JP2003073168A - Reactive sintered silicon carbide heating element - Google Patents

Reactive sintered silicon carbide heating element

Info

Publication number
JP2003073168A
JP2003073168A JP2001261043A JP2001261043A JP2003073168A JP 2003073168 A JP2003073168 A JP 2003073168A JP 2001261043 A JP2001261043 A JP 2001261043A JP 2001261043 A JP2001261043 A JP 2001261043A JP 2003073168 A JP2003073168 A JP 2003073168A
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
heating element
temperature
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001261043A
Other languages
Japanese (ja)
Other versions
JP4796716B2 (en
Inventor
Shigeru Kudo
工藤  茂
Hiroaki Kitahama
裕章 北浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP2001261043A priority Critical patent/JP4796716B2/en
Publication of JP2003073168A publication Critical patent/JP2003073168A/en
Application granted granted Critical
Publication of JP4796716B2 publication Critical patent/JP4796716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a heating element which is composed of a high density and high strength reactive sintered silicon carbide compact high in reliability, and capable of accurately controlling even in a low temperature region by lowering a negative temperature dependency of electric resistance at <=500 deg.C. SOLUTION: The reactive sintered silicon carbide heating element is manufactured as follows. The sintered compact is >=80% in relative density, >=50MPa in bending strength and a N type semiconductor containing nitrogen. Crystal type 3C of silicon carbide occupies >=40% to whole cuptalline part, >=50MPa in bending strength, >=-0.1%/ deg.C in resistance temperature coefficient. Mixed powder of β-SiC powder of 30-80 wt.% and carbon powder of 20-70 wt.% is molded fired at the temperature of 1400-2000 deg.C and then after being buried in Si powder, the remaining Si is removed by heat processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温の工業加熱炉
に用いられる炭化珪素質の電気抵抗発熱体に係り、詳し
くは常温から約500℃の温度域における電気抵抗の温
度依存性として、負特性が小さい炭化珪素発熱体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide type electric resistance heating element used in a high temperature industrial heating furnace, and more specifically, it shows a negative temperature dependence of electric resistance in a temperature range from room temperature to about 500.degree. The present invention relates to a silicon carbide heating element having small characteristics.

【0002】[0002]

【従来の技術】炭化珪素は、良電導性の化合物半導体で
あり、材質的に優れた耐熱性及び化学的安定性を具備し
ていることから、高温電気炉用等の通電発熱体として古
くから利用されている。
2. Description of the Related Art Silicon carbide is a compound semiconductor having good electrical conductivity, and since it has excellent heat resistance and chemical stability in terms of material, it has long been used as an electric heating element for high temperature electric furnaces and the like. It's being used.

【0003】一般に炭化珪素発熱体は、通電発熱による
温度上昇に伴って比抵抗が急激に低下し、約500℃付
近を極小として上昇に転じて最高使用可能の温度域まで
持続するといった抵抗変動を示す傾向がある。この理由
は、炭化珪素は半導体であるため不純物準位から伝導帯
へ励起できる伝導電子の数が温度上昇に伴って増大し、
この挙動によって常温から約500℃までは抵抗が低下
するが、約500℃以降は格子の熱振動により伝導電子
の移動度が低下するため抵抗が若干上昇傾向を示すこと
に基づくものと解釈されている。したがって、炭化珪素
発熱体を常温〜約500℃の範囲にて温度制御させる場
合、金属発熱体と比較して精密な温度制御を難しくさせ
ていた。
In general, in a silicon carbide heating element, the specific resistance sharply decreases as the temperature rises due to heat generation by energization, and the resistance changes such that the specific temperature around 500 ° C. becomes a minimum and then rises to the maximum usable temperature range. Tend to show. The reason for this is that since silicon carbide is a semiconductor, the number of conduction electrons that can be excited from the impurity level to the conduction band increases as the temperature rises,
This behavior causes the resistance to decrease from room temperature to about 500 ° C, but it is interpreted that after about 500 ° C, the resistance tends to increase slightly because the conduction electron mobility decreases due to thermal vibration of the lattice. There is. Therefore, when controlling the temperature of the silicon carbide heating element in the range of room temperature to about 500 ° C., it is difficult to perform precise temperature control as compared with the metal heating element.

【0004】このため、炭化珪素発熱体における抵抗の
負特性を減少させる目的で従来から様々な試みが提案さ
れており、そのひとつの方法として本出願人より特開平
7−53265号及び特開平7−89764号が開示さ
れている。炭化珪素は、本来結晶多形の材料であり、立
方晶系の3C、六方晶系に属する2H、4H、6H及び
菱面体晶系の15Rなどの混在する結晶形態を呈してい
る。上記発明は、これら炭化珪素の結晶相と抵抗の温度
変化との関係について、特定量のβ−SiC粒子(結晶
形3C)を含む窒素固溶型の炭化珪素発熱体とした場合
に電気抵抗の温度依存性、特に室温から500℃の負特
性を効果的に減少し得ることが提案されている。これ
は、窒素による置換固溶したN型半導体であるのに加え
て、ドナー準位が低い3C結晶形が導電経路に支配的と
なった場合に達成されることが明らかになっている。
For this reason, various attempts have been proposed in the past for the purpose of reducing the negative resistance characteristic of the silicon carbide heating element. One of the methods has been proposed by the applicant of the present invention in Japanese Patent Application Laid-Open Nos. 7-53265 and 7-53265. No. 89764 is disclosed. Silicon carbide is essentially a polymorphic material, and has a mixed crystal form such as cubic 3C, hexagonal 2H, 4H, 6H, and rhombohedral 15R. Regarding the relationship between the crystal phase of silicon carbide and the temperature change of resistance, the above invention shows the electric resistance of a nitrogen solid solution type silicon carbide heating element containing a specific amount of β-SiC particles (crystal form 3C). It has been proposed that the temperature dependence, especially the negative characteristics from room temperature to 500 ° C., can be effectively reduced. This has been clarified to be achieved when the 3C crystal form having a low donor level is dominant in the conductive path in addition to the N-type semiconductor in which nitrogen is substituted and solid-solved.

