JPS6051661A - Electroconductive ceramics - Google Patents
Electroconductive ceramicsInfo
- Publication number
- JPS6051661A JPS6051661A JP58158259A JP15825983A JPS6051661A JP S6051661 A JPS6051661 A JP S6051661A JP 58158259 A JP58158259 A JP 58158259A JP 15825983 A JP15825983 A JP 15825983A JP S6051661 A JPS6051661 A JP S6051661A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- resistance
- temperature
- powder
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は良好な電気伝導性を有する導電性セラミックス
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to conductive ceramics having good electrical conductivity.
従来から周知の導(社)性セラミックスとしては、シリ
コンカーバイド(stc)系、ランタンクロメ−) (
LaCrOs )系、ジルコニア(ZrO2)系などが
知られている。しかし上記の導電性セラミックスは電気
抵抗が比較的太きく、1ooocの高温時で10−2Ω
口程度が下限である。また上記導電性セラミックスは抵
抗温度特性が負、すなわち温度上昇と共に電気抵抗が減
少するため電流の急増による熱暴走を生じやすく、ヒー
タとして使用した場合には温度制御がむずかしくなる。Conventionally known conductive ceramics include silicon carbide (STC) and lanthanum chrome (
Known materials include LaCrOs (LaCrOs) and zirconia (ZrO2). However, the electrical resistance of the above-mentioned conductive ceramics is relatively high, 10-2Ω at a high temperature of 1OOOC.
The lower limit is about the size of the mouth. Furthermore, the conductive ceramics have negative resistance-temperature characteristics, that is, the electrical resistance decreases as the temperature rises, so thermal runaway is likely to occur due to a sudden increase in current, making temperature control difficult when used as a heater.
さらに上記導電性セラミックスは通常多孔質で機械的強
度が小さいなどの欠点がある。Furthermore, the above-mentioned conductive ceramics usually have drawbacks such as being porous and having low mechanical strength.
本発明は従来の導電性セラミックスがもつ上記の欠点を
解消すべくなされたもので、機械的強度が大きく、電気
抵抗が小さく、かつ正の抵抗温度特性を有する新規の導
電性セラミックスを提供することを目的とする。The present invention was made in order to eliminate the above-mentioned drawbacks of conventional conductive ceramics, and an object of the present invention is to provide a new conductive ceramic having high mechanical strength, low electrical resistance, and positive resistance-temperature characteristics. With the goal.
本発明は酸化アルミニウム(kt203)または炭化ケ
イ素(sic)と導電性物質を組合せて複合化すること
により、本発明の目的を達成し得る材料を見い出した。The present invention has discovered a material that can achieve the object of the present invention by combining aluminum oxide (KT203) or silicon carbide (SIC) with a conductive substance to form a composite.
すなわち本発明は、A L 203 またはSiCを主
成分とする基材相中に、金属に類似した性質をもつ非酸
化物系の導電性物質を分散混合し、緻密に焼結してなる
導電性のセラミックスを提供するものである。本発明に
おける非酸化物系の導電物質としては、周期律表のll
a族元素のうちスカンジウム(SC)、イツトリウム(
Y)およびランタン(La)の炭化物、窒化物またけホ
ウ化物等の化合物、例えばスカンジウム化合物の5cI
32゜SCC,8CN、イツトリウム化合物のYB2゜
YI14 、YBs 、YO2、YNおよびランタン化
合物のL aB 41 L aB a t L aCz
# L aN等が用いられる。これらの材料は高導電
性と正の抵抗温度特性を有し、しかも高融点で耐酸化性
にも(9)れるためガに1戊材として好適である。That is, the present invention provides a conductive material obtained by dispersing and mixing a non-oxide conductive material having properties similar to metal in a base material phase mainly composed of A L 203 or SiC, and sintering it densely. ceramics. In the present invention, the non-oxide conductive material includes ll of the periodic table.
Among Group A elements, scandium (SC), yttrium (
Y) and compounds such as carbides, nitrides and borides of lanthanum (La), such as 5cI of scandium compounds
32゜SCC, 8CN, YB2゜YI14 of yttrium compound, YBs, YO2, YN and LaB of lanthanum compound 41 L aB a t L aCz
#LaN etc. are used. These materials have high electrical conductivity and positive resistance-temperature characteristics, and also have high melting points and oxidation resistance (9), so they are suitable as a single material.
