JPS59102862A - Composite sintered ceramics - Google Patents

Composite sintered ceramics

Info

Publication number
JPS59102862A
JPS59102862A JP57213027A JP21302782A JPS59102862A JP S59102862 A JPS59102862 A JP S59102862A JP 57213027 A JP57213027 A JP 57213027A JP 21302782 A JP21302782 A JP 21302782A JP S59102862 A JPS59102862 A JP S59102862A
Authority
JP
Japan
Prior art keywords
powder
ceramics
sintered
ceramic
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57213027A
Other languages
Japanese (ja)
Other versions
JPS6219396B2 (en
Inventor
樋端 保夫
和夫 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57213027A priority Critical patent/JPS59102862A/en
Priority to US06/556,551 priority patent/US4507224A/en
Publication of JPS59102862A publication Critical patent/JPS59102862A/en
Publication of JPS6219396B2 publication Critical patent/JPS6219396B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、複合焼結セラミクスに関し、更に詳しくは高
い電気伝導性を備えた放電加工可能な複合焼結セラミク
スに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to composite sintered ceramics, and more particularly to composite sintered ceramics that have high electrical conductivity and are capable of electrical discharge machining.

セラミクスは耐熱性や耐酸化性に優れているので、耐熱
部材や機械用構造材料として注目されている。一般に高
強度にして高密度の酸化物セラミクスを得るためには、
熱間加工成形法、いわゆるホットプレス法によることが
好ましいとされている。しかるに、この方法においては
、素材をIts的単純な形状の押し型内で加工するため
、複雑な形状の部品を成形製造することは困難であり、
こノ点がホットプレス法の大きな技術的制約となってい
る。また、ホットプレス法はど高強度焼結体は得られな
いが、セラミクスに対しては従来より広く用いられてい
る空気中もしくはその他の雰囲気中での焼成法がある。
Ceramics have excellent heat resistance and oxidation resistance, so they are attracting attention as heat-resistant members and structural materials for machinery. Generally, in order to obtain high strength and high density oxide ceramics,
It is said that it is preferable to use a hot processing molding method, a so-called hot press method. However, in this method, the material is processed in a mold with a simple shape, so it is difficult to mold and manufacture parts with complex shapes.
This point is a major technical limitation of the hot press method. Further, although the hot pressing method does not produce a high-strength sintered body, there is a firing method in air or other atmosphere that has been widely used for ceramics.

しかし、この場合にも焼成にともなう収縮等の現象のた
め、高精度で部材寸法を一段の焼結で出すことは困難で
ある。
However, in this case as well, it is difficult to determine the dimensions of the component with high precision in one step of sintering due to phenomena such as shrinkage that accompanies firing.

従って最終的にはいずれの方法による場合にも焼結体の
高精度の加工が不可欠であるが、セラミクスは概して極
めてもろいという欠点がある。このためセラミクスの切
削加工は金属材料のそれとは異なり、加工速度も制限さ
れ、また高精度の寸法出しも困難であり、そのため時間
的にも費用的にも改良が望まれている。而してセラミク
スの種々の優れた特性を有効に利用し、これを各種の構
造材料として広範に使用する為には、金属材料と同様に
所望の形状に高精度に加工し得る技術及び/又は新規材
料の開発が必要である。例えば、熱交換器部材やバルブ
、歯車、あるいはガスタービン用翼車等の製造には単純
な切削加工のみならず三次元的加工も必要である。金属
材料による、これら複雑な形状の型材等の製造に際して
は、放電加工による高精度の曲面加工が可能であるが、
電気伝導性の低い多くのセラミクスについては放電加工
を行なうことは不可能であった。
Therefore, in either method, it is ultimately essential to process the sintered body with high precision, but ceramics generally have the drawback of being extremely brittle. For this reason, the cutting process for ceramics is different from that for metal materials, the processing speed is limited, and it is difficult to obtain highly accurate dimensions, so improvements are desired in terms of both time and cost. In order to make effective use of the various excellent properties of ceramics and widely use them as various structural materials, we need technology and/or technology that can process them into desired shapes with high precision, similar to metal materials. Development of new materials is necessary. For example, manufacturing heat exchanger members, valves, gears, gas turbine blades, etc. requires not only simple cutting but also three-dimensional processing. When manufacturing molds with complex shapes using metal materials, it is possible to process curved surfaces with high precision using electrical discharge machining.
It has been impossible to perform electric discharge machining on many ceramics with low electrical conductivity.