【0005】[0005]

【発明が解決しようとする課題】特開平7−89764
号公報に開示されている炭化珪素発熱体を製造する場
合、昇華再結晶法や反応焼結法、常圧焼結法のいずれか
の方法が用いられる。いずれの方法においても、出発原
料としてβ−SiC粉末を使用すること、炭化珪素に窒
素を置換固溶させてN型半導体とするため、窒素ガス雰
囲気での焼成が前提条件となる。
[Patent Document 1] Japanese Patent Application Laid-Open No. 7-89764
When manufacturing the silicon carbide heating element disclosed in the publication, any one of a sublimation recrystallization method, a reaction sintering method and an atmospheric pressure sintering method is used. In either method, since β-SiC powder is used as a starting material and nitrogen is solid-dissolved in silicon carbide to form an N-type semiconductor, firing in a nitrogen gas atmosphere is a prerequisite.

【0006】昇華再結晶法は、高温にて焼成することに
よりSiC粒子接触部分のネックを成長させて、寸法収
縮を伴なわない焼結を起こさせるもので、非常に安価な
方法である。本方法によると、発熱体として十分耐えう
る強度のものを得るためには、窒素ガス雰囲気中、焼成
温度を約2300℃以上にしなければならず、原料炭化
珪素に100%β−SiC原料を使用しても、約200
0℃以上にてβ−α結晶間の転移が生じるため、3C型
結晶形はほとんど残らないのが実情であり、負特性を軽
減するには至らない。
The sublimation recrystallization method is a very inexpensive method in which a neck at a contact portion of SiC particles is grown by firing at high temperature to cause sintering without dimensional shrinkage. According to this method, in order to obtain a sufficiently strong heat generating element, the firing temperature must be about 2300 ° C. or higher in a nitrogen gas atmosphere, and 100% β-SiC raw material is used for the raw material silicon carbide. Even about 200
Since a transition between β-α crystals occurs at 0 ° C. or higher, the 3C-type crystal form hardly remains, and the negative characteristics cannot be reduced.

【0007】常圧焼結法は、平均粒径1μm以下の微粒
β相SiC粉末に、焼結助剤として例えば硼素と炭素を
加えて、成形、焼成することにより、寸法収縮を伴なう
焼結をさせるもので、昇華再結晶法より高密度の焼結体
が得られる。しかし、窒素ガス雰囲気中での焼成では高
密度化し難く、Arガス雰囲気焼成により一旦緻密化さ
せた後に窒素ガス雰囲気にて焼成するといった二段焼成
が余儀なくされ、複雑なプロセスとなるのに加えて、焼
結体製造用の微粒SiC原料の価格が高いため比較的に
高価な方法とされている。また、本方法は、焼結により
緻密化させるためには、約2100〜2200℃の焼成
温度が必要であり、出発原料がβ−SiC100%であ
っても、β−α転移により、結果的に3C型SiCの比
率が低くなるため、効率の悪いものであった。
In the normal pressure sintering method, fine β-phase SiC powder having an average particle diameter of 1 μm or less is added with, for example, boron and carbon as a sintering aid, and the mixture is molded and fired, so that firing accompanied by dimensional shrinkage occurs. The sintered body has a higher density than the sublimation recrystallization method. However, it is difficult to increase the density by firing in a nitrogen gas atmosphere, and two-step firing is inevitable, such as once densifying by firing in an Ar gas atmosphere and then firing in a nitrogen gas atmosphere, which is a complicated process. Since the price of the fine grain SiC raw material for producing the sintered body is high, it is considered to be a relatively expensive method. In addition, this method requires a firing temperature of about 2100 to 2200 ° C. to densify by sintering, and even if the starting material is β-SiC 100%, β-α transition results in Since the ratio of 3C type SiC was low, the efficiency was poor.

【0008】反応焼結法は、SiCと炭素を所定量混合
し、成形して、焼成時にSiを接触させ、炭素と反応す
る(ケイ化)ことによりSiC二次粒子を生成させて焼
結するもので、比較的に安価にて高密度のSiC焼結体
が得られる方法である。ケイ化により生成するSiCは
β相比率が高いため、上記二つの方法より炭化珪素結晶
形である3C型SiCの比率を高くするには適してい
る。
In the reaction sintering method, a predetermined amount of SiC and carbon are mixed, shaped, and brought into contact with Si at the time of firing to react (silicize) with carbon to generate SiC secondary particles and sinter. This is a method of obtaining a high-density SiC sintered body at a relatively low cost. Since SiC produced by silicidation has a high β phase ratio, it is more suitable than the above two methods for increasing the ratio of 3C type SiC which is a silicon carbide crystal form.

【0009】しかしながら特開平7−89764号公報
に記載された炭化珪素発熱体は、500℃以下での電気
抵抗の温度依存性である負特性の軽減が未だ十分でなか
った。
However, the silicon carbide heating element described in Japanese Patent Application Laid-Open No. 7-89764 has not yet sufficiently reduced the negative characteristic which is the temperature dependence of the electric resistance at 500 ° C. or lower.