一方基材にはAt203.3 i Cまたは5jsN4
の1種と各々の成分に適した焼結助剤並びに粒成長を抑
制する成分を添加したものが好ましい。基材成分に上記
材料を選んだ理由は、耐熱温度が高く、熱的、化学的な
安定性に優れ、機械的強度も大きく、シかも耐熱衝撃性
罠も医れるためである。On the other hand, the base material is At203.3 i C or 5jsN4
It is preferable to add one of the following, a sintering aid suitable for each component, and a component that suppresses grain growth. The reason for choosing the above-mentioned material as the base material component is that it has a high heat resistance, excellent thermal and chemical stability, high mechanical strength, and can overcome the trap of thermal shock resistance.
これらの特長は、例えば本発明を高温ヒータ材とした場
合、耐熱・耐酸化性に優れると共に通電により瞬間的に
赤熱させた時に加えられる熱衝撃に対しても浸れた耐久
性を有し、導電材との組合せ上好適である。These features mean that, for example, when the present invention is used as a high-temperature heater material, it has excellent heat resistance and oxidation resistance, is durable against thermal shocks that are applied when it is instantaneously heated by electricity, and is highly conductive. It is suitable in combination with other materials.
本発明の導電性セラミックスは1、基材成分の粉末と前
記4電拐とをそれぞれ80〜20容積チ、20〜80容
積チの範囲に調合し、これに成形バインダとして例えば
ポリビニルアルコール(P VA )水溶液を加え混合
した凌、所定の形状に成形し、これを真空中あるいは非
酸化性雰囲気中1500〜2200 Cの温度で焼結す
ることにより、理論密度比で90チ以上の密度並びに室
温時で1Ωm以下の抵抗率を有する焼結体を製造するこ
とができる。The conductive ceramic of the present invention is prepared by mixing 1. the powder of the base material component and the above-mentioned 4-electronic powder in a volume range of 80 to 20 volumes and 20 to 80 volumes, respectively, and adding a molding binder such as polyvinyl alcohol (PVA) to this mixture. ) By adding and mixing an aqueous solution and molding it into a predetermined shape and sintering it at a temperature of 1500 to 2200 C in a vacuum or non-oxidizing atmosphere, it is possible to achieve a density of 90 cm or more in terms of theoretical density ratio and at room temperature. It is possible to produce a sintered body having a resistivity of 1 Ωm or less.
本発明において、基材成分と導r17材とを上記割合に
限定した理由は、導電材が20容$%より少ないと焼結
体の抵抗率が1Ωαより大きく、しかも導電材添加量に
対する抵抗率変化が急峻となり抵抗率制御が困難となり
、さらに基材がSiCの場合には抵抗温度特性が負とな
るためである。また80容(HH%よりも多くなると、
得られる焼結体の機械的強度、耐酸化性、耐熱衝撃性な
どの特性が低下するため好ましくない。In the present invention, the reason why the base material component and the conductive R17 material are limited to the above ratio is that if the conductive material is less than 20% by volume, the resistivity of the sintered body is greater than 1Ωα, and the resistivity relative to the amount of the conductive material added is This is because the change becomes steep, making it difficult to control the resistivity, and furthermore, when the base material is SiC, the resistance temperature characteristic becomes negative. Also, if it exceeds 80 volume (HH%),
This is undesirable because the properties such as mechanical strength, oxidation resistance, and thermal shock resistance of the obtained sintered body deteriorate.
次に、実施例により本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to Examples.
実施例1
基材には平均粒径が約3μmのAt1Os 、 S i
CおよびSi3N4の各粉末を、また導電材には平均粒
径が約2μmのY B a粉末を用いた。焼結助剤は、
SiCにはA L 20 s粉末を2%、5fsN4
およびA t20 s にはMgO粉末を5%および1
%(いずれも市川%)添加した。上記基材とY B 6
粉末を種々の割合に調合し、さらにその全量に対して3
%PVA溶液を15チ加え攪拌らいかい機で混合した。Example 1 The base material contains At1Os and Si with an average particle size of about 3 μm.
