JPS632916B2 - - Google Patents
Info
- Publication number
- JPS632916B2 JPS632916B2 JP58138103A JP13810383A JPS632916B2 JP S632916 B2 JPS632916 B2 JP S632916B2 JP 58138103 A JP58138103 A JP 58138103A JP 13810383 A JP13810383 A JP 13810383A JP S632916 B2 JPS632916 B2 JP S632916B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- weight
- group
- volume
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 8
- 150000004767 nitrides Chemical class 0.000 claims description 6
- 150000001247 metal acetylides Chemical class 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims 1
- 239000000395 magnesium oxide Substances 0.000 claims 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical group CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017563 LaCrO Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Resistance Heating (AREA)
- Ceramic Products (AREA)
Description
〔発明の利用分野〕
本発明は、ヒータ用セラミツクス導体に関す
る。
〔発明の背景〕
2000℃以上の高温で使用できる発熱体としては
Mo、W、Cなどが知られているが、酸化性雰囲
気では使用できない。酸化性雰囲気で使用できる
発熱体としては炭化ケイ素(SiC)、酸化ジルコ
ニウム(ZrO2)、LaCrO3などがあるが、いずれ
も電気抵抗率が比較的大きく、また温度が上昇す
るにつれ電気抵抗が減少するため熱暴走をひきお
こしやすく温度制御がむずかしい。また機械的強
度も低い。
〔発明の目的〕
本発明は従来の発熱体における上記の問題点を
解消する目的で行なわれたもので、電気抵抗率が
小さく、抵抗温度係数が正で、機械的強度が大き
いヒータ用セラミツク導体を提供するものであ
る。
〔発明の概要〕
すなわち本発明の特徴は導電性が良好ではある
が、焼結しにくく耐酸化性に劣るa、a、
a族遷移元素の窒化物、炭化物の微細な粒子を、
絶縁体ではあるが機械的強度が大きく耐酸化性が
良好な窒化ケイ素(Si3N4)中に分散混合し緻密
に焼結することにより両者の特徴を兼ねそなえた
ヒータ用セラミツク導体を得ることにある。
本発明において導電材として用いられるa、
Va、a族遷移元素の炭化物、窒化物は、難融
性で高硬度であり、また金属伝導性を示し、抵抗
率は約10-5Ωcm以下と低く正の抵抗温度係数をも
つためヒータ用セラミツクス導体として好適であ
る。ヒータ用セラミツクス導体として窒化物、炭
化物に限定した理由は酸化物は導電性がなく、ま
たホウ化物はSi3N4と複合化させた場合の焼結性
が良くないためである。窒化物、炭化物の原料粉
末はSi3N4中に均一に分散し導電性を向上させる
ためにはできるだけ微細な粉末が良く、好ましく
は平均粒径が5μm以下であることが望ましい。
なお導電性化合物の混合率を30〜70容積部に限定
したのは、絶縁体中に導電性粒子を分散させる場
合、20容積部前後で電気抵抗率が急減し、抵抗率
の値の再現性が著しく悪いためであり、また70容
積部を超えると、マトリツクスである絶縁体粒子
が導電性粒子を強固に保持することができなくな
り、機械的強度が低下するためである。
マトリツクス相としてSi3N4を選んだ理由は機
械的強度が大きく、熱膨張係数が小さく、耐熱性
に優れているためである。しかも上記化合物と複
合化した場合、高温で安定な酸化皮膜を生成し、
内部の化合物粒子が酸化するのを防止する作用を
果たすため一層好都合である。
Si3N4は難焼結性であるため、焼結助剤として
MgO、Y2O3、Al2O3、AlN等をSi3N4100重量部
に対して1〜10重量部添加することが必要であ
る。焼結助剤量を限定したのは1重量部未満では
焼結助剤としての効果はなく、また10重量部を超
えると粒界相が多くなり高温強度が低下するため
である。
製造方法としては、Si3N4、導電性化合物、焼
結助剤を所定量調合して、らいかい機またはポー
ルミル等による混合を行ない、さらにポリビニル
アルコール(PVA)等の成形バインダーを少量
添加して造粒した後、所定の形状に成形する。こ
れを窒素雰囲気中、1600〜1850℃の温度でホツト
プレス法または常圧焼結法により焼結する。1600
℃未満では緻密焼結せず、1850℃より高くなると
Si3N4の分解が激しくなつて緻密化を阻害するた
めである。
上記の焼結セラミツクスは、室温時の電気抵抗
率が10-2Ωcm以下で、抵抗温度係数が正であるこ
とが必要である。
〔発明の実施例〕
次に実施例により本発明を詳細に説明する。
実験例 1
焼結助剤として9重量部のY2O3、4重量部の
Al2O3を添加した平均粒径0.7μmのSi3N4粉末に、
種々のa、a、a族窒化物、炭化物を30容
積部調合し、5%PVA溶液を10%加えて撹拌ら
いかい機で混合した。次に混合粉末を金型に充填
し、1t/cm2の圧力で成形した。これを黒鉛ダイス
