JP2001261441A - Production process of electrically conductive silicon carbide sintered body - Google Patents

Production process of electrically conductive silicon carbide sintered body

Info

Publication number
JP2001261441A
JP2001261441A JP2000071640A JP2000071640A JP2001261441A JP 2001261441 A JP2001261441 A JP 2001261441A JP 2000071640 A JP2000071640 A JP 2000071640A JP 2000071640 A JP2000071640 A JP 2000071640A JP 2001261441 A JP2001261441 A JP 2001261441A
Authority
JP
Japan
Prior art keywords
sintered body
sintering
sic
specific resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000071640A
Other languages
Japanese (ja)
Inventor
Hiroaki Kitahama
裕章 北浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP2000071640A priority Critical patent/JP2001261441A/en
Publication of JP2001261441A publication Critical patent/JP2001261441A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production process of a conductive SiC sintered body which has a <=10 Ω.cm specific resistance value and a >=90% relative density value, that are suitable characteristic values as a heater element, electrode material, resistor, or the like, and also, the variation in specific resistance value of which is hardly caused in the production and the resistance of which can easily be controlled and further which has excellent durability. SOLUTION: This production process comprises: mixing powdery SiC having a <=2 μm average grain size with a sintering aid to obtain a mixture; forming the mixture into a green body; and heating and sintering the green body in an inert atmosphere containing 30-90 vol.% gaseous nitrogeg at 2,100-2,300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性SiC焼結
体の製造方法、詳しくは、とくに耐酸化性、耐食性を必
要とする発熱体などの各種抵抗体、スパークロッドやフ
レームロッドなどの高温用電極材として使用される導電
性SiC焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive SiC sintered body, and more particularly, to various kinds of resistors such as a heating element requiring oxidation resistance and corrosion resistance, and a high temperature such as a spark rod or a frame rod. The present invention relates to a method for producing a conductive SiC sintered body used as an electrode material for a vehicle.

【0002】[0002]

【従来の技術】SiC焼結体は、耐熱性、耐熱衝撃性、
耐食性、高温強度特性に優れているため、多くの分野で
使用されており、また、SiCは不純物半導体としても
知られており、製造方法によって様々な導電特性を示す
ため、高温用の抵抗発熱体としても広く用いられてい
る。
2. Description of the Related Art A SiC sintered body has heat resistance, thermal shock resistance,
Since it has excellent corrosion resistance and high-temperature strength characteristics, it is used in many fields.SiC is also known as an impurity semiconductor, and exhibits various conductive characteristics depending on the manufacturing method. Also widely used.

【0003】SiC焼結体は、一般には昇華再結晶法、
反応焼結法、常圧焼結法などによって製造される。昇華
再結晶法では、一般に二段粒配を持つSiC粉体を加熱
し気化/凝縮プロセスによって焼結することにより、2
0%程度の開気孔を持つ焼結体を得るが、緻密性が低い
ため、反応焼結材や常圧焼結材に比べると高温での耐酸
化性が劣り、過酷な条件下で長時間安定して使用するの
には問題がある。反応焼結法では、SiCと炭素との混
合粉体に高温で溶融Siを含浸しCとSiとの反応によ
りSiC焼結体を得るが、抵抗値がばらつき易く制御が
難しい。
[0003] The SiC sintered body is generally produced by a sublimation recrystallization method,
It is manufactured by a reaction sintering method, a normal pressure sintering method, or the like. In the sublimation recrystallization method, generally, SiC powder having a two-stage particle distribution is heated and sintered by a vaporization / condensation process, thereby obtaining
Although a sintered body with open pores of about 0% is obtained, its oxidation resistance at high temperatures is inferior to that of reaction sintered materials and normal pressure sintered materials due to its low density. There is a problem in using it stably. In the reaction sintering method, a mixed powder of SiC and carbon is impregnated with molten Si at a high temperature to obtain a SiC sintered body by a reaction between C and Si. However, the resistance value tends to fluctuate and control is difficult.