C and Si3N4 powders were used, and YBa powder with an average particle size of about 2 μm was used as the conductive material. The sintering aid is
For SiC, 2% A L 20s powder, 5fsN4
and A t20 s with 5% MgO powder and 1
% (both Ichikawa%) was added. The above base material and Y B 6
Mix the powder in various proportions and add 3 to the total amount.
% PVA solution was added and mixed using a stirrer.
次いで混合原料粉は金型を用いて1000 Kg /
cAの圧力を加えて成形体とした。この成形体を黒鉛ダ
イスに入れ、真空度10−3〜10−5Torrの減圧
下でホットプレス焼結(圧力は300 Kg/c4一定
)した。焼結温度はAt203系が1600C,81s
Ni系が1700Cおよび8iC系が2000Gである
。得られた焼結体はいずれも相対密度が95−以上に緻
密化した。また焼結体の室温における抵抗率とYB6混
合量との関係は図に示す如くである。同図において曲線
AはSiC基、曲線BおよびCは5jsN4基およびA
t20s基の焼結体である。図の結果から、導電材であ
るYB6の混合量を20容8!i%以上適当に選ぶこと
により、抵抗率を大略1〜5 X 10−5Ωmの範囲
で任意の値のものが得られる。Next, the mixed raw material powder is molded into 1000 kg/
A pressure of cA was applied to form a molded product. This molded body was placed in a graphite die and hot-press sintered under reduced pressure with a degree of vacuum of 10-3 to 10-5 Torr (pressure was constant at 300 Kg/c4). The sintering temperature is 1600C, 81s for At203 series.
The Ni type is 1700C and the 8iC type is 2000G. All of the obtained sintered bodies were densified to a relative density of 95- or more. Further, the relationship between the resistivity of the sintered body at room temperature and the amount of YB6 mixed is as shown in the figure. In the same figure, curve A is based on SiC, curves B and C are based on 5jsN4 group and A
It is a t20s-based sintered body. From the results shown in the figure, the mixing amount of YB6, which is a conductive material, is 20 volumes 8! By appropriately selecting i% or more, a resistivity of any value within the range of approximately 1 to 5×10 −5 Ωm can be obtained.
第1表は上記の焼結体における相対密度、抵抗温度係数
(20〜800C)及び室温時の曲げ強さである。Y
B 6混合量が20〜80容t+7%の焼結体は相対密
[97%以上、室温の曲げ強さ20Kg/ff1以上で
あり、高密度で高強度の特性を有する。YB6混合量が
80容積チ以上になると相対密度及び曲げ強さが低減す
る。一方抵抗温度係数け、s i 3 N4基及びA
120 s基複合材はY B s2020容積チで正の
値をもつ。SiC基の複合材はYB620容積チは負の
温度係数をもつが、約30容量%以上では正の抵抗温度
係数を有する。Table 1 shows the relative density, temperature coefficient of resistance (20 to 800 C), and bending strength at room temperature of the above sintered body. Y
A sintered body with a B6 mixing amount of 20 to 80 volume t+7% has a relative density of 97% or more, a bending strength at room temperature of 20 Kg/ff1 or more, and has high density and high strength properties. When the amount of YB6 mixed exceeds 80 volumes, the relative density and bending strength decrease. On the other hand, the temperature coefficient of resistance, s i 3 N4 group and A
The 120 s matrix composite has a positive value of Y B s2020 volume. The SiC-based composite material has a negative temperature coefficient at YB620 volume, but a positive temperature coefficient of resistance at about 30 volume percent or more.
