窒化物の分解により生成した窒素が炉内に拡散して
しまい、結果的に窒素固溶量が減退する。焼結処理温度
は1900℃未満であると窒化物の分解が起生せず、成
形体の焼結化も円滑に進行しなくなり、2400℃を越
えると炭化珪素自体が分解して焼結体にならなくなる。Next, the compact is held in a nitrogen gas atmosphere, transferred to a heating furnace, and subjected to a sintering treatment at a temperature of 1900 to 2400 ° C. If the nitrogen gas atmosphere is not maintained in the system of the heating furnace, the nitrogen generated by the decomposition of the nitride diffuses into the furnace, resulting in a decrease in the amount of solid solution of nitrogen. If the sintering temperature is lower than 1900 ° C, decomposition of the nitride does not occur, and the sintering of the compact does not proceed smoothly. If it exceeds 2400 ° C, the silicon carbide itself decomposes to form a sintered body. Will not happen.
【0012】[0012]
【作用】本発明による窒素固溶化の機能を、窒化物粉末
として窒化珪素を用いた場合を例にとって説明すると以
下のようになる。まず、炭化珪素原料粉に混合した窒化
珪素粉末は焼結処理工程で1900℃以上に加熱される
と式(1) の反応を起こして分解する。 Si3 N4 → 3Si+4N …(1) 生成したSiは混合した炭素質粉末と反応し、式(2) に
より炭化珪素に転化する。 3Si+3C → 3SiC …(2) 上記の式(1) と式(2) をまとめると、下記の式(3) のよ
うになる。 Si3 N4 +3C → 3SiC+4N …(3)The function of the solid solution of nitrogen according to the present invention will be described below by taking the case of using silicon nitride as the nitride powder as an example. First, when the silicon nitride powder mixed with the silicon carbide raw material powder is heated to 1900 ° C. or higher in the sintering process, the reaction of the formula (1) occurs and decomposes. Si 3 N 4 → 3Si + 4N (1) The generated Si reacts with the mixed carbonaceous powder and is converted into silicon carbide by the formula (2). 3Si + 3C → 3SiC (2) The above equations (1) and (2) can be summarized as the following equation (3). Si 3 N 4 + 3C → 3SiC + 4N (3)
【0013】ここで分解生成した原子状の窒素は、雰囲
気系に存在する窒素(N2)とは挙動を異にし、炭化珪素原
料の焼結粒成長が進む過程や前記の反応でSiCが生成
する際に炭素質粉末と置換して極めて円滑に炭化珪素焼
結組織内に固溶する。このため、焼結処理段階の窒素ガ
ス雰囲気が常圧付近であっても、大量の窒素固溶化が可
能となる。同時に、反応生成したSiCは炭化珪素焼結
体の組織内部に分散して組織の緻密化に寄与し、材質強
度を向上させる作用を営む。The atomic nitrogen decomposed and produced here has a behavior different from that of nitrogen (N 2 ) existing in the atmosphere system, and SiC is produced in the process of the progress of the sintered grain growth of the silicon carbide raw material and the above reaction. In doing so, it replaces the carbonaceous powder and extremely smoothly forms a solid solution in the silicon carbide sintered structure. Therefore, even if the nitrogen gas atmosphere in the sintering process stage is near atmospheric pressure, a large amount of solid solution of nitrogen becomes possible. At the same time, the reaction-generated SiC disperses inside the structure of the silicon carbide sintered body, contributes to the densification of the structure, and acts to improve the material strength.
【0014】これらの作用が相乗して、高水準の材質強
度を維持しながら効率的に窒素固溶化が進行し、その結
果として得られる炭化珪素発熱体の電気比抵抗を効果的
に低下させる効果がもたらされる。These effects synergize with each other to effectively promote solid solution of nitrogen while maintaining a high level of material strength, and effectively reduce the electrical resistivity of the resulting silicon carbide heating element. Is brought about.