に入れ、窒素1気圧雰囲気中、温度1750℃、圧力
300Kg/cm2時間1hの条件下でホツトプレスした。
得られた焼結体の特性を表に示す。相対密度は大
半の化合物で97〜98%程度以上のものが得られて
いる。また抵抗率は化合物により101〜10-4Ωcm
の幅広い値が得られているが、抵抗温度係数はい
ずれも正であつた。曲げ強さは350〜540MN/m2
であり機械的強度も大きいことが認められた。耐
酸化性はTiN、TiC添加などが特に良好で1100
℃、92h大気中放置後における酸化増量はそれぞ
れ2.8、3.3mg/cm2であつた。
[Field of Application of the Invention] The present invention relates to a ceramic conductor for a heater. [Background of the invention] As a heating element that can be used at high temperatures of 2000℃ or higher,
Mo, W, C, etc. are known, but they cannot be used in an oxidizing atmosphere. Heating elements that can be used in oxidizing atmospheres include silicon carbide (SiC), zirconium oxide (ZrO 2 ), and LaCrO 3 , but all of them have relatively high electrical resistivity, and the electrical resistance decreases as the temperature rises. Therefore, it is easy to cause thermal runaway and temperature control is difficult. It also has low mechanical strength. [Object of the Invention] The present invention has been made with the aim of solving the above-mentioned problems in conventional heating elements, and provides a ceramic conductor for heaters that has a low electrical resistivity, a positive temperature coefficient of resistance, and high mechanical strength. It provides: [Summary of the Invention] That is, the characteristics of the present invention are a, a, and a, which have good conductivity but are difficult to sinter and have poor oxidation resistance.
Fine particles of nitrides and carbides of group a transition elements,
To obtain a ceramic conductor for heaters that has both characteristics by dispersing and mixing it in silicon nitride (Si 3 N 4 ), which is an insulator but has high mechanical strength and good oxidation resistance, and sintering it densely. It is in. a used as a conductive material in the present invention,
Va, carbides and nitrides of Group A transition elements are refractory and highly hard, and also exhibit metallic conductivity, with a low resistivity of approximately 10 -5 Ωcm or less and a positive temperature coefficient of resistance, making them suitable for use in heaters. Suitable as a ceramic conductor. The reason why ceramic conductors for heaters are limited to nitrides and carbides is that oxides do not have electrical conductivity, and borides do not have good sinterability when combined with Si 3 N 4 . In order to uniformly disperse the nitride and carbide raw material powders in Si 3 N 4 and improve conductivity, it is preferable that the powders be as fine as possible, and preferably have an average particle size of 5 μm or less.