実施例2
k120s粉末は実施例1と同じもの、また導電材は市
販の純度99チ以上、粒径5μm以下のSC,Yおよび
Laの各種化合物を用いた。Al t Os粉末60容
積チと、導電材粉末40容積−からなる組成物を混合し
、圧力1000 Kg / cr/lの圧力で円板状に
成形した後、真空ホットプレス装置を用いて真空ホット
プレス焼結した。ホットプレス焼結の争件は、圧力30
0に9/i、温度1700C1時間1 bである。Example 2 The k120s powder was the same as in Example 1, and as the conductive material, various commercially available SC, Y, and La compounds with a purity of 99% or more and a particle size of 5 μm or less were used. A composition consisting of 60 volumes of Al t Os powder and 40 volumes of conductive material powder was mixed, molded into a disc shape at a pressure of 1000 Kg/cr/l, and then vacuum hot pressed using a vacuum hot press device. Press sintered. The issue of hot press sintering is pressure 30
0 to 9/i, temperature 1700C, 1 hour 1 b.
得られた複合焼結体の特性を第2表に示した。The properties of the obtained composite sintered body are shown in Table 2.
試作した複合焼結体の相対密度はいずれも97チ以上で
高密度である。抵抗率は導電材の種類により多少異なる
が高導電性であり、曲げ強さも351(り/闘2以上で
高強度を有する。また第1表の焼結体全部について室温
と800C加熱時の抵抗値を11!4べた結果、導電材
の種類によって抵抗変化の値は異なるがいずれも温度が
高くなると抵抗は増大し、正の湿度特性を有する。The relative densities of the prototype composite sintered bodies are all 97 inches or higher, which is high density. Although the resistivity varies slightly depending on the type of conductive material, it is highly conductive and has a bending strength of 351 (resistance) or higher than 2.Also, for all the sintered bodies in Table 1, the resistance at room temperature and when heated at 800C As a result of multiplying the values by 11!4, the value of resistance change varies depending on the type of conductive material, but in all cases, the resistance increases as the temperature rises, and they have positive humidity characteristics.
実施例3
実施例1と同じsi、N、粉末を用い、これにLaB4
またはLaB6粉末(平均粒径はいずれも2μm)を混
合量を変えて添加し、実施例1と同じ条件で成形、ホッ
トプレス焼結して5i3N4−4.af34系及びS
j 3N4−LaBe系の複合焼結体を作製した。両系
の抵抗率と導電材混合量との関係は、第1図の曲線B、
Cとほぼ同等である。またさ
曲げ強も第1表に示した値とほぼ同等であり、抵^
抗温度特性は室温〜800Cの間で正である。Example 3 Using the same Si, N, and powder as in Example 1, LaB4
Alternatively, LaB6 powder (average particle size in each case is 2 μm) was added in varying amounts, and molded and hot press sintered under the same conditions as in Example 1 to form 5i3N4-4. af34 series and S
j A 3N4-LaBe-based composite sintered body was produced. The relationship between the resistivity of both systems and the amount of conductive material mixed is shown by curve B in Figure 1.
It is almost equivalent to C. Also, the bending strength is almost the same as the values shown in Table 1, and the resistance temperature characteristics are positive between room temperature and 800C.
以上、実施例で詳述したように、本発明になる導電性セ
ラミックスは導電材粉末の混合量を調整することにより
1〜5 X 10−5Ωmの範囲で任意の抵抗率のもの
が得らる。また抵抗温度特性が正のものが得られるため
赤熱状態でも電流暴走による溶断を起さず、さらに緻密
質で機械的強度が大きいので耐酸化性や耐熱衝撃性にも
浸れた材料である。As described above in detail in the examples, the conductive ceramic of the present invention can have any resistivity in the range of 1 to 5 x 10-5 Ωm by adjusting the amount of conductive material powder mixed. . In addition, since it has positive resistance-temperature characteristics, it will not melt due to current runaway even in red-hot conditions, and because it is dense and has high mechanical strength, it is also highly resistant to oxidation and thermal shock.