【0004】緻密なSiC焼結体を得る手法として、S
iC粉末にB、Al、C、Beあるいはそれらの化合物
を焼結助剤として加え、アルゴンガス雰囲気中で焼結を
行う常圧焼結法、ホットプレスなどの加圧焼結法がある
が、これらの手法により得られるSiC焼結体は、常温
での比抵抗が高く、温度による抵抗変化が非常に大きく
制御が難しいため抵抗体や電極材としての用途には問題
があった。例えば、発熱体としての使用においては、常
温からの通電発熱が困難であること、また温度変化に伴
う急激な抵抗減少によって電流急増による熱暴走を起こ
し易くなる問題もあった。
As a method for obtaining a dense SiC sintered body, S
Pressure sintering methods such as a normal pressure sintering method in which B, Al, C, Be or a compound thereof are added to iC powder as a sintering aid, and sintering is performed in an argon gas atmosphere, and a hot pressing method, The SiC sintered body obtained by these methods has a high specific resistance at room temperature, and has a very large resistance change due to temperature, which is difficult to control, and thus has a problem in use as a resistor or an electrode material. For example, when used as a heating element, there is a problem that it is difficult to conduct electricity from room temperature and generate a thermal runaway due to a sudden increase in current due to a sudden decrease in resistance due to a temperature change.

【0005】BとCを焼結助剤として添加したSiC焼
結体の電気特性を改善する方法として、例えば、平均粒
径が1.0μm以下のSiC粉末に0.3wt%のBに
相当する量のBまたはB化合物と0.1〜0.6wt%
のCに相当する量のCまたはC化合物を添加した原料系
を成形し、一次焼結により理論密度の70〜95%の密
度を有する焼結体を得た後、加圧下で窒素を固溶させる
二次焼結を経て低抵抗のSiC発熱体を得る方法が提案
されている(特公昭61−56187号公報)が、一次
焼結時の到達密度が二次焼結後に得られる焼結体の比抵
抗値に大きく影響し、所定の範囲の密度となった時点で
焼結を止めて得た一次焼結後の焼結体の密度のばらつき
も大きくという問題点がある。また、焼結工程を二回に
分けることは製造コスト面でも不利となる。
As a method for improving the electric characteristics of a SiC sintered body in which B and C are added as a sintering aid, for example, 0.3% by weight of B is added to SiC powder having an average particle size of 1.0 μm or less. Amount of B or B compound and 0.1-0.6 wt%
The raw material system to which an amount of C or a C compound corresponding to the amount of C is added is formed, and a sintered body having a density of 70 to 95% of the theoretical density is obtained by primary sintering. A method of obtaining a low-resistance SiC heating element through secondary sintering has been proposed (Japanese Patent Publication No. 61-56187), but a sintered body in which the ultimate density during primary sintering is obtained after secondary sintering Has a problem that the density of the sintered body after the primary sintering obtained by stopping the sintering when the density reaches a predetermined range is large. Further, dividing the sintering process into two steps is disadvantageous in terms of manufacturing cost.

【0006】発明者は、上記の問題点を解決するため
に、常圧焼結法をベースとするSiC焼結体の組成、組
織性状と比抵抗特性の関連、所望の組成と組織性状を得
るための製造条件などについて種々の角度から試験、検
討を行った結果として、改善された電気特性を得るため
には、窒素0.1wt%以上、ホウ素0.1〜0.5w
t%を含有し、0.05〜5Ω・cmの比抵抗、15%
未満の開気孔率を有するSiC焼結体からなる発熱体が
好ましく、このSiC焼結体を得る方法として、平均粒
径5μm以下のSiC粉末と焼結助剤との混合粉末を成
形して成形体とし、該成形体を窒素ガス雰囲気または窒
素ガスを含む不活性ガス雰囲気中において2100〜2
300℃の温度に加熱し、一回の焼結工程で焼結体を製
造する方法を提案した(特願平11−291970
号)。
In order to solve the above problems, the inventor obtains the composition of the SiC sintered body based on the normal pressure sintering method, the relation between the texture and the specific resistance, and the desired composition and the texture. As a result of conducting tests and examinations from various angles on manufacturing conditions for the purpose, it is necessary to obtain 0.1% by weight or more of nitrogen and 0.1 to 0.5% of boron to obtain improved electrical characteristics.
t%, specific resistance of 0.05-5 Ω · cm, 15%
A heating element made of a SiC sintered body having an open porosity of less than 10 mm is preferable. As a method for obtaining this SiC sintered body, a mixed powder of a SiC powder having an average particle diameter of 5 μm or less and a sintering aid is molded. The molded body is placed in a nitrogen gas atmosphere or an inert gas atmosphere containing nitrogen gas in an atmosphere of 2100-2.
A method of manufacturing a sintered body in a single sintering step by heating to a temperature of 300 ° C. has been proposed (Japanese Patent Application No. 11-291970).
issue).