The reason for limiting the mixing ratio of the conductive compound to 30 to 70 parts by volume is that when conductive particles are dispersed in an insulator, the electrical resistivity decreases rapidly at around 20 parts by volume, and the reproducibility of the resistivity value is limited. This is because the amount of the conductive particles is extremely poor, and if the amount exceeds 70 parts by volume, the insulating particles, which are the matrix, will be unable to firmly hold the conductive particles, resulting in a decrease in mechanical strength. The reason why Si 3 N 4 was chosen as the matrix phase is that it has high mechanical strength, low coefficient of thermal expansion, and excellent heat resistance. Moreover, when combined with the above compounds, it forms an oxide film that is stable at high temperatures.
This is more advantageous since it serves to prevent the internal compound particles from being oxidized. Si 3 N 4 is difficult to sinter, so it is used as a sintering aid.
It is necessary to add 1 to 10 parts by weight of MgO, Y 2 O 3 , Al 2 O 3 , AlN, etc. per 100 parts by weight of Si 3 N 4 . The amount of the sintering aid is limited because if it is less than 1 part by weight, it will not be effective as a sintering aid, and if it exceeds 10 parts by weight, the grain boundary phase will increase and the high temperature strength will decrease. The manufacturing method involves preparing a predetermined amount of Si 3 N 4 , a conductive compound, and a sintering aid, mixing it using a sieve machine or a pole mill, and then adding a small amount of a molding binder such as polyvinyl alcohol (PVA). After granulation, it is molded into a predetermined shape. This is sintered in a nitrogen atmosphere at a temperature of 1,600 to 1,850°C by a hot press method or an atmospheric pressure sintering method. 1600
Dense sintering does not occur below 1850°C, and when it is higher than 1850°C
This is because the decomposition of Si 3 N 4 becomes intense and densification is inhibited. The above-mentioned sintered ceramics must have an electrical resistivity of 10 -2 Ωcm or less at room temperature and a positive temperature coefficient of resistance. [Examples of the Invention] Next, the present invention will be explained in detail with reference to Examples. Experimental example 1 9 parts by weight of Y 2 O 3 and 4 parts by weight as sintering aids
Si 3 N 4 powder with an average particle size of 0.7 μm added with Al 2 O 3 ,
30 parts by volume of various A, A, A group nitrides and carbides were prepared, 10% of a 5% PVA solution was added, and the mixture was mixed in a stirrer. Next, the mixed powder was filled into a mold and molded at a pressure of 1 t/cm 2 . This was placed in a graphite die, and the temperature was 1750°C and the pressure was 1 atm nitrogen.
Hot pressing was carried out under the conditions of 300Kg/cm for 2 hours and 1 hour.
The properties of the obtained sintered body are shown in the table. Relative densities of 97 to 98% or higher have been obtained for most compounds. Also, the resistivity varies from 10 1 to 10 -4 Ωcm depending on the compound.
Although a wide range of values were obtained, the temperature coefficient of resistance was all positive. Bending strength is 350~540MN/ m2
It was recognized that the mechanical strength was also high. Oxidation resistance is particularly good with TiN and TiC additions, 1100
After being left in the air for 92 hours at ℃, the oxidation weight gain was 2.8 and 3.3 mg/cm 2 , respectively.
【表】【table】
本発明によれば、10-2Ωcm以下において、任意
の抵抗率のものを容易に得ることができる。ま
た、抵抗温度係数が正であるから通電加熱時に熱
暴走を引き起こすこともなく、機械的強度も十分
にあり、通電耐久性も優れている。
従つて、本発明のヒータ用セラミツクス導体
は、グロープラグ用ヒータを初めとし、ガス点火
器、各種の発熱体として信頼性の高いものを提供
することができる。
According to the present invention, any resistivity of 10 -2 Ωcm or less can be easily obtained. In addition, since the temperature coefficient of resistance is positive, thermal runaway does not occur during heating with electricity, the mechanical strength is sufficient, and the durability with electricity is excellent. Therefore, the ceramic conductor for heaters of the present invention can provide highly reliable heaters for glow plugs, gas igniters, and various heating elements.