【0015】[0015]
【実施例】以下、本発明の実施例を比較例と対比して説
明する。EXAMPLES Examples of the present invention will be described below in comparison with comparative examples.
【0016】実施例1〜3、比較例1〜4 平均粒径5μm のα型炭化珪素粉末に、窒化珪素粉末
(平均粒径0.5μm )と炭素粉末(粒径2μm)を添加
量を変えて撹拌混合し、これにポリビニルアルコールか
らなるバインダ1重量%および水20重量%を加えて十
分に混練した。この混練物を直径15mm、長さ50mmの
円柱成形体に押出し成形した。ついで、成形体を乾燥し
たのち加熱炉に入れ、系内を1.3atm の窒素ガス雰囲
気に保持しながら2100℃に昇温し、この温度で1時
間焼結処理を施した。このようにして得られた炭化珪素
焼結体の窒素固溶量、電気比抵抗(常温)および曲げ強
度等の特性を測定し、その結果を製造時の変動条件と対
比させて表1に示した。Examples 1 to 3 and Comparative Examples 1 to 4 Silicon nitride powder (average particle size 0.5 μm) and carbon powder (particle size 2 μm) were added in different amounts to α-type silicon carbide powder having an average particle size 5 μm. Then, the mixture was stirred and mixed, and 1% by weight of a binder made of polyvinyl alcohol and 20% by weight of water were added thereto and sufficiently kneaded. This kneaded product was extruded into a cylindrical molded body having a diameter of 15 mm and a length of 50 mm. Then, the molded body was dried and then placed in a heating furnace, and the temperature was raised to 2100 ° C. while maintaining the inside of the system in a nitrogen gas atmosphere of 1.3 atm, and sintering treatment was performed at this temperature for 1 hour. The nitrogen solid solution amount, electrical resistivity (normal temperature), bending strength, and other characteristics of the silicon carbide sintered body thus obtained were measured, and the results are shown in Table 1 in comparison with the fluctuation conditions during manufacturing. It was
【0017】比較例5 窒化珪素粉末および炭素粉末を混合しない外は全て実施
例2と同一条件により炭化珪素発熱体を製造した。この
焼結体の各種特性を測定し、結果を表1に併載した。Comparative Example 5 A silicon carbide heating element was manufactured under the same conditions as in Example 2, except that the silicon nitride powder and the carbon powder were not mixed. Various characteristics of this sintered body were measured, and the results are also shown in Table 1.
【0018】比較例6〜7 実施例2において、焼結処理温度を1800℃と250
0℃に変え、その他の条件は全て同一にして炭化珪素焼
結体を製造した。この焼結体の各種特性を測定し、結果
を表1に併載した。Comparative Examples 6 to 7 In Example 2, the sintering temperature was 1800 ° C. and 250.
A silicon carbide sintered body was manufactured by changing the temperature to 0 ° C. and all other conditions being the same. Various characteristics of this sintered body were measured, and the results are also shown in Table 1.
【0019】比較例8 実施例2において、焼結処理時の炉内雰囲気を1.3at
m のアルゴン雰囲気に変え、その他の条件は全て同一に
して炭化珪素焼結体を製造した。この焼結体の各種特性
を測定し、結果を表1に併載した。Comparative Example 8 In Example 2, the atmosphere in the furnace during the sintering process was 1.3 at.
A silicon carbide sintered body was manufactured under the same conditions except that the atmosphere was changed to m 2 of argon. Various characteristics of this sintered body were measured, and the results are also shown in Table 1.