本発明者は、公知のセラミクス材料の加工上の問題点を
解消もしくは軽減すべく種々研究を重ねた結果、セラミ
クス中に特定量の識別状炭化ケイ素結晶(通常ひげ結晶
あるいはウィスカーと呼ばれている)及び特定の導電性
を有する粉末を分散させてなる焼結材料が、その要求を
満足させることを見い出した。即ち本発明は、■族、■
族又はIV族元素の酸化物、窒化物又は炭化物を母相と
し、10Ω−cm以下の比抵抗を有するセラミクスであ
って、セラミクス中に全重量に対して5〜50%の範囲
内で繊維状炭化ケイ素結晶と2〜20%の範囲内で導電
性を有する炭化物、窒化物又はホウ化物の粉末とを分散
含有せしめたことを特徴とする複合焼結セラミクスに係
る。
As a result of various studies aimed at solving or alleviating problems in the processing of known ceramic materials, the present inventor discovered that ceramics contain a specific amount of distinctive silicon carbide crystals (usually called whiskers or whiskers). ) and a sintered material in which powder having a specific conductivity is dispersed has been found to satisfy these requirements. That is, the present invention focuses on group ①,
A ceramic having a parent phase of an oxide, nitride or carbide of a Group or IV element and having a specific resistance of 10 Ω-cm or less, the ceramic containing fibrous material in an amount of 5 to 50% based on the total weight of the ceramic. The present invention relates to a composite sintered ceramic characterized by containing silicon carbide crystals and 2 to 20% of conductive carbide, nitride, or boride powder dispersed therein.

本発明の複合焼結セラミクスは、高い電気伝導性を有し
ているので、放電加工性に優れている。
Since the composite sintered ceramic of the present invention has high electrical conductivity, it has excellent electrical discharge machinability.

殊に本複合セラミクスにおいては、単に繊維状炭化ケイ
素結晶のみを複合させた焼結セラミクスに比較し、導電
性の微粉末が焼結体組織中に均一に分散されているため
、より放電加工特性が向上する。具体的には、複合セラ
ミクスの電気伝導性がより高くなり、放電加工時に加工
速度の向上が可能となる。さらには、組織内での電気伝
導がより均一化するため、加工面の仕上げ精度が改良さ
れる。即ち、放電によりより均一な面もしくは線切側が
起こり、加工面の表面粗度がより小さくなる効果を有す
る。
In particular, this composite ceramic has better electrical discharge machining characteristics because the conductive fine powder is uniformly dispersed in the sintered structure, compared to sintered ceramics that are simply a composite of fibrous silicon carbide crystals. will improve. Specifically, the electrical conductivity of the composite ceramic becomes higher, making it possible to improve the machining speed during electrical discharge machining. Furthermore, since electrical conduction within the tissue becomes more uniform, the finishing accuracy of the machined surface is improved. That is, a more uniform surface or line cut side occurs due to the electric discharge, which has the effect of reducing the surface roughness of the machined surface.