【0010】本発明が解決しようとする課題は、500
℃以下での電気抵抗の温度依存性である負特性を軽減さ
せることによって、低温領域でも精密な制御を可能にす
るため、信頼性が高く高強度の発熱体を、安価に提供す
るものである。
The problem to be solved by the present invention is 500
By reducing the negative characteristic, which is the temperature dependence of the electrical resistance below ℃, it enables precise control even in the low temperature range, and therefore provides a highly reliable and high-strength heating element at low cost. .

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
の本発明による炭化珪素発熱体は、相対密度80%以上
の炭化珪素材質において、窒素を0.1%含有するN型
半導体であって、炭化珪素の結晶形である3C型が全体
の40%以上であり、曲げ強度が50MPa以上、室温
から500℃の抵抗温度係数が−0.1%/℃以上であ
ることを特徴とする。
A silicon carbide heating element according to the present invention for solving the above problems is an N-type semiconductor containing 0.1% nitrogen in a silicon carbide material having a relative density of 80% or more. The 3C type which is a crystal form of silicon carbide is 40% or more of the whole, the bending strength is 50 MPa or more, and the temperature coefficient of resistance from room temperature to 500 ° C. is −0.1% / ° C. or more.

【0012】上記課題を解決するための本発明による上
記炭化珪素発熱体の製造方法は、窒素含有量が0.1%
以上かつ平均粒子径が5μm以上のβ−SiC粉末30
〜80重量%と炭素粉末20〜70重量%からなる混合
粉末を成形した後、Si粉末に埋設して1400〜20
00℃の温度にて焼成し、その後熱処理により残留する
Siを除去させることを特徴とする。
In the method for manufacturing a silicon carbide heating element according to the present invention for solving the above problems, the nitrogen content is 0.1%.
Above and β-SiC powder 30 having an average particle size of 5 μm or more
~ 80% by weight and carbon powder 20 ~ 70% by weight, after molding a mixed powder, embedded in Si powder 1400 ~ 20
It is characterized in that it is fired at a temperature of 00 ° C., and then the remaining Si is removed by heat treatment.

【0013】また、上記製造方法において、β−SiC
粉末がコークスとシリカを反応させるシリカ還元法によ
り製造し、未反応の炭素が20〜70重量%含むものを
混合粉末とすることを特徴とする。
In the above manufacturing method, β-SiC
The powder is produced by a silica reduction method in which coke reacts with silica, and a powder containing unreacted carbon in an amount of 20 to 70% by weight is used as a mixed powder.

【0014】[0014]

【発明の実施の形態】一般に工業炉に使用される発熱体
は、負荷する電力をコントロールすることによって炉内
温度を調節するため、その電気抵抗の温度依存性が重要
となる。電気抵抗の温度依存性を示す抵抗温度係数の絶
対値が小さく正特性であれば、精密な温度制御が可能と
なる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Generally, a heating element used in an industrial furnace controls the temperature inside the furnace by controlling the electric power to be applied, and therefore the temperature dependence of its electric resistance is important. If the absolute value of the temperature coefficient of resistance, which indicates the temperature dependence of the electrical resistance, is small and has a positive characteristic, precise temperature control is possible.

【0015】炭化珪素は半導体的特性を備えており、特
に室温から500℃の範囲での抵抗温度特性は典型的な
負特性を示すことから、この温度範囲での精密な制御は
困難とされている。負特性となる原因は炭化珪素のバン
ド構造から次のように考えられる。すなわち、炭化珪素
のバンドギャップは2〜3eVと非常に広いため、電気
抵抗を通電発熱可能なレベルまで下げるには、ある種の
元素を固溶させてドナーまたはアクセプター準位を形成
させる必要がある。炭化珪素の抵抗温度特性は固溶させ
るドナーまたはアクセプター準位に依存し、ドナー準位
と伝導帯またはアクセプタ準位と価電子帯とのエネルギ
ーギャップが大きいほど比抵抗の温度変化は大きくな
る。炭化珪素に固溶可能な元素としては硼素、窒素、ア
ルミニウム、リンなどが挙げられるが、中でも窒素固溶
により形成されたドナー準位が最も伝導帯とのエネルギ
ーギャップが小さい。本発明の反応焼結炭化珪素発熱体
における窒素が固溶したN型半導体の性状は、抵抗の温
度依存性を減少させるための前提条件となる。窒素を固
溶したN型半導体は、0.03〜0.1eV程度のドナ
ー準位を示すが、その準位は炭化珪素を構成する結晶形
に依存する度合が少なくない。すなわち、結晶多形毎の
ドナー準位は、6H型は0.066〜0.1eV程度で
あるのに対し、3C型は0.03〜0.05eVと低い
値をとる。したがって、3C型結晶の比率が高いほど、
抵抗温度特性の負特性が軽減することになるため、本発
明では出発原料としてβ−SiC粉末を使用し、更には
焼結体において、3C型結晶を40%以上残すことによ
り、導電パスを十分確保し、3C型結晶の電気特性支配
的となる。
Since silicon carbide has semiconductor characteristics, and the resistance-temperature characteristic in the range of room temperature to 500 ° C. shows a typical negative characteristic, it is considered difficult to precisely control in this temperature range. There is. The cause of the negative characteristics is considered as follows from the band structure of silicon carbide. That is, since the band gap of silicon carbide is as wide as 2 to 3 eV, it is necessary to form a solid solution with a certain element to form a donor or acceptor level in order to reduce the electric resistance to a level at which heat can be generated by conduction. . The resistance temperature characteristic of silicon carbide depends on the donor or acceptor level to be dissolved, and the larger the energy gap between the donor level and the conduction band or the acceptor level and the valence band, the greater the temperature change of the specific resistance. Examples of the element capable of forming a solid solution in silicon carbide include boron, nitrogen, aluminum, and phosphorus. Among them, the donor level formed by nitrogen solid solution has the smallest energy gap with the conduction band. The property of the N-type semiconductor in which nitrogen is solid-dissolved in the reaction sintered silicon carbide heating element of the present invention is a prerequisite for reducing the temperature dependence of resistance. The N-type semiconductor in which nitrogen is dissolved forms a donor level of about 0.03 to 0.1 eV, but the level often depends on the crystal form of silicon carbide. That is, the donor level for each crystal polymorph is about 0.066 to 0.1 eV for the 6H type, while it is as low as 0.03 to 0.05 eV for the 3C type. Therefore, the higher the ratio of 3C-type crystals,
Since the negative characteristic of the resistance temperature characteristic is reduced, in the present invention, β-SiC powder is used as a starting material, and further 40% or more of the 3C type crystal is left in the sintered body, so that the conductive path is sufficiently formed. It is ensured and the electric characteristics of the 3C-type crystal become dominant.