したがってこのような特長をもつ本発明の導電性セラミ
ックスの用途としては、例えば各種のヒータ、自動車用
のグロープラグ、液体及び気体燃料点火用の電気着火器
、あるいは高温用の電rAまだは導体などに好適である
。Therefore, the conductive ceramics of the present invention having such features can be used, for example, in various heaters, glow plugs for automobiles, electric igniters for igniting liquid and gaseous fuels, and conductors for high-temperature applications. suitable for
図は本発明の1例に係る導電性セラミックスの第1頁の
続き
■Int、CI、’ 識別記号 庁内整理番号// H
01C71026918−5EC発明者 小 杉 哲
夫 日立市幸町3丁「所内The figure is a continuation of the first page of conductive ceramics according to an example of the present invention ■Int, CI,' Identification code Internal serial number // H
01C71026918-5EC Inventor Satoshi Kosugi
Husband 3-chome Saiwaimachi, Hitachi City
Claims (1)
1種及びその焼結助剤を適量含む暴利に導電材として周
期律表中[[a族元素の炭化物、窒化物およびホウ化物
の少なくとも1種を20〜80容量チ混合してなる組成
物を焼結して得られる導電性セラミックス。 2、室温時の電気抵抗率が1Ωα以下で、かつ抵抗温度
特性が正である特許請求の範囲第1項記載の導電性セラ
ミックス。 3、前記111a族元素はスカンジウム、イツトリウム
まだはランタンである特許請求の範囲第1項記載の導電
性セラミックス。[Claims] 1. Carbides, nitrides and borides of group A elements in the periodic table as electrically conductive materials containing an appropriate amount of one of aluminum oxide, silicon carbide or silicon nitride and a sintering aid thereof. Conductive ceramics obtained by sintering a composition obtained by mixing 20 to 80 volumes of at least one of the following. 2. The conductive ceramic according to claim 1, which has an electrical resistivity of 1 Ωα or less at room temperature and a positive resistance-temperature characteristic. 3. The conductive ceramic according to claim 1, wherein the 111a group element is scandium, yttrium, or lanthanum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58158259A JPS6051661A (en) | 1983-08-29 | 1983-08-29 | Electroconductive ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58158259A JPS6051661A (en) | 1983-08-29 | 1983-08-29 | Electroconductive ceramics |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6051661A true JPS6051661A (en) | 1985-03-23 |
Family
ID=15667707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58158259A Pending JPS6051661A (en) | 1983-08-29 | 1983-08-29 | Electroconductive ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6051661A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013241322A (en) * | 2012-04-26 | 2013-12-05 | Ngk Spark Plug Co Ltd | Alumina sintered body, member including the same, and semiconductor manufacturing apparatus |
-
1983
- 1983-08-29 JP JP58158259A patent/JPS6051661A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013241322A (en) * | 2012-04-26 | 2013-12-05 | Ngk Spark Plug Co Ltd | Alumina sintered body, member including the same, and semiconductor manufacturing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0107511B1 (en) | Electroconductive ceramics | |
GB1597282A (en) | High density thermal shock resistant sintered silicon carbide | |
JPH0799102A (en) | Porcelain composition for thermistor, and thermistor element | |
JPS6138144B2 (en) | ||
EP0335382B1 (en) | Electrically conductive ceramic material | |
CA1240710A (en) | Refractory composition and products resulting therefrom | |
JP2949586B2 (en) | Conductive material and manufacturing method thereof | |
JPS62153169A (en) | Silicon nitride ceramic sintered body | |
JPS59102862A (en) | Composite sintered ceramics | |
JPS6033265A (en) | Silicon carbide electroconductive ceramics | |
JPS6051661A (en) | Electroconductive ceramics | |
JPS6461356A (en) | Ceramic material | |
JP3740544B2 (en) | Silicon carbide based heating element | |
JP2001261441A (en) | Production process of electrically conductive silicon carbide sintered body | |
JP5765277B2 (en) | Low temperature thermistor material and manufacturing method thereof | |
JP3605254B2 (en) | Semi-insulating aluminum nitride sintered body | |
JP2661113B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JP4284756B2 (en) | Thermistor material for wide range | |
JP2547423B2 (en) | Method for manufacturing conductive sialon | |
JPH11217270A (en) | Honeycomb structure | |
JPH075378B2 (en) | Black aluminum nitride sintered body and manufacturing method thereof | |
JPS61146764A (en) | Aluminum nitride sintered body and manufacture | |
JPH0515751Y2 (en) | ||
JP3425097B2 (en) | Resistance element | |
JPH0660060B2 (en) | Method for manufacturing aluminum nitride sintered body |