本発明において用いられる繊維状炭化ケイ素(Si C
)結晶の長さや太さについては特に限定されないが、長
さが通常10〜500μm、好ましくは50〜500μ
川程度、太さが通常0.1〜10μ■、好ましくは0.
5〜3μm程度のものを使用するのがよい。長さが10
μmより#l端に短かくなると、粒状SiCを加え1成
形した場合と同様に、放電加工が可能な程度に電気伝導
性を高めるためには多量の添加が必要となり、セラミク
ス本来の特性が損われる傾向が生ずる。繊維状SiCの
太さが0.1μmより極端に細くなると、成形中にmN
が破断して、粒状SiCを使用する場合と同様の結果と
なる傾向が生ずる。一方太さが10μmより極端に太く
なると、繊維の剛性が高くなるため、焼結による緻密化
が困難となる傾向が生ずる。
Fibrous silicon carbide (Si C
) The length and thickness of the crystals are not particularly limited, but the length is usually 10 to 500 μm, preferably 50 to 500 μm.
The thickness is usually 0.1 to 10μ, preferably 0.
It is preferable to use a material with a diameter of about 5 to 3 μm. length is 10
If it becomes shorter than μm at the #l end, a large amount of addition is required to increase electrical conductivity to the extent that electrical discharge machining is possible, as is the case when granular SiC is added and molded, and the original characteristics of ceramics are lost. There is a tendency to When the thickness of fibrous SiC becomes extremely thinner than 0.1 μm, mN
tends to break, resulting in a similar result as when using granular SiC. On the other hand, if the thickness becomes extremely thicker than 10 μm, the rigidity of the fiber increases, so that densification by sintering tends to become difficult.

セラミクス中に分散含有せしめられる繊維状SiC結晶
の量としては、全重量に対して5〜50%とするのがよ
い。3iCm維の量が5%未満の場合には、焼結体の電
気伝導性が十分に改善されず、一方、50%を上回る場
合には焼結体の緻密化が低下する傾向にある。繊維状S
iC結晶の添加量は、全重量の10〜40%とすること
がより好ましい。
The amount of fibrous SiC crystals dispersed in the ceramic is preferably 5 to 50% based on the total weight. When the amount of 3iCm fibers is less than 5%, the electrical conductivity of the sintered body is not sufficiently improved, while when it exceeds 50%, the densification of the sintered body tends to decrease. Fibrous S
The amount of iC crystal added is more preferably 10 to 40% of the total weight.

放電加工性を向上させるために加えられる導電性粉末と
しては、炭化物、窒化物又はホウ化物が用いられる。斯
かる炭化物としては例えば3i C。
Carbide, nitride, or boride is used as the conductive powder added to improve electrical discharge machinability. An example of such a carbide is 3i C.

T! C,Zr C5B4 C5WC,Hf C,Ta
 C1NbCなどを挙げることができ、窒化物としては
例えばTi N、Ta N、Zr N、Nb N、VN
等を挙げることができ、ホウ化物としては例えばT! 
B2 、Zr B2 、Hf 82 、Ta 82等を
挙げることができる。これら導電性粉末の種類及びその
使用量は、加えられるべき繊維状SiC結晶の量、また
そのものの電気伝導性等を考慮して適宜決定覆ればよい
。ただし、SiC結晶および導電性粉末の両者の合計量
が全重量に対して70%を上回ると、複合されるべき母
相セラミクスの本来の特性が損われてしまうという不都
合が生ずる。
T! C, Zr C5B4 C5WC, Hf C, Ta
Examples of nitrides include TiN, TaN, ZrN, NbN, and VN.
Examples of borides include T!
B2, ZrB2, Hf82, Ta82, etc. can be mentioned. The type and amount of these conductive powders to be used may be appropriately determined in consideration of the amount of fibrous SiC crystals to be added, the electrical conductivity of the powder itself, and the like. However, if the total amount of both the SiC crystal and the conductive powder exceeds 70% of the total weight, a problem arises in that the original characteristics of the matrix ceramic to be composited are impaired.

導電性粉末の添加量が2%以下の場合には放電加工特性
の向上が認められず、また20%以上の場合には母相セ
ラミクスの機械的特性の劣化が生じる(具体的には高温
(>800℃)での強度が低下する)という結果を招く
。また導電性粉末の粒径としては特に制限されないが、
通常2μm以下、好ましくは1μm以下であるのが好ま
しい。粒径が大きくなりすぎると、放電特性の向上が認
められなくなり、また強度も低下する傾向となる。
If the amount of conductive powder added is less than 2%, no improvement in electrical discharge machining properties will be observed, and if it is more than 20%, the mechanical properties of the matrix ceramic will deteriorate (specifically, at high temperatures ( >800°C). In addition, the particle size of the conductive powder is not particularly limited, but
It is usually 2 μm or less, preferably 1 μm or less. If the particle size becomes too large, no improvement in discharge characteristics will be observed, and the strength will also tend to decrease.