第1図はSi3N4−TiN系及びSi3N4−TiC系にお
ける化合物混合率と電気抵抗率の関係を示す特性
図、第2図は上記セラミツクスの化合物混合率と
抵抗温度係数の関係を示す特性図、第3図は試作
ヒータの外観図である。
1……窒化ケイ素系導電性セラミツクス、2…
…窒化アルミニウム、3……リード線。
Figure 1 is a characteristic diagram showing the relationship between the compound mixture ratio and electrical resistivity in the Si 3 N 4 -TiN system and Si 3 N 4 -TiC system, and Figure 2 is the relationship between the compound mixture ratio and the temperature coefficient of resistance of the above ceramics. FIG. 3 is an external view of a prototype heater. 1...Silicon nitride-based conductive ceramics, 2...
...Aluminum nitride, 3...Lead wire.
Claims (1)
素の炭化物及び/または窒化物30〜70容積部、
並びに (c) 酸化マグネシウム、酸化イツトリウム、酸化
アルミニウム及び/または窒化アルミニウムを
前記(a)、(b)混合物100重量部に対し1〜10重量
部 の焼結体から成り、該焼結体の室温の電気抵抗率
が10-2Ωcm以下で、正の抵抗体温度係数を有する
ことを特徴とするヒータ用セラミツクス導体。[Scope of Claims] 1 (a) 30 to 70 parts by volume of silicon nitride, (b) 30 to 70 parts by volume of carbides and/or nitrides of Group A, Group A, and/or Group A transition elements,
and (c) a sintered body containing 1 to 10 parts by weight of magnesium oxide, yttrium oxide, aluminum oxide and/or aluminum nitride per 100 parts by weight of the mixtures (a) and (b), the sintered body being kept at room temperature. A ceramic conductor for a heater, characterized in that it has an electrical resistivity of 10 -2 Ωcm or less and a positive resistor temperature coefficient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58138103A JPS6033265A (en) | 1983-07-27 | 1983-07-27 | Silicon carbide electroconductive ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58138103A JPS6033265A (en) | 1983-07-27 | 1983-07-27 | Silicon carbide electroconductive ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6033265A JPS6033265A (en) | 1985-02-20 |
JPS632916B2 true JPS632916B2 (en) | 1988-01-21 |
Family
ID=15214016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58138103A Granted JPS6033265A (en) | 1983-07-27 | 1983-07-27 | Silicon carbide electroconductive ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6033265A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186470A (en) * | 1984-03-02 | 1985-09-21 | 日本セメント株式会社 | Manufacture of silicon nitride sintered body |
JPS61111969A (en) * | 1984-11-05 | 1986-05-30 | 住友電気工業株式会社 | Discharge-processable electroconductive silicon nitride sintered body and manufacture |
JPS6278158A (en) * | 1985-09-30 | 1987-04-10 | 京セラ株式会社 | Electroconductive silicon nitride sintered body |
JPH0515751Y2 (en) * | 1986-06-14 | 1993-04-26 | ||
JPS6417386A (en) * | 1987-07-10 | 1989-01-20 | Babcock Hitachi Kk | Ceramic heating element |
JP2556888B2 (en) * | 1987-12-24 | 1996-11-27 | 日立金属株式会社 | Ceramics conductive material with less variation in electrical resistivity |
DE3990082T1 (en) * | 1988-01-28 | 1990-01-11 | Hitachi Metals Ltd | SINTER BODY FROM CONDUCTIVE SIALON AND A HEATING ELEMENT MADE OF IT |
JPH02107572A (en) * | 1988-01-28 | 1990-04-19 | Hitachi Metals Ltd | Conductive sialon sintered body and heater |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5361348A (en) * | 1976-11-15 | 1978-06-01 | Matsushita Electric Ind Co Ltd | Thermal element for typing |
JPS57106586A (en) * | 1980-12-24 | 1982-07-02 | Ngk Spark Plug Co | Silicon nitride ceramic with inorganic electroconductive material surface and manufacture |