【0007】発明者は、さらに、高温用の発熱体のみで
なく、電極材、各種抵抗体などとしても適用し得る導電
性SiC焼結体を得ることを目的として検討を行い、当
該導電性SiC焼結体の特性としては、10Ωcm以
下、好ましくは0.1Ωcm以下の比抵抗と90%以上
の相対密度の組合わせが好ましいことを知見した。
The inventor has further studied for the purpose of obtaining a conductive SiC sintered body which can be used not only as a heating element for high temperature, but also as an electrode material, various resistors, and the like. As a characteristic of the sintered body, it has been found that a combination of a specific resistance of 10 Ωcm or less, preferably 0.1 Ωcm or less and a relative density of 90% or more is preferable.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の組合
わせを有するSiC焼結体を得るため、前記一工程によ
る製造方法をベースとしてさらに試験、検討を加えた結
果としてなされたものであり、その目的は、発熱体、電
極材、抵抗体などの用途に適した導電性をそなえ、耐熱
性、耐食性に優れ、製造時における抵抗制御が容易であ
り、製造コストも比較的安価な導電性SiC焼結体の製
造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made as a result of further testing and study based on the one-step manufacturing method in order to obtain a SiC sintered body having the above-described combination. Its purpose is to provide conductivity suitable for applications such as heating elements, electrode materials, resistors, etc., excellent heat resistance and corrosion resistance, easy resistance control during manufacturing, and relatively inexpensive manufacturing costs. An object of the present invention is to provide a method for producing a SiC sintered body.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による10Ωcm以下の比抵抗と
90%以上の相対密度を有する導電性SiC焼結体の製
造方法は、平均粒径2μm以下のSiC粉末と焼結助剤
との混合物を成形して成形体とし、該成形体を、30〜
90体積%の窒素ガスを含む不活性雰囲気中で2100
〜2300℃の温度に加熱、焼結することを特徴とす
る。
According to a first aspect of the present invention, there is provided a method for producing a conductive SiC sintered body having a specific resistance of 10 Ωcm or less and a relative density of 90% or more. A mixture of SiC powder having a particle size of 2 μm or less and a sintering aid is formed into a molded body, and the molded body is formed into a mixture of 30 to 30 μm.
2100 in an inert atmosphere containing 90% by volume of nitrogen gas
It is characterized by heating and sintering to a temperature of 22300 ° C.

【0010】[0010]

【発明の実施の形態】本発明において、SiC原料とし
ては平均粒径2μm以下のSiC粉末を使用する。平均
粒径が2μmを越えると、焼結の駆動力が十分に得られ
ず、相対密度90%以上の焼結体が得難くなる。好まし
くは、平均粒径1μm以下のSiC粉末を原料とするの
がよい。また、SiC粉末中のN含有量は0.05重量
%以上であることが好ましく、0.05重量%未満では
比抵抗10Ωcm以下のSiC焼結体が得難い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, SiC powder having an average particle size of 2 μm or less is used as a SiC raw material. When the average particle size exceeds 2 μm, a sufficient driving force for sintering cannot be obtained, and it becomes difficult to obtain a sintered body having a relative density of 90% or more. Preferably, SiC powder having an average particle size of 1 μm or less is used as a raw material. Further, the N content in the SiC powder is preferably 0.05% by weight or more, and if it is less than 0.05% by weight, it is difficult to obtain a SiC sintered body having a specific resistance of 10 Ωcm or less.

【0011】上記のSiC粉末を焼結助剤の粉体と混合
し、得られた混合粉末にバインダー、可塑剤、分散剤、
溶剤などを加え、押出成形、ドクターブレード法による
シート成形、鋳込み成形、プレス成形などの方法で成形
して成形体とする。焼結助剤としては、例えば、B、B
4 C、BNなどのB化合物、およびカーボンブラックや
フェノール樹脂などの炭素源を使用することができる。
焼結性を向上させるためにAl、Al4 3 、Al2
3 などのAl化合物を微量添加してもよい。
The above-mentioned SiC powder is mixed with a sintering aid powder, and a binder, a plasticizer, a dispersant,
A solvent or the like is added and molded by a method such as extrusion molding, sheet molding by a doctor blade method, cast molding, press molding, etc. to obtain a molded body. As the sintering aid, for example, B, B
B compounds such as 4 C and BN, and carbon sources such as carbon black and phenolic resin can be used.
Al, Al 4 C 3 , Al 2 O to improve sinterability
A small amount of an Al compound such as 3 may be added.