本発明において母相として用いられるのは■族、■族又
はIV族元素の酸化物、窒化物又は炭化物である。■族
、■族又は■族元素の酸化物、窒化物又は法化物として
は公知のものを広く使用できる。
In the present invention, oxides, nitrides, or carbides of Group (1), Group (2), or Group IV elements are used as the matrix. A wide variety of known oxides, nitrides, or compounds of group (1), (2), or (2) group elements can be used.

令 酸化物としては例えばアルミナ、ジルコニア、マグネシ
ア、Fe2O3などのフェライト、酸化ウラン、酸化ト
リウム等の単一酸化物の仙、MgAQ204、N! F
e O& 、N! Cr0A、M(l Fe 2Q、等
の各種スピネル型化合物、ペロブスカイト構造のla 
Cr 03、 La Sr Cr O3,Sr Zr 03等の複合酸
化物を、窒化物としては例えば窒化ケイ素、窒化アルミ
、窒化ホウ素等を、炭化物としては例えば炭化ケイ素、
炭化ホウ素、炭化チタン等をそれぞれ挙げることができ
る。本発明では、放電加工特性を向上させるべく複合さ
れる導電性粉末と同じ母相を用いる場合には、導電性粉
末が焼結時に母相に吸収され、その有効性を失う結果を
招きやすいので、他の種類の導電性粉末を用いるのが好
ましい。
Examples of solid oxides include alumina, zirconia, magnesia, ferrites such as Fe2O3, single oxides such as uranium oxide and thorium oxide, MgAQ204, N! F
eO&,N! Various spinel-type compounds such as Cr0A, M(l Fe2Q, etc., la of perovskite structure)
Composite oxides such as Cr 03, La Sr Cr O3, Sr Zr 03, etc., nitrides such as silicon nitride, aluminum nitride, boron nitride, etc., and carbides such as silicon carbide,
Examples include boron carbide and titanium carbide. In the present invention, when using the same matrix as the conductive powder that is combined to improve electrical discharge machining characteristics, the conductive powder is likely to be absorbed into the matrix during sintering and lose its effectiveness. , it is preferred to use other types of conductive powders.

こうすることにより、母相結晶体の粒界に微粒子の導電
性物質が残留し、より放電特性が改善される。
By doing so, fine particles of the conductive substance remain at the grain boundaries of the matrix crystal, and the discharge characteristics are further improved.

本発明の複合セラミクスは次の様に製造される。The composite ceramic of the present invention is manufactured as follows.

即ち、母相となるべきセラミクス粉末に所定量の繊維状
SiC結晶および所定量の導電性粉末を添加混合し、均
一に分散させた後、混合物重量の0.1〜2%程度の粘
結剤を加え、成形及び乾燥後焼結して、所望の複合セラ
ミクスを得る。粘結剤としては好ましくはポリビニルア
ルコール、アクリル樹脂、セルロース、アルギン酸ソー
ダ等の水、アルコール或いはその他の有機溶剤溶液が使
用される。母相セラミクス粉末、SiC結晶粉末及び粘
結剤からなるペーストは射出成形、押出し成形等により
所定形状に成形され、得られた成耶体は、加熱又は減圧
下に予備乾燥され、次いで600℃以下に加熱して粘結
剤を除去される。次に乾燥した成形体を加圧下又は非加
圧下1200〜2000℃程度の温度で焼結する。
That is, a predetermined amount of fibrous SiC crystals and a predetermined amount of conductive powder are added to and mixed with ceramic powder to serve as a matrix, and after uniformly dispersing the mixture, a binder of about 0.1 to 2% of the weight of the mixture is added. is added, molded, dried, and sintered to obtain the desired composite ceramic. As the binder, preferably used is a solution of polyvinyl alcohol, acrylic resin, cellulose, sodium alginate, etc. in water, alcohol, or other organic solvent. A paste consisting of matrix ceramic powder, SiC crystal powder, and binder is molded into a predetermined shape by injection molding, extrusion molding, etc., and the resulting composite is pre-dried under heat or reduced pressure, and then heated to 600°C or less. The binder is removed by heating. Next, the dried molded body is sintered at a temperature of about 1200 to 2000° C. with or without pressure.