【0016】強度については、セラミック発熱体として
重要な特性であり、特に本発明のように、窒素固溶量が
多く比抵抗が低い場合には、発熱体全体の抵抗値を上げ
るために、発熱部に螺旋状のスリットを入れることが必
要となることから、なおさら高強度材質が必要となる。
本発明においては、螺旋状加工を行なっても発熱体とし
て充分耐え得ることのできる曲げ強度の限界値を究明
し、この限界曲げ強度を達成するために、β−SiCと
炭素を配合し、溶融Siを接触させて炭素をケイ化し焼
結させる反応焼結法の採用や、そのβ−SiCとして粗
粒粉末を配合することによって成形密度を向上させ、高
密度化を可能とし、同時に3C型結晶比率を高くするこ
とが可能となる。
The strength is an important characteristic of a ceramic heating element, and particularly when the solid solution amount of nitrogen is large and the specific resistance is low as in the present invention, heat generation is required to increase the resistance value of the entire heating element. Since it is necessary to form a spiral slit in the portion, a high strength material is further required.
In the present invention, the limit value of the bending strength that can sufficiently withstand as a heating element is investigated even if spiral working is performed, and in order to achieve this limiting bending strength, β-SiC and carbon are blended and melted. Adopting a reaction sintering method in which Si is brought into contact with silicon to sinter and sinter carbon, and by incorporating a coarse particle powder as β-SiC, the compacting density can be improved to achieve high density, and at the same time, a 3C-type crystal It is possible to increase the ratio.

【0017】上記観点から、本発明の炭化珪素発熱体
は、出発原料として3C型結晶SiC粒子であるβ−S
iC粉末を使用し、炭素粉末を混合、成形し、得られた
成形体をSi粉末に埋設して焼成する。これより、Si
C二次粒子を生成させて焼結させる反応焼結法を用いる
ことにより、3C型結晶の比率を容易に高めることが可
能となる。また、焼結後に寸法収縮することなく、相対
密度80%以上のSiC焼結体を容易に得られる。
From the above point of view, the silicon carbide heating element of the present invention has β-S which is 3C type crystalline SiC particles as a starting material.
Using iC powder, carbon powder is mixed and molded, and the obtained molded body is embedded in Si powder and fired. From this, Si
By using the reaction sintering method in which C secondary particles are generated and sintered, the ratio of 3C type crystals can be easily increased. Further, a SiC sintered body having a relative density of 80% or more can be easily obtained without dimensional shrinkage after sintering.

【0018】β−SiC粉末には平均粒子径が5μm以
上の比較的粒子の粗いものが用いられる。これは、反応
焼結法は寸法収縮を伴う緻密化が起きないため、高強度
とするためには成形体密度を出来るだけ高くしておく必
要があり、そのためには骨材となるβ−SiC粉末は粗
粒のものを使用することが望ましいためである。また、
最終的に焼結体に3C型結晶を多く残すためには、出来
るだけβ−SiC粒子の粒度が平均粒径15μm以上の
大きいものを使用することが好ましい。また、β−Si
C粉末中の窒素含有量については、0.1%以上のもの
が好適に用いられる。
As the β-SiC powder, a relatively coarse particle having an average particle diameter of 5 μm or more is used. This is because the reaction sintering method does not cause densification accompanied by dimensional shrinkage, so it is necessary to make the density of the compact as high as possible in order to obtain high strength, and for that purpose, β-SiC which is an aggregate is required. This is because it is desirable to use coarse powder. Also,
In order to leave a large amount of 3C-type crystals in the final sintered body, it is preferable to use β-SiC particles having a particle size as large as possible, having an average particle size of 15 μm or more. In addition, β-Si
The nitrogen content in the C powder is preferably 0.1% or more.

【0019】炭素粉末は、平均粒径1〜100μmの粒
子径のものが用いられ、特に平均粒径3〜15μmの粒
子径が好ましい。このβ−SiC粉末と炭素粉末の混合
比は重量比で3:8〜7:2の範囲に調整することが望
ましく、この範囲から外れると充分な理論成形体密度が
得られなかったり、Siと炭素が反応するケイ化の際に
焼成体内部に未反応炭素を残すことになる。
The carbon powder used has an average particle diameter of 1 to 100 μm, and particularly preferably an average particle diameter of 3 to 15 μm. It is desirable to adjust the mixing ratio of the β-SiC powder and the carbon powder in the range of 3: 8 to 7: 2 by weight ratio. If the ratio is out of this range, a sufficient theoretical compact density cannot be obtained, or Si At the time of silicidation in which carbon reacts, unreacted carbon remains inside the fired body.