【0020】[0020]
【表1】 [Table 1]
【0021】表1の結果から、実施例による各炭化珪素
焼結体は窒化珪素粉末および炭素粉末を混合しない比較
例5と比べて明らかに窒素固溶量が増え、比抵抗も低下
している。そのうえ、曲げ強度も高水準にあるから発熱
体として好適な特性が付与されている。これに対し、窒
化珪素粉末の添加量が少ない比較例1、焼結処理温度が
低い比較例6および炉内雰囲気がアルゴンである比較例
8では、窒素固溶量が少なくて比抵抗を低下させること
ができず、窒化珪素の添加量が多い比較例2では材質の
曲げ強度が極端に減退している。また、焼結処理温度が
高い比較例7では焼結体を構成する炭化珪素が形態を留
めないほど分解していた。炭素粉末の添加量が限定範囲
より少ない比較例3と多い比較例4では、焼結体の特性
データは良好な結果を示したが、前者は未反応の珪素が
残留しているため通電発熱時に珪素溶融温度域で著しい
抵抗増と強度低下の現象が認められ、後者は未反応の炭
素粉末が残留することから通電発熱時に炭素の酸化に伴
う抵抗増を生じ、いずれも発熱体としては不適格であっ
た。From the results shown in Table 1, in each of the silicon carbide sintered bodies according to the examples, the amount of solid solution of nitrogen is obviously increased and the specific resistance is lowered as compared with Comparative example 5 in which the silicon nitride powder and the carbon powder are not mixed. . In addition, since the bending strength is also at a high level, suitable characteristics as a heating element are given. In contrast, in Comparative Example 1 in which the amount of silicon nitride powder added is small, Comparative Example 6 in which the sintering temperature is low, and Comparative Example 8 in which the furnace atmosphere is argon, the solid solution amount of nitrogen is small and the specific resistance is reduced. However, in Comparative Example 2 in which the amount of silicon nitride added was large, the bending strength of the material was extremely reduced. Moreover, in Comparative Example 7 in which the sintering temperature was high, the silicon carbide forming the sintered body was decomposed to such an extent that the shape could not be retained. In Comparative Example 3 in which the amount of carbon powder added was less than the limited range and Comparative Example 4 in which the amount of carbon powder was greater than the limited range, the characteristic data of the sintered body showed good results. In the silicon melting temperature range, a phenomenon of a marked increase in resistance and a decrease in strength were observed. In the latter case, unreacted carbon powder remained, resulting in an increase in resistance due to oxidation of carbon during heat generation by energization. Met.
【0022】[0022]
【発明の効果】以上のとおり、本発明によれば予め炭化
珪素原料粉に特定量の窒化物粉末と炭素質粉末を添加混
合することにより簡便なプロセスを介して材質強度を高
水準に維持しながら窒素固溶量が多く、電気比抵抗の低
い炭化珪素発熱体を効率よく製造することができる。し
たがって、高性能な高温炉用炭化珪素発熱体の工業的な
製造技術として有用である。As described above, according to the present invention, the material strength is maintained at a high level through a simple process by adding a specific amount of nitride powder and carbonaceous powder to the silicon carbide raw material powder in advance. However, it is possible to efficiently manufacture a silicon carbide heating element having a large amount of nitrogen solid solution and a low electric resistivity. Therefore, it is useful as an industrial manufacturing technique of a high-performance silicon carbide heating element for a high temperature furnace.
Claims (2)
重量%と前記窒化物粉末の5〜30重量%に相当する量
の炭素質粉末を混合し、バインダーとともに所定形状に
成形したのち、窒素ガス雰囲気中で1900〜2400
℃の温度により焼結処理することを特徴とする炭化珪素
発熱体の製造方法。1. A silicon carbide raw material powder, and nitride powders 1 to 30.
Wt% and an amount of carbonaceous powder corresponding to 5 to 30 wt% of the nitride powder are mixed and shaped into a predetermined shape with a binder, and then 1900 to 2400 in a nitrogen gas atmosphere.
A method for manufacturing a silicon carbide heating element, which comprises performing a sintering treatment at a temperature of ° C.