尚、必要に応じ、AQ203に対して少量のMgO1或
いは513N4に対してMgo、Y203、AQ203
等の酸化物もしくは窒化物等の焼結助剤の併用を妨げな
い。
In addition, if necessary, add a small amount of MgO1 to AQ203 or Mgo, Y203, AQ203 to 513N4.
This does not preclude the combined use of sintering aids such as oxides or nitrides.

この様な本発明の複合焼結セラミクスは、複雑な形状の
機械部品の製造を可能とし、また大型の焼結体から多量
の小型部品を効率よく製造することも可能とするばかり
でなく、さらに単にIN状SiC結晶のみを複合させた
ものに比較して、より放電加工速度が向上し、また高精
度で平滑性により優れた加工面を得ることが可能となる
The composite sintered ceramics of the present invention not only makes it possible to manufacture mechanical parts with complex shapes, and also makes it possible to efficiently manufacture large quantities of small parts from large sintered bodies. Compared to a composite of only IN-like SiC crystals, the electrical discharge machining speed is improved, and it is possible to obtain a machined surface with high accuracy and excellent smoothness.

実施例1 SI3N&粉末(0,5〜2μm ) 100Ifi部
に焼結助剤としてのMg05重量部、よく分散したSi
Cウィスカー(太さ0.1〜5μm、長ざ50〜500
um )30重量部、導電性粉末とじSIC粉末(1μ
m以下>10重足部及び粘結剤としてポリビニルアルコ
ール2重量部を加え、十分に混合してペーストとした。
Example 1 100 Ifi parts of SI3N & powder (0.5-2 μm), 5 parts by weight of Mg0 as a sintering aid, and well-dispersed Si
C whisker (thickness 0.1 to 5 μm, length 50 to 500
um) 30 parts by weight, conductive powder bound SIC powder (1μ
m or less >10 parts by weight and 2 parts by weight of polyvinyl alcohol as a binder were added and thoroughly mixed to form a paste.

得られたペーストを減圧ろ適法により薄板状に成形し、
130℃で10時間乾燥した後、300 ka/ cm
2の加圧下1800’Cで焼結して100%相対密度の
焼結体を得た。
The resulting paste is formed into a thin plate using a vacuum filtration method.
300 ka/cm after drying at 130℃ for 10 hours
A sintered body with a relative density of 100% was obtained by sintering at 1800'C under pressure of 2.

得られた焼結体の比抵抗、ワイヤーカット放電加工にお
ける線加工速度、加工面の而粗さ及び空温強度を第1表
に示す。ただし、ワイヤーカット放電加工は、放電パル
ス幅6μ5eC1放電体止時間20μ5eC1電流ピー
ク値3.5A、タップ電圧100V、ワイヤ径20μm
という条件で行なった。
Table 1 shows the specific resistance of the obtained sintered body, the wire machining speed in wire-cut electrical discharge machining, the roughness of the machined surface, and the air temperature strength. However, wire-cut electrical discharge machining requires a discharge pulse width of 6μ5eC, a discharge body dwell time of 20μ5eC, a current peak value of 3.5A, a tap voltage of 100V, and a wire diameter of 20μm.
This was done under the following conditions.

比較例1 導電性粉末とし工のSiC粉末を添加複合しない以外は
実施例1と同様にして焼結体を得た。得られた焼結体の
物性を第1表に併せて示す。
Comparative Example 1 A sintered body was obtained in the same manner as in Example 1 except that the conductive powder was not mixed with SiC powder. The physical properties of the obtained sintered body are also shown in Table 1.