【0020】上記混合粉末として、コークスとシリカを
反応させてSiCを合成するシリカ還元法により製造し
たβ−SiCであって、未反応炭素が20〜70%含む
原料を使用することも可能である。これら原料を使用す
ることにより、製造工程中の混合工程を短縮できる他、
炭化珪素及び炭素が均質に分散しているので、より均一
な組織の焼成体が得られることになる。
As the mixed powder, it is also possible to use a raw material which is β-SiC produced by a silica reduction method in which coke and silica are reacted to synthesize SiC and which contains 20 to 70% of unreacted carbon. . By using these raw materials, the mixing process in the manufacturing process can be shortened,
Since silicon carbide and carbon are uniformly dispersed, a fired body having a more uniform structure can be obtained.

【0021】次いでこれら混合物を成形する。成形手段
は特に限定されず、例えば混合物に水あるいはアルコー
ルなどの溶媒にポリビニルアルコール、メチルセルロー
ス、カルボキシルメチルセルロースなどの有機バインダ
ーを溶解したバインダー液を加えて混練し、押し出し成
形やプレス成形などの常用の手段により加圧成形する。
この際、成形体の相対密度が理論成形密度の85〜95
%の範囲になるように加圧成形することが必要である。
Next, these mixtures are molded. Molding means is not particularly limited, for example, a mixture of a binder solution obtained by dissolving an organic binder such as polyvinyl alcohol, methyl cellulose or carboxymethyl cellulose in a solvent such as water or alcohol is kneaded, and a conventional means such as extrusion molding or press molding. To perform pressure molding.
At this time, the relative density of the compact is 85 to 95 of the theoretical compact density.
It is necessary to perform pressure molding so as to be in the range of%.

【0022】この成形体は、Si粉末に埋設して高温に
て焼成する、いわゆるケイ化処理を行ない、CとSiが
反応し二次的に生成したSiCが粗粒β−SiC粒同士
を結合して焼結させる。ケイ化時の処理温度について
は、SiとCとが充分反応可能な1500℃以上、β−
SiCのβ→α転移が生じない2000℃以下であり、
処理雰囲気は真空中や不活性ガスであるN2 ガス及びA
rガスから選択可能であるが、好ましくは低温にてケイ
化可能な真空及びArガスにて行なうことにより、3C
型結晶比率を高くすることが可能となる。しかし、Si
が融点温度付近になると、急激に炭素と反応するため、
その反応熱に伴う熱膨張差により焼結体が割れる現象が
多く発生する。このため、Siの融点付近の温度では昇
温速度を緩やかにして、精密な温度制御が必要となり、
歩留りが悪い原因となる。一方、N 2 ガス雰囲気中で
は、Siの窒化反応が同時に進むため、生成したSi3
4 が分解する1900℃以上の処理温度が必要となる
が、ケイ化反応が緩やかに進むため、ケイ化後に割れを
発生することが無く、安定して焼結体が製造できる。ま
た、N2 ガス中にて焼成することにより、窒素含有量が
高くなり、低抵抗化することが可能となる。
This compact was embedded in Si powder and exposed to high temperature.
And so on, the so-called silicidation process is performed, and C and Si are
Reacted secondary SiC is coarse-grained β-SiC grains
Are combined and sintered. Processing temperature during silicidation
Is 1500 ° C. or higher at which β can sufficiently react with Si and β-
The temperature is 2000 ° C. or lower at which the β → α transition of SiC does not occur,
The processing atmosphere is vacuum or N which is an inert gas.2 Gas and A
Although it can be selected from r gas, it is preferable that
3C
It is possible to increase the type crystal ratio. But Si
When is near the melting temperature, it reacts rapidly with carbon,
The phenomenon that the sintered body cracks due to the difference in thermal expansion due to the reaction heat
Many occur. Therefore, the temperature rises near the melting point of Si.
The temperature rate must be slowed down and precise temperature control is required.
This causes poor yield. On the other hand, N 2 In a gas atmosphere
Is generated because the nitriding reaction of Si proceeds at the same time.3 
NFour A decomposition temperature of 1900 ° C or higher is required.
However, since the silicidation reaction proceeds slowly, cracking occurs after silicidation.
A sintered body can be stably produced without any generation. Well
N2 By firing in gas, the nitrogen content
It becomes higher and the resistance can be lowered.

【0023】上記方法にて得られた焼結体については、
必ずSiが数%残存していることから、発熱体として使
用するためにはSi除去処理を行なう必要がある。この
処理は、高温にて熱処理することによりSiを揮散除去
することが可能であり、その雰囲気及び温度について
は、N2 ガス雰囲気中であれば2100〜2300℃、
真空雰囲気中であれば1800〜2000℃の範囲にて
行なう。β−α転移を抑えるためには、真空雰囲気18
00〜2000℃での処理の方が好ましいが、N 2ガス
中2100〜2300℃で処理しても、ある程度3C比
率を残すことが可能であるため、連続生産に向くN2
ス雰囲気熱処理も有用である。
Regarding the sintered body obtained by the above method,
Be sure to use it as a heating element, as a few percent of Si remains.
In order to use it, it is necessary to perform Si removal processing. this
The treatment is heat treatment at a high temperature to volatilize and remove Si.
About the atmosphere and temperature
Is N2 2100 to 2300 ° C in a gas atmosphere,
In a vacuum atmosphere, in the range of 1800-2000 ° C
To do. In order to suppress the β-α transition, a vacuum atmosphere 18
Treatment at 00 to 2000 ° C is preferable, but N 2gas
Even if treated at 2100 to 2300 ° C, 3C ratio to some extent
Since it is possible to leave the rate, N suitable for continuous production2 Moth
In-air heat treatment is also useful.