炭化珪素発熱体の製造方法。2. The method for manufacturing a silicon carbide heating element according to claim 1, wherein the nitride is silicon nitride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4271181A JPH0692733A (en) | 1992-09-14 | 1992-09-14 | Production of silicon carbide heating element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4271181A JPH0692733A (en) | 1992-09-14 | 1992-09-14 | Production of silicon carbide heating element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0692733A true JPH0692733A (en) | 1994-04-05 |
Family
ID=17496480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4271181A Pending JPH0692733A (en) | 1992-09-14 | 1992-09-14 | Production of silicon carbide heating element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0692733A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3733678A1 (en) * | 1986-11-04 | 1988-05-19 | Toyota Motor Co Ltd | SUCTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE |
JP2010126427A (en) * | 2008-12-01 | 2010-06-10 | Tokai Konetsu Kogyo Co Ltd | Method of manufacturing silicon carbide heating element end part and silicon carbide heating element end part |
JP4627577B2 (en) * | 1999-10-28 | 2011-02-09 | 株式会社ブリヂストン | Method for producing sintered silicon carbide |
JP2011084451A (en) * | 2009-10-19 | 2011-04-28 | Tokyo Yogyo Co Ltd | Method for producing electroconductive silicon carbide porous body |
-
1992
- 1992-09-14 JP JP4271181A patent/JPH0692733A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3733678A1 (en) * | 1986-11-04 | 1988-05-19 | Toyota Motor Co Ltd | SUCTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE |
JP4627577B2 (en) * | 1999-10-28 | 2011-02-09 | 株式会社ブリヂストン | Method for producing sintered silicon carbide |
JP2010126427A (en) * | 2008-12-01 | 2010-06-10 | Tokai Konetsu Kogyo Co Ltd | Method of manufacturing silicon carbide heating element end part and silicon carbide heating element end part |
JP2011084451A (en) * | 2009-10-19 | 2011-04-28 | Tokyo Yogyo Co Ltd | Method for producing electroconductive silicon carbide porous body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4962069A (en) | Highly densified bodies from preceramic polysilazanes filled with silicon carbide powders | |
JPH0692733A (en) | Production of silicon carbide heating element | |
JPH0717453B2 (en) | Aluminum nitride sintered body and method for manufacturing the same | |
JP4796716B2 (en) | Process for producing reaction sintered silicon carbide heating element | |
JP2001261441A (en) | Production process of electrically conductive silicon carbide sintered body | |
JP3131914B2 (en) | Silicon carbide heating element and method for producing the same | |
JPS63392B2 (en) | ||
JPS6212663A (en) | Method of sintering b4c base fine body | |
JP4958353B2 (en) | Aluminum nitride powder and method for producing the same | |
JPH07165408A (en) | Production of electrically conductive silicon carbide fine powder and sintered compact | |
EP0064264A2 (en) | Silicon carbide powder mixture and process for producing sintered bodies therefrom | |
JP2518409B2 (en) | Method for producing aluminum nitride powder | |
JP3277295B2 (en) | Method for producing high-temperature silicon carbide heating element | |
JPH0826827A (en) | Electrically conductive reactional silicon carbide sintered compact, its production and use | |
JP2721535B2 (en) | Method for producing high thermal conductivity AlN sintered body | |
JP2855460B2 (en) | Method for producing silicon nitride-based composite powder | |
JP2511337B2 (en) | Method for manufacturing boron nitride atmospheric pressure sintered body | |
JPH05213673A (en) | Production of silicon carbide-based sintered compact having high heat conductivity | |
JP2000211972A (en) | Silicon carbide heating element and its production | |
JPS5848503B2 (en) | silicon carbide material | |
JP3051931B1 (en) | High-strength silicon carbide sintered body and method for producing the same | |
JP2975490B2 (en) | Method for producing high thermal conductivity β-type silicon carbide sintered body | |
JPH04130061A (en) | Silicon carbide electrode and its production | |
JP2916934B2 (en) | Method for producing sialon-based sintered body | |
JPH0735302B2 (en) | Method for manufacturing aluminum nitride sintered body |