比較例2 繊維状SiC結晶及びSiC粉末を添加複合しない以外
は実施例1と同様にして焼結体を得た。
Comparative Example 2 A sintered body was obtained in the same manner as in Example 1 except that fibrous SiC crystals and SiC powder were not added and combined.

焼結体の物性は第1表に示す通りである。ただし、放電
加工は不可能であるので、加工速度及び加工而粗さは示
していない。
The physical properties of the sintered body are shown in Table 1. However, since electrical discharge machining is not possible, machining speed and machining roughness are not shown.

第   1   表 実施例2 AQ203扮末(0,2〜1μn+ )100重量部に
焼結助剤としてのM(102重量部、よく分iB(I〕
k S i Cウィスカー(太さ0.1〜5μm。
Table 1 Example 2 100 parts by weight of AQ203 powder (0.2 to 1 μn+) was added with M as a sintering aid (102 parts by weight, well divided iB(I)
k S i C whiskers (thickness 0.1 to 5 μm.

長さ50〜500μm>10重半部、導電性粉末としT
iN粉末(0,2〜1.5μm )5重量部を加え、十
分に?合してのら、300 k(]/ cm2のカ1目
F下、1700℃で焼結して100%相対密度の焼結体
を得た。
Length 50 to 500 μm > 10 parts, conductive powder T
Add 5 parts by weight of iN powder (0.2-1.5 μm) and add enough? The combined materials were sintered at 1700°C under a force of 300 k(]/cm2 to obtain a sintered body with a relative density of 100%.

得られた焼結体の比抵抗、ワイヤーカット放電加工にお
ける線加工速度、加工面の面粗さ及び室温強度を第2表
に示す。ただし、ワイヤーカット放電加工は、放電パル
ス幅8μsec 、放電体止時間15μsec 、電流
ピーク値8.5A、タップ電圧110v、ワイヤ径20
μmという条件で行なった。
Table 2 shows the specific resistance of the obtained sintered body, the wire machining speed in wire-cut electric discharge machining, the surface roughness of the machined surface, and the room temperature strength. However, wire cut electrical discharge machining requires a discharge pulse width of 8 μsec, a discharge body stop time of 15 μsec, a current peak value of 8.5 A, a tap voltage of 110 V, and a wire diameter of 20 μsec.
The test was carried out under the conditions of μm.

実施例3 導電性粉末としてのTiN粉末を20重量部複合させる
以外は実施例2と同様にして焼結体を得た。得られた焼
結体の物性を第2表に併せて示す。
Example 3 A sintered body was obtained in the same manner as in Example 2 except that 20 parts by weight of TiN powder as a conductive powder was combined. The physical properties of the obtained sintered body are also shown in Table 2.

比較例3 繊維状SiC結晶及びTiN粉末を添加複合しない以外
は実施例2と同様にして焼結体を得た。
Comparative Example 3 A sintered body was obtained in the same manner as in Example 2 except that fibrous SiC crystals and TiN powder were not added and combined.

焼結体の物性は第2表に示す通りである。The physical properties of the sintered body are shown in Table 2.

第   2   表 (以 上)Table 2 (that's all)

Claims (1)

【特許請求の範囲】[Claims] ■ ■族、■族又はIV族元素の酸化物、窒化物又は炭
化物を母相とし、10Ω−cm以下の比抵抗を有するセ
ラミクスであって、セラミクス中に全重量に対して5〜
50%の範囲内で繊維状炭化ケイ素結晶と2〜20%の
範囲内で導電性を有する炭化物、窒化物又はホウ化物の
粉末とを分散含有せしめたことを特徴とする複合焼結セ
ラミクス。
■ Ceramics with a matrix of oxides, nitrides, or carbides of group ■, group ■, or group IV elements and having a specific resistance of 10 Ω-cm or less, with
A composite sintered ceramic comprising 50% of fibrous silicon carbide crystals and 2 to 20% of conductive carbide, nitride or boride powder dispersed therein.
JP57213027A 1982-12-03 1982-12-03 Composite sintered ceramics Granted JPS59102862A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57213027A JPS59102862A (en) 1982-12-03 1982-12-03 Composite sintered ceramics
US06/556,551 US4507224A (en) 1982-12-03 1983-11-30 Ceramics containing fibers of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57213027A JPS59102862A (en) 1982-12-03 1982-12-03 Composite sintered ceramics