【0024】このように本発明によれば、原料となる炭
化珪素粉末として、窒素含有量0.1%以上、平均粒径
5μm以上のβ−SiC粉末を使用し、この炭化珪素粉
末を炭素とSiの反応により生成した二次β−SiCに
より結合し焼結させる反応焼結法にて製造することによ
り、炭化珪素の結晶形である3C型が全体の40%以上
となり、抵抗温度特性の負特性を改善し、室温〜500
℃の温度範囲で−0.1%/℃以上の抵抗温度係数を備
え、更に50MPa以上の曲げ強度を有する反応焼結炭
化珪素発熱体が提供することが可能となる。
As described above, according to the present invention, β-SiC powder having a nitrogen content of 0.1% or more and an average particle size of 5 μm or more is used as the raw material silicon carbide powder, and the silicon carbide powder is used as carbon. By manufacturing by the reaction sintering method in which secondary β-SiC generated by the reaction of Si is combined and sintered, the 3C type, which is the crystal form of silicon carbide, is 40% or more of the whole, and the resistance temperature characteristic is negative. Improve the characteristics, room temperature ~ 500
It is possible to provide a reaction-sintered silicon carbide heating element having a resistance temperature coefficient of −0.1% / ° C. or more in a temperature range of C ° C. and further having a bending strength of 50 MPa or more.

【0025】[0025]

【実施例】次に本発明を実施例を用いて詳細に説明す
る。 実施例1 窒素含有量0.13%、平均粒子径21.5μmのβ−
SiC粉末55重量%と平均粒子径10μmの炭素粉末
45重量%の混合粉末に一般的なセルロース系バインダ
ーと水を加え混錬した後、その混練物を押出し成形機に
てパイプ形状に成形した。得られた成形体寸法は、外径
14mm、内径8mm、長さ600mmのパイプ状であって、
理論成形密度の約90%であった。得られた成形体を窒
素ガス雰囲気中600℃にて脱脂処理した後、Si粉末
に埋設し、電気炉にて窒素ガス雰囲気中、処理温度20
00℃にて焼成して、炭素粉末とSiとを反応させてS
iC化し焼結させた。その後、窒素ガス雰囲気中、温度
2200℃にて熱処理しSiを揮散除去し、相対密度8
7%の炭化珪素焼結体を製造した。
EXAMPLES Next, the present invention will be described in detail with reference to examples. Example 1 β-having a nitrogen content of 0.13% and an average particle size of 21.5 μm
A common cellulosic binder and water were added to a mixed powder of 55% by weight of SiC powder and 45% by weight of carbon powder having an average particle diameter of 10 μm, and the mixture was kneaded, and the kneaded product was formed into a pipe shape by an extrusion molding machine. The obtained molded product has a pipe shape with an outer diameter of 14 mm, an inner diameter of 8 mm, and a length of 600 mm.
It was about 90% of the theoretical compacted density. The molded body thus obtained was degreased at 600 ° C. in a nitrogen gas atmosphere, embedded in Si powder, and then treated in an electric furnace in a nitrogen gas atmosphere at a treatment temperature of 20.
Sintered by firing at 00 ° C. to react carbon powder with Si
It was made iC and sintered. Then, heat treatment is performed at a temperature of 2200 ° C. in a nitrogen gas atmosphere to remove Si by volatilization, and a relative density of 8
A 7% silicon carbide sintered body was produced.

【0026】実施例2〜3 炭化珪素粉末としてβ−SiC粉末の平均粒径を11.
2μm、8.0μmのものを使用した以外は、実施例1
と同様に製造した。
Examples 2 to 3 The average particle size of β-SiC powder as silicon carbide powder was 11.
Example 1 except that those of 2 μm and 8.0 μm were used.
Manufactured in the same manner as.

【0027】実施例4〜5 炭化珪素粉末としてβ−SiC粉末及び炭素粉末の配合
比率をそれぞれ70重量%−30重量%としたものと、
40重量%−60重量%にしたもの以外は、実施例1と
同様に製造した。
Examples 4 to 5 As the silicon carbide powder, the compounding ratio of β-SiC powder and carbon powder was 70% to 30% by weight, respectively.
Manufacture was performed in the same manner as in Example 1 except that 40 wt% -60 wt% was used.

【0028】実施例6〜8 焼結を1500℃真空中及びArガス雰囲気中、熱処理
をN2 ガス雰囲気中2200℃及び2000℃真空中に
した以外は、実施例1と同様に製造した。
Examples 6 to 8 The same processes as in Example 1 were carried out except that the sintering was performed in a vacuum at 1500 ° C. and an Ar gas atmosphere, and the heat treatment was performed in a N 2 gas atmosphere at 2200 ° C. and 2000 ° C. vacuum.

【0029】比較例1〜3 炭化珪素粉末としてα−SiC粉末の平均粒径を35μ
m、0.7μmのものを使用した以外は、実施例1と同
様に製造した。
Comparative Examples 1 to 3 The average particle size of α-SiC powder as silicon carbide powder was 35 μm.
m and 0.7 μm were used, and manufactured in the same manner as in Example 1.