【0012】焼結助剤として添加されるBのSiC焼結
体中における好ましい含有量は、0.1〜0.5重量%
の範囲であり、この範囲のBを含有することによって、
緻密性が高く比抵抗の低いSiC焼結体が得られる。B
含有量が0.1重量%未満では十分な焼結性が得られ
ず、相対密度90%以上の焼結体が得難くなり、0.5
重量%を越えて含有すると低抵抗の焼結体が得難くな
る。
The preferable content of B added as a sintering aid in the SiC sintered body is 0.1 to 0.5% by weight.
By containing B in this range,
An SiC sintered body having high density and low specific resistance can be obtained. B
If the content is less than 0.1% by weight, sufficient sinterability cannot be obtained, and it becomes difficult to obtain a sintered body having a relative density of 90% or more.
If the content exceeds 10 wt%, it becomes difficult to obtain a low-resistance sintered body.

【0013】ついで、成形体を、30〜90体積%の窒
素ガスを含む不活性ガス雰囲気中で2100〜2300
℃の温度に加熱し焼結する。焼結雰囲気中に窒素ガスを
30〜90体積%含有させることによって、SiCの焼
結とSiC中への窒素の固溶が同時に進行し、緻密質で
低抵抗のSiC焼結体が得られる。不活性ガスとして
は、アルゴンガスやヘリウムガスなどが用いられる。
Next, the compact is placed in an inert gas atmosphere containing 30 to 90% by volume of nitrogen gas in an atmosphere of 2100 to 2300%.
Heat to ℃ and sinter. By containing 30 to 90% by volume of nitrogen gas in the sintering atmosphere, sintering of SiC and solid solution of nitrogen in SiC proceed simultaneously, and a dense, low-resistance SiC sintered body can be obtained. As the inert gas, an argon gas, a helium gas, or the like is used.

【0014】本発明においては、SiC結晶粒が大きく
成長する前の焼結の初期段階から窒素ガスとSiC結晶
粒を接触させることにより、常温焼結法によっても効率
よく窒素を固溶させることができ、SiC焼結体の比抵
抗を低く制御することが可能となる。
In the present invention, the nitrogen is brought into contact with the SiC crystal grains from the initial stage of sintering before the SiC crystal grains grow large, so that the nitrogen can be efficiently dissolved by the room temperature sintering method. Thus, the specific resistance of the SiC sintered body can be controlled to be low.

【0015】窒素ガスを含む不活性ガス雰囲気、例えば
アルゴンガスと窒素ガスとの混合ガス雰囲気、ヘリウム
ガスと窒素ガスとの混合ガス雰囲気中の窒素ガスと、ア
ルゴンガス、ヘリウムガスなど不活性ガスの混合比率を
調整することにより、SiC焼結体の比抵抗値、焼結密
度を制御することができる。上記不活性ガスの混合比率
は、焼結時において常に一定である必要はなく、焼結温
度域に応じて調整することもでき、このように不活性ガ
スの混合比率を調整することによってもSiC焼結体の
比抵抗値、焼結密度の制御が可能である。
An inert gas atmosphere containing nitrogen gas, for example, a mixed gas atmosphere of argon gas and nitrogen gas, a nitrogen gas in a mixed gas atmosphere of helium gas and nitrogen gas, and an inert gas such as argon gas and helium gas. By adjusting the mixing ratio, the specific resistance value and the sintered density of the SiC sintered body can be controlled. The mixing ratio of the inert gas does not need to be always constant during sintering, but can be adjusted according to the sintering temperature range. It is possible to control the specific resistance value and the sintered density of the sintered body.

【0016】不活性ガス雰囲気中における窒素ガスの混
合比率が30体積%未満では、SiC焼結体中に窒素が
十分に固溶せず、10Ωcm以下の比抵抗が得難くな
り、窒素ガスの混合比率が90体積%を越えると、窒素
がSiC焼結体の緻密化を阻害する作用が大きくなり、
相対密度90%以上の焼結体が得難くなる。比抵抗が
0.1Ωcm以下の焼結体を得るには、窒素ガスの混合
比率を50%以上とするのが好ましい。
If the mixing ratio of the nitrogen gas in the inert gas atmosphere is less than 30% by volume, the nitrogen is not sufficiently dissolved in the SiC sintered body, and it is difficult to obtain a specific resistance of 10 Ωcm or less. If the ratio exceeds 90% by volume, the effect of nitrogen to inhibit the densification of the SiC sintered body increases,
It becomes difficult to obtain a sintered body having a relative density of 90% or more. In order to obtain a sintered body having a specific resistance of 0.1 Ωcm or less, the mixing ratio of the nitrogen gas is preferably set to 50% or more.