Publications (2)

Publication Number Publication Date
JPS59102862A true JPS59102862A (en) 1984-06-14
JPS6219396B2 JPS6219396B2 (en) 1987-04-28

Family

ID=16632291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57213027A Granted JPS59102862A (en) 1982-12-03 1982-12-03 Composite sintered ceramics

Country Status (1)

Country Link
JP (1) JPS59102862A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194811A2 (en) * 1985-03-14 1986-09-17 Advanced Composite Materials Corporation Reinforced ceramic cutting tools
JPS61236654A (en) * 1985-04-10 1986-10-21 株式会社日立製作所 High toughness silicon nitride sintered body and manufacture
JPS6241776A (en) * 1985-08-15 1987-02-23 日本特殊陶業株式会社 Fiber reinforced composite material for tool
JPS6278160A (en) * 1985-09-30 1987-04-10 日本特殊陶業株式会社 Compositely enhanced sintered body
JPS6345179A (en) * 1986-08-13 1988-02-26 日本特殊陶業株式会社 Ain composite sintered body
JPS6345173A (en) * 1986-08-08 1988-02-26 日本特殊陶業株式会社 High toughness ceramic sintered body and manufacture
JPS6389471A (en) * 1986-10-03 1988-04-20 三菱マテリアル株式会社 Ceramic material for cutting tool
JPS63225579A (en) * 1986-07-31 1988-09-20 日本特殊陶業株式会社 Ceramic tool material
US4789277A (en) * 1986-02-18 1988-12-06 Advanced Composite Materials Corporation Method of cutting using silicon carbide whisker reinforced ceramic cutting tools
JPS6445755A (en) * 1987-08-12 1989-02-20 Hitachi Ltd Ceramic dull roll for rolling, its production and rolling mill using said roll
JPH01252582A (en) * 1987-12-24 1989-10-09 Hitachi Metals Ltd Electrically conductive ceramic sintered compact
US5449647A (en) * 1994-01-21 1995-09-12 Sandvik Ab Silicon carbide whisker reinforced cutting tool material
JP2012201566A (en) * 2011-03-28 2012-10-22 Ube Industries Ltd Inorganic fiber-bonded ceramic component and method for producing the same
CN113773090A (en) * 2021-11-15 2021-12-10 长沙理工大学 ZrB2Preparation method of-ZrC-SiC nano composite ceramic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025609A (en) * 1973-03-14 1975-03-18
JPS57135776A (en) * 1981-02-12 1982-08-21 Ngk Spark Plug Co Manufacture of sic sintered body
JPS57188453A (en) * 1981-05-11 1982-11-19 Sumitomo Electric Industries Discharge-workable ceramic sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025609A (en) * 1973-03-14 1975-03-18
JPS57135776A (en) * 1981-02-12 1982-08-21 Ngk Spark Plug Co Manufacture of sic sintered body
JPS57188453A (en) * 1981-05-11 1982-11-19 Sumitomo Electric Industries Discharge-workable ceramic sintered body