【0030】このように製造した実施例1〜8、比較例
1〜3の焼結体について、三点曲げ強度、窒素含有量、
X線回折法による3C型結晶の含有比率、比抵抗、室温
から500℃までの抵抗温度係数(T.C.R)を測定
し、その結果を表1及び表2に示す。
With respect to the sintered bodies of Examples 1 to 8 and Comparative Examples 1 to 3 produced as described above, three-point bending strength, nitrogen content,
The content ratio of 3C-type crystals, the specific resistance, and the temperature coefficient of resistance (TCR) from room temperature to 500 ° C were measured by X-ray diffractometry, and the results are shown in Tables 1 and 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1及び表2に示すように、本発明の炭化
珪素焼結体は、比較例の炭化珪素焼結体に比べて、室温
から500℃までの抵抗温度係数の負特性が−0.1%
/℃以上と軽減している。また、強度についても、50
MPa以上であり、発熱部にラセン状の溝加工を施して
も十分耐え得る強さである。また、実施例1〜8に見ら
れるように、本発明によればβ−SiC及びCの配合比
率やβ−SiCの平均粒度を調節して、電気抵抗を調節
することも可能であり、抵抗温度係数も−0.1%/℃
以上に維持されている。
As shown in Tables 1 and 2, the silicon carbide sintered body of the present invention has a negative temperature coefficient of resistance of −0 from room temperature to 500 ° C., as compared with the silicon carbide sintered body of the comparative example. .1%
/ It is less than ℃. Also, regarding strength, 50
The pressure is not less than MPa, and the strength is sufficient to withstand spiral groove processing on the heat generating portion. Further, as seen in Examples 1 to 8, according to the present invention, the electrical resistance can be adjusted by adjusting the blending ratio of β-SiC and C and the average particle size of β-SiC. Temperature coefficient is -0.1% / ℃
Has been maintained above.

【0034】次ぎに、実施例1及び比較例1の炭化珪素
焼結体について、中央部約200mmをラセン状に溝加工
し所望の抵抗値に調節した後、約1000℃まで通電発
熱した結果を図1に示す。縦軸に示したRt/R100
0については、1000℃での抵抗を1とした場合の各
温度における抵抗値の比を算出したものである。図1に
見られるように、本発明の炭化珪素発熱体の抵抗変化に
ついては、負特性が軽減されていることが分かる。
Next, with respect to the silicon carbide sintered bodies of Example 1 and Comparative Example 1, a central portion of about 200 mm was grooved into a spiral shape to adjust the resistance value to a desired value, and then the result of energizing and heating up to about 1000 ° C. was obtained. As shown in FIG. Rt / R100 shown on the vertical axis
Regarding 0, the ratio of resistance values at each temperature when the resistance at 1000 ° C. is set to 1 is calculated. As can be seen from FIG. 1, the negative characteristic of the resistance change of the silicon carbide heating element of the present invention is reduced.

【0035】[0035]

【発明の効果】以上のとおり、本発明によれば、高密度
及び高強度の反応焼結炭化珪素材料であり、炭化珪素の
結晶形である3C型結晶を40%以上にすることによ
り、室温から500℃までの抵抗温度係数が−0.1%
/℃以上と負特性を軽減し、この温度範囲での精密制御
が可能な炭化珪素発熱体を提供され、また安価に製造す
ることができる。したがって、高温の工業加熱炉等に使
用されるセラミック発熱体として極めて有用である。
As described above, according to the present invention, it is a high-density and high-strength reaction-bonded silicon carbide material, and the content of 3C type crystals, which is the crystal form of silicon carbide, is 40% or more, and Temperature coefficient of resistance from 0 to 500 ° C is -0.1%
It is possible to provide a silicon carbide heating element which has a negative characteristic of / ° C or higher and can be precisely controlled in this temperature range, and can be manufactured at low cost. Therefore, it is extremely useful as a ceramic heating element used in a high temperature industrial heating furnace or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び比較例1における発熱体の発熱体
表面温度と抵抗値比(Rt/R1000)との関係を示
したグラフである。
FIG. 1 is a graph showing a relationship between a heating element surface temperature and a resistance value ratio (Rt / R1000) of heating elements in Example 1 and Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA22 BA60 BA62 BB22 BB60 BC41 BC47 BC52 BC54 BC62 BD14 BD21 BE03 BE21    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G001 BA22 BA60 BA62 BB22 BB60                       BC41 BC47 BC52 BC54 BC62                       BD14 BD21 BE03 BE21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 相対密度80%以上の炭化珪素材質にお
いて、窒素を含有するN型半導体であって、炭化珪素の
結晶形である3C型が全体の40%以上であり、曲げ強
度が50MPa以上、室温から500℃の抵抗温度係数
が−0.1%/℃以上であることを特徴とする反応焼結
炭化珪素発熱体。
1. A silicon carbide material having a relative density of 80% or more, which is an N-type semiconductor containing nitrogen, in which 3C type, which is a crystalline form of silicon carbide, accounts for 40% or more of the whole and has a bending strength of 50 MPa or more. A reaction-sintered silicon carbide heating element having a temperature coefficient of resistance from room temperature to 500 ° C. of −0.1% / ° C. or more.
【請求項2】 窒素含有量0.1%以上かつ平均粒子径
が5μm以上のβ−SiC粉末30〜80重量%と炭素
粉末20〜70重量%からなる混合粉末を成形した後、
Si粉末に埋設して1400〜2000℃の温度にて焼
成し、その後熱処理により残留するSiを除去させるこ
とを特徴とする請求項1記載の反応焼結炭化珪素発熱体
の製造方法。
2. After molding a mixed powder consisting of 30 to 80% by weight of β-SiC powder having a nitrogen content of 0.1% or more and an average particle size of 5 μm or more and 20 to 70% by weight of carbon powder,
2. The method for producing a reaction-bonded silicon carbide heating element according to claim 1, wherein the heating element is embedded in Si powder, fired at a temperature of 1400 to 2000 [deg.] C., and then heat treated to remove residual Si.
【請求項3】 上記β−SiC粉末において、コークス
とシリカを反応させるシリカ還元法により製造し、未反
応の炭素が20〜70重量%含むものを混合粉末とする
ことを特徴とする請求項2記載の炭化珪素発熱体の製造
方法。
3. The β-SiC powder, which is produced by a silica reduction method in which coke and silica are reacted, and which contains unreacted carbon in an amount of 20 to 70% by weight as a mixed powder. A method for manufacturing the above described silicon carbide heating element.
JP2001261043A 2001-08-30 2001-08-30 Process for producing reaction sintered silicon carbide heating element Expired - Fee Related JP4796716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261043A JP4796716B2 (en) 2001-08-30 2001-08-30 Process for producing reaction sintered silicon carbide heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261043A JP4796716B2 (en) 2001-08-30 2001-08-30 Process for producing reaction sintered silicon carbide heating element