【0017】SiC中に窒素(N)が固溶すると、Nが
ドナーとして作用し熱励起によって電子を発生するが、
Nの固溶によって生じる電子の多くは、焼結助剤として
加えたBやAlの固溶により生じる正孔と再結合して電
荷を打ち消し合い、残りの余剰の自由電子によって、常
圧焼結されたSiCにN型の導電性が与えられると考え
られる。
When nitrogen (N) forms a solid solution in SiC, N acts as a donor and generates electrons by thermal excitation.
Many of the electrons generated by the solid solution of N recombine with holes generated by the solid solution of B and Al added as sintering aids to cancel out the electric charge, and the remaining excess free electrons cause normal pressure sintering. It is considered that N-type conductivity is given to the obtained SiC.

【0018】BとCを焼結助剤として加えた常圧焼結法
においては、一般に、1950℃前後に焼結収縮のピー
クがあるが、焼結時の加熱雰囲気中に窒素ガスが存在す
ると、SiCの焼結性が低下して焼結収縮のピークが高
温側に移行するため、相対密度90%以上のSiC焼結
体を得るためには2100℃以上の温度で焼結を行う必
要がある。加熱温度が2300℃を越えるとSiCの昇
華が始まり、また極端な抵抗増加が生じ易くなる。さら
に好ましい焼結温度は2200℃±50℃であり、この
範囲の温度で焼結を行うことにより、比抵抗10Ωcm
以下、相対密度90%以上のSiC焼結体を最も確実に
得ることができる。
In the normal-pressure sintering method in which B and C are added as sintering aids, there is generally a peak of sintering shrinkage at around 1950 ° C., but when nitrogen gas is present in the heating atmosphere during sintering, Since the sinterability of SiC decreases and the peak of sintering shrinkage shifts to a higher temperature side, it is necessary to perform sintering at a temperature of 2100 ° C. or higher to obtain a SiC sintered body having a relative density of 90% or higher. is there. When the heating temperature exceeds 2300 ° C., sublimation of SiC starts, and an extreme increase in resistance tends to occur. A more preferred sintering temperature is 2200 ° C. ± 50 ° C. By performing sintering at a temperature in this range, a specific resistance of 10 Ωcm
Hereinafter, a SiC sintered body having a relative density of 90% or more can be obtained most reliably.

【0019】焼結性を向上させるには、常温から150
0℃程度の温度までを真空雰囲気中で昇温するのが好ま
しい。真空中で加熱することにより、SiC粒子表面の
SiO2 がCとの反応により効果的に除去され、焼結性
が向上する。
In order to improve the sinterability, it is necessary to increase the temperature from room temperature to 150.
It is preferable to raise the temperature to about 0 ° C. in a vacuum atmosphere. By heating in a vacuum, SiO 2 on the surface of the SiC particles is effectively removed by reaction with C, and sinterability is improved.

【0020】[0020]

【実施例】以下、本発明の実施例を比較例と対比して説
明するが、これらの実施例は本発明の一実施態様を示す
ものであり、本発明がこれに限定されるものではない。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. However, these examples show one embodiment of the present invention, and the present invention is not limited thereto. .

【0021】実施例1 比表面積18m2 /g、平均粒径0.55μm、N含有
量0.12重量%のβ−SiC粉末100重量%に対し
て、焼結助剤として0.25重量%のB(ホウ素)粉末
と2.0重量%のカーボンブラックの混合粉末を加えて
混合し、さらに有機バインダー、可塑剤、溶剤を加え、
ニーダにより十分に混練した後、外径10mmの金型を
取付けた押出機を用いてロッド状に成形した。
EXAMPLE 1 0.25% by weight as a sintering aid for 100% by weight of β-SiC powder having a specific surface area of 18 m 2 / g, an average particle size of 0.55 μm and an N content of 0.12% by weight. B (boron) powder and 2.0% by weight of a mixed powder of carbon black are added and mixed, and an organic binder, a plasticizer, and a solvent are further added.
After sufficiently kneading with a kneader, it was formed into a rod shape using an extruder equipped with a mold having an outer diameter of 10 mm.