JPS57160984A (en) * | 1981-03-26 | 1982-10-04 | Ngk Spark Plug Co | Silicon nitride ceramic having metallized surface and manufacture |
JPS57200265A (en) * | 1981-05-31 | 1982-12-08 | Sumitomo Electric Industries | Silicon nitrogen member and manufacture |
JPS5820782A (en) * | 1981-07-27 | 1983-02-07 | 住友電気工業株式会社 | Silicon nitride sintered body and manufacture |
JPS5841771A (en) * | 1981-08-31 | 1983-03-11 | 住友電気工業株式会社 | Silicon nitride sintered body |
JPS5895644A (en) * | 1981-11-28 | 1983-06-07 | 京セラ株式会社 | High strength composite sintered body |
-
1983
- 1983-07-27 JP JP58138103A patent/JPS6033265A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5361348A (en) * | 1976-11-15 | 1978-06-01 | Matsushita Electric Ind Co Ltd | Thermal element for typing |
JPS57106586A (en) * | 1980-12-24 | 1982-07-02 | Ngk Spark Plug Co | Silicon nitride ceramic with inorganic electroconductive material surface and manufacture |
JPS57160984A (en) * | 1981-03-26 | 1982-10-04 | Ngk Spark Plug Co | Silicon nitride ceramic having metallized surface and manufacture |
JPS57200265A (en) * | 1981-05-31 | 1982-12-08 | Sumitomo Electric Industries | Silicon nitrogen member and manufacture |
JPS5820782A (en) * | 1981-07-27 | 1983-02-07 | 住友電気工業株式会社 | Silicon nitride sintered body and manufacture |
JPS5841771A (en) * | 1981-08-31 | 1983-03-11 | 住友電気工業株式会社 | Silicon nitride sintered body |
JPS5895644A (en) * | 1981-11-28 | 1983-06-07 | 京セラ株式会社 | High strength composite sintered body |
Also Published As
Publication number | Publication date |
---|---|
JPS6033265A (en) | 1985-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4528121A (en) | Electroconductive ceramics | |
US4555358A (en) | Electrically conductive sintered ceramics and ceramic heaters | |
KR100245978B1 (en) | Ceramic heater, ceramic glow plug and a method of making the same | |
JPH1112040A (en) | Ceramic heater, its production, and ceramic glow plug | |
US5086210A (en) | Mo5 Si3 C ceramic material and glow plug heating element made of the same | |
JPS632916B2 (en) | ||
JP3889536B2 (en) | Ceramic heater, method for manufacturing the same, and glow plug including the ceramic heater | |
JPH11214124A (en) | Ceramic heater | |
JP2006351446A (en) | Manufacturing method of ceramic heater, and glow plug | |
JP3740544B2 (en) | Silicon carbide based heating element | |
JP3340643B2 (en) | Composite PTC material | |
JP5765277B2 (en) | Low temperature thermistor material and manufacturing method thereof | |
JP2001261441A (en) | Production process of electrically conductive silicon carbide sintered body | |
JP2521690B2 (en) | Ceramic heater and method for producing the same | |
JP2016219467A (en) | Ptc thermistor member and ptc thermistor element | |
JPH0812435A (en) | Ceramic and its use | |
JP3588240B2 (en) | Ceramic heater | |
JP3425097B2 (en) | Resistance element | |
JPH0826827A (en) | Electrically conductive reactional silicon carbide sintered compact, its production and use | |
JPS6051661A (en) | Electroconductive ceramics | |
JPH0515751Y2 (en) | ||
JPH08321404A (en) | Batio3-based thermistor and its production | |
JPH05343162A (en) | Manufacture of ceramic heating element | |
JP2000128641A (en) | Ceramic resistor and its production | |
JPS6287463A (en) | Silicon nitride base electroconductive ceramics |