Publications (2)

Publication Number Publication Date
JP2003073168A true JP2003073168A (en) 2003-03-12
JP4796716B2 JP4796716B2 (en) 2011-10-19

Family

ID=19088146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261043A Expired - Fee Related JP4796716B2 (en) 2001-08-30 2001-08-30 Process for producing reaction sintered silicon carbide heating element

Country Status (1)

Country Link
JP (1) JP4796716B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759618B2 (en) 2003-07-16 2010-07-20 Sandvik Materials Technology Uk Limited Silicon carbide heating elements
JP2012046380A (en) * 2010-08-27 2012-03-08 Tokyo Yogyo Co Ltd Method for producing silicon carbide porous body
KR101406420B1 (en) 2008-07-17 2014-06-13 엘지전자 주식회사 Silicon carbide heater and manufacturing method thereof
JP2018168006A (en) * 2017-03-29 2018-11-01 東京窯業株式会社 Method for producing conductive silicon carbide-based sintered body and conductive silicon carbide-based sintered body
US10129931B2 (en) 2008-06-06 2018-11-13 Sandvik Materials Technology Uk Limited Electrical resistance heating element
JP2019172495A (en) * 2018-03-28 2019-10-10 東京窯業株式会社 Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body
CN111426722A (en) * 2020-03-24 2020-07-17 北京科技大学 Device and method for rapidly determining recrystallization temperature of metal material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212213A (en) * 1985-10-23 1987-09-18 Bridgestone Corp Production of beta-silicon carbide
JPH0753265A (en) * 1993-08-12 1995-02-28 Tokai Konetsu Kogyo Co Ltd Electrically conductive silicon carbide-based ceramic material
JPH09275078A (en) * 1996-04-05 1997-10-21 Sumitomo Metal Ind Ltd Silicon wafer retaining jig

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212213A (en) * 1985-10-23 1987-09-18 Bridgestone Corp Production of beta-silicon carbide
JPH0753265A (en) * 1993-08-12 1995-02-28 Tokai Konetsu Kogyo Co Ltd Electrically conductive silicon carbide-based ceramic material
JPH09275078A (en) * 1996-04-05 1997-10-21 Sumitomo Metal Ind Ltd Silicon wafer retaining jig

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759618B2 (en) 2003-07-16 2010-07-20 Sandvik Materials Technology Uk Limited Silicon carbide heating elements
US10129931B2 (en) 2008-06-06 2018-11-13 Sandvik Materials Technology Uk Limited Electrical resistance heating element
KR101406420B1 (en) 2008-07-17 2014-06-13 엘지전자 주식회사 Silicon carbide heater and manufacturing method thereof
JP2012046380A (en) * 2010-08-27 2012-03-08 Tokyo Yogyo Co Ltd Method for producing silicon carbide porous body
JP2018168006A (en) * 2017-03-29 2018-11-01 東京窯業株式会社 Method for producing conductive silicon carbide-based sintered body and conductive silicon carbide-based sintered body
JP2019172495A (en) * 2018-03-28 2019-10-10 東京窯業株式会社 Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body
CN111426722A (en) * 2020-03-24 2020-07-17 北京科技大学 Device and method for rapidly determining recrystallization temperature of metal material

Also Published As

Publication number Publication date
JP4796716B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US4701427A (en) Sintered silicon carbide ceramic body of high electrical resistivity
EP2676946B1 (en) Ti3sic2 material, electrode, spark plug, and processes for production thereof
JPH0769731A (en) High-strength, high-density conductive ceramic
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
JPS6128627B2 (en)
KR102042668B1 (en) SiC sintered body and heater and manufacturing method of SiC sintered body
JP4796716B2 (en) Process for producing reaction sintered silicon carbide heating element
JP3150606B2 (en) Method for controlling specific resistance of silicon carbide sintered body
US4486543A (en) Polycrystalline shaped body of silicon carbide and method for its production
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
JP3476153B2 (en) Conductive silicon carbide ceramic material
JPH0789764A (en) Silicon carbide heating element
CN113735591A (en) Method for preparing nitrogen-doped conductive silicon carbide ceramic by adopting spark plasma sintering
JP2001181053A (en) Silicon nitride sintered product and method for producing the same
JP5673945B2 (en) Method for producing silicon nitride ceramics
JP4458692B2 (en) Composite material
JP3131914B2 (en) Silicon carbide heating element and method for producing the same
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JPH025711B2 (en)
JPS6360158A (en) Manufacture of silicon carbide sintered body
JPH0692733A (en) Production of silicon carbide heating element
JPH0224782B2 (en)
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JPH09165264A (en) Silicon nitride sintetred product and its production
JP3277295B2 (en) Method for producing high-temperature silicon carbide heating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370