【0022】得られた成形体を、窒素ガス雰囲気中にお
いて、600℃の温度で3時間加熱することにより脱バ
インダー処理した後、黒鉛ヒータ炉内で焼結を行った。
焼結条件は、真空中で1500℃の温度に1時間加熱し
た後、アルゴンガスと窒素ガスの混合ガスを炉内に導入
し、表1に示す温度に昇温、焼結した。アルゴンガスお
よび窒素ガスの流量は、マスフローコントローラで所定
の比率に制御し、スタティックミキサーを通じて混合し
てから焼結炉に導入した。
The obtained molded body was subjected to a binder removal treatment by heating at a temperature of 600 ° C. for 3 hours in a nitrogen gas atmosphere, and then sintered in a graphite heater furnace.
The sintering conditions were as follows: after heating in a vacuum at a temperature of 1500 ° C. for 1 hour, a mixed gas of argon gas and nitrogen gas was introduced into the furnace, and the temperature was raised to the temperature shown in Table 1 and sintered. The flow rates of the argon gas and the nitrogen gas were controlled at a predetermined ratio by a mass flow controller, mixed through a static mixer, and then introduced into a sintering furnace.

【0023】焼成により得られたSiC焼結体の特性値
を表1に示す。表1にみられるように、本発明に従うS
iC焼結体(実施例1〜6)はいずれも、比抵抗が10
Ωcm以下、相対密度が90%以上の特性を示してい
る。
Table 1 shows the characteristic values of the SiC sintered body obtained by firing. As can be seen in Table 1, S according to the present invention
Each of the iC sintered bodies (Examples 1 to 6) has a specific resistance of 10
Ωcm or less, and the relative density is 90% or more.

【0024】[0024]

【表1】 [Table 1]

【0025】比較例1 実施例1と同一の方法で成形体を作製し、これらの成形
体を、不活性ガス雰囲気を変え、実施例1と同様に加
熱、焼結した。得られたSiC焼結体の特性値を表2に
示す。表2に示すように、窒素ガスの混合比率が30%
未満では、比抵抗が急激に高くなり、温度により著しい
抵抗変化を示した。窒素ガスの混合比率が90%を越え
た場合には、相対密度が90%以上の焼結体が得られな
かった。
COMPARATIVE EXAMPLE 1 Moldings were prepared in the same manner as in Example 1, and these molded bodies were heated and sintered in the same manner as in Example 1 except that the atmosphere of the inert gas was changed. Table 2 shows the characteristic values of the obtained SiC sintered body. As shown in Table 2, the mixture ratio of nitrogen gas was 30%
When the value is less than 1, the specific resistance sharply increased, and a remarkable resistance change depending on the temperature was exhibited. When the mixture ratio of nitrogen gas exceeded 90%, a sintered body having a relative density of 90% or more was not obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明によれば、発熱体、電極材、抵抗
体などの適する比抵抗10Ωcm以下、相対密度90%
以上の特性をそなえ、製造時における比抵抗値の変動が
少なく抵抗制御が容易であり、緻密でより優れた耐久性
をそなえた導電性SiC焼結体の製造方法が提供され
る。
According to the present invention, suitable specific resistance of a heating element, an electrode material, a resistor, etc. is 10 Ωcm or less, and a relative density is 90%.
A method for producing a conductive SiC sintered body that has the above characteristics, has little variation in specific resistance value during production, easily controls resistance, and has a dense and superior durability.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径2μm以下のSiC粉末と焼結
助剤との混合物を成形して成形体とし、該成形体を、3
0〜90体積%の窒素ガスを含む不活性雰囲気中で21
00〜2300℃の温度に加熱、焼結することを特徴と
する比抵抗が10Ωcm以下、相対密度が90%以上の
特性を有する導電性SiC焼結体の製造方法。
1. A molded product obtained by molding a mixture of a SiC powder having an average particle size of 2 μm or less and a sintering aid.
21 in an inert atmosphere containing 0 to 90% by volume of nitrogen gas.
A method for producing a conductive SiC sintered body having a specific resistance of 10 Ωcm or less and a relative density of 90% or more, characterized by heating and sintering to a temperature of 00 to 2300 ° C.
JP2000071640A 2000-03-15 2000-03-15 Production process of electrically conductive silicon carbide sintered body Withdrawn JP2001261441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000071640A JP2001261441A (en) 2000-03-15 2000-03-15 Production process of electrically conductive silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000071640A JP2001261441A (en) 2000-03-15 2000-03-15 Production process of electrically conductive silicon carbide sintered body