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0194811A2 (en) * 1985-03-14 1986-09-17 Advanced Composite Materials Corporation Reinforced ceramic cutting tools
EP0194811A3 (en) * 1985-03-14 1987-01-28 Atlantic Richfield Company Reinforced ceramic cutting tools
JPS61236654A (en) * 1985-04-10 1986-10-21 株式会社日立製作所 High toughness silicon nitride sintered body and manufacture
JPS6241776A (en) * 1985-08-15 1987-02-23 日本特殊陶業株式会社 Fiber reinforced composite material for tool
JPH0520382B2 (en) * 1985-08-15 1993-03-19 Ngk Spark Plug Co
JPS6278160A (en) * 1985-09-30 1987-04-10 日本特殊陶業株式会社 Compositely enhanced sintered body
US4789277A (en) * 1986-02-18 1988-12-06 Advanced Composite Materials Corporation Method of cutting using silicon carbide whisker reinforced ceramic cutting tools
JPS63225579A (en) * 1986-07-31 1988-09-20 日本特殊陶業株式会社 Ceramic tool material
JPS6345173A (en) * 1986-08-08 1988-02-26 日本特殊陶業株式会社 High toughness ceramic sintered body and manufacture
JPS6345179A (en) * 1986-08-13 1988-02-26 日本特殊陶業株式会社 Ain composite sintered body
JPS6389471A (en) * 1986-10-03 1988-04-20 三菱マテリアル株式会社 Ceramic material for cutting tool
JPH0723263B2 (en) * 1986-10-03 1995-03-15 三菱マテリアル株式会社 Cutting tool made of aluminum oxide based ceramics
JPS6445755A (en) * 1987-08-12 1989-02-20 Hitachi Ltd Ceramic dull roll for rolling, its production and rolling mill using said roll
JPH01252582A (en) * 1987-12-24 1989-10-09 Hitachi Metals Ltd Electrically conductive ceramic sintered compact
US5066423A (en) * 1987-12-24 1991-11-19 Hitachi Metals, Ltd. Conductive ceramic sintered body
US5449647A (en) * 1994-01-21 1995-09-12 Sandvik Ab Silicon carbide whisker reinforced cutting tool material
JP2012201566A (en) * 2011-03-28 2012-10-22 Ube Industries Ltd Inorganic fiber-bonded ceramic component and method for producing the same
CN113773090A (en) * 2021-11-15 2021-12-10 长沙理工大学 ZrB2Preparation method of-ZrC-SiC nano composite ceramic material
CN113773090B (en) * 2021-11-15 2022-02-18 长沙理工大学 ZrB2Preparation method of-ZrC-SiC nano composite ceramic material

Also Published As

Publication number Publication date
JPS6219396B2 (en) 1987-04-28

Similar Documents

Publication Publication Date Title
US4507224A (en) Ceramics containing fibers of silicon carbide
KR970001181B1 (en) Laminated extruded thermal shock resistant articles
JPS59102862A (en) Composite sintered ceramics
Wu et al. Fabrication of oriented SiC‐whisker‐reinforced mullite matrix composites by tape casting
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JPS6364968A (en) Silicon carbide base composite ceramics
JPS61174165A (en) Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JPS6055469B2 (en) Method for producing fiber-reinforced silicon nitride sintered body
JPS59102861A (en) Silicon carbide composite oxide sintered ceramics
JPS5851910B2 (en) Titsukakeisokeishyouketsutainoseizouhouhou
JPS5834428B2 (en) Method for manufacturing silicon nitride ceramics
JPS6035316B2 (en) SiC-Si↓3N↓4-based sintered composite ceramics
KR101763122B1 (en) Manufacturing method of ceramic core, ceramic core, precision casting method and precision casting products
JPH0212918B2 (en)
US4550063A (en) Silicon nitride reinforced nickel alloy composite materials
JPH02267160A (en) High strength alumina
CN1045282C (en) High-compact low-porosity silicon nitride-silicon carbide-oxide system as refractory material
JPS63225579A (en) Ceramic tool material
JPS6033265A (en) Silicon carbide electroconductive ceramics
JPH1143373A (en) Production of composite material
CA2048838A1 (en) Zirconia-molybdenum disilicide composites
RU2588079C1 (en) Ultra-high-temperature ceramic material and method for production thereof
JPS62216969A (en) Fiber reinforced si3n4 ceramics and manufacture
JP2664764B2 (en) Ceramic composite material and method for producing the same
JPS62176958A (en) Manufacture of silicon nitride base sintered body