Publications (1)

Publication Number Publication Date
JP2001261441A true JP2001261441A (en) 2001-09-26

Family

ID=18590187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000071640A Withdrawn JP2001261441A (en) 2000-03-15 2000-03-15 Production process of electrically conductive silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP2001261441A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160554A (en) * 2004-12-06 2006-06-22 Kao Corp Electroconductive ceramics
JP2006240960A (en) * 2005-03-07 2006-09-14 Toshiba Ceramics Co Ltd High specific resistance silicon carbide sintered compact
JP2012041216A (en) * 2010-08-17 2012-03-01 Tokyo Yogyo Co Ltd Method for producing silicon carbide sintered compact, and silicon carbide sintered compact
KR20190113946A (en) 2017-07-12 2019-10-08 스미토모 오사카 세멘토 가부시키가이샤 SiC sintered body and heater and manufacturing method of SiC sintered body
KR102121451B1 (en) * 2019-03-26 2020-06-10 주식회사 비앤비 Method of manufacturing hybrid heater heated by microwave
KR102124766B1 (en) * 2019-12-31 2020-06-19 (주)삼양컴텍 Plasma processing apparatus and manufacturing method of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160554A (en) * 2004-12-06 2006-06-22 Kao Corp Electroconductive ceramics
JP4707380B2 (en) * 2004-12-06 2011-06-22 花王株式会社 Conductive material
JP2006240960A (en) * 2005-03-07 2006-09-14 Toshiba Ceramics Co Ltd High specific resistance silicon carbide sintered compact
JP2012041216A (en) * 2010-08-17 2012-03-01 Tokyo Yogyo Co Ltd Method for producing silicon carbide sintered compact, and silicon carbide sintered compact
KR20190113946A (en) 2017-07-12 2019-10-08 스미토모 오사카 세멘토 가부시키가이샤 SiC sintered body and heater and manufacturing method of SiC sintered body
KR102042668B1 (en) 2017-07-12 2019-11-08 스미토모 오사카 세멘토 가부시키가이샤 SiC sintered body and heater and manufacturing method of SiC sintered body
US10703677B2 (en) 2017-07-12 2020-07-07 Sumitomo Osaka Cement Co., Ltd. SiC sintered body, heater and method for producing SiC sintered body
KR102121451B1 (en) * 2019-03-26 2020-06-10 주식회사 비앤비 Method of manufacturing hybrid heater heated by microwave
KR102124766B1 (en) * 2019-12-31 2020-06-19 (주)삼양컴텍 Plasma processing apparatus and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US4209474A (en) Process for preparing semiconducting silicon carbide sintered body
CN101323524B (en) Preparation of oriented hole silicon carbide porous ceramic
US4135938A (en) High density thermal shock resistant sintered silicon carbide
JP2949586B2 (en) Conductive material and manufacturing method thereof
CN110446693B (en) SiC sintered body, heater, and method for producing SiC sintered body
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JPS6156187B2 (en)
JP3150606B2 (en) Method for controlling specific resistance of silicon carbide sintered body
JP3476153B2 (en) Conductive silicon carbide ceramic material
JPS632916B2 (en)
JP5643575B2 (en) Method for producing silicon carbide porous body
JP3740544B2 (en) Silicon carbide based heating element
JP2003073168A (en) Reactive sintered silicon carbide heating element
JPH07215781A (en) Silicon carbide-based composite material and its production
JPH09221367A (en) Conductive silicon carbide material composite material and its production
JP3277295B2 (en) Method for producing high-temperature silicon carbide heating element
JPH1192225A (en) Silicon carbide sintered product and its production
JP5603765B2 (en) Silicon carbide heating element manufacturing method, silicon carbide heating element, honeycomb manufacturing method, and honeycomb
JP2001110553A (en) DENSE SiC HEATER AND MANUFACTURING PROCEDURE FOR IT
JPS5848503B2 (en) silicon carbide material
JPH0692733A (en) Production of silicon carbide heating element
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JP3918019B2 (en) SiC-MoSi2 composite heater
JPH0692736A (en) Method for controlling electric resistance of silicon carbide sintered compact
JP2019172495A (en) Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605