JP2012046380A - Method for producing silicon carbide porous body - Google Patents

Method for producing silicon carbide porous body Download PDF

Info

Publication number
JP2012046380A
JP2012046380A JP2010190497A JP2010190497A JP2012046380A JP 2012046380 A JP2012046380 A JP 2012046380A JP 2010190497 A JP2010190497 A JP 2010190497A JP 2010190497 A JP2010190497 A JP 2010190497A JP 2012046380 A JP2012046380 A JP 2012046380A
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
silicon
porous body
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010190497A
Other languages
Japanese (ja)
Other versions
JP5643575B2 (en
Inventor
Koji Tsuneyoshi
孝治 常吉
Osamu Takagi
修 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2010190497A priority Critical patent/JP5643575B2/en
Publication of JP2012046380A publication Critical patent/JP2012046380A/en
Application granted granted Critical
Publication of JP5643575B2 publication Critical patent/JP5643575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To materialize a method for producing a silicon carbide porous body, with which electroconductive characteristics of the silicon carbide porous body can be controlled as desired.SOLUTION: In the method for producing the silicon carbide porous body, predetermined amounts of silicon nitride powder and carbonaceous solid powder having a molar ratio (Si/C) of a silicon component in silicon nitride to carbon of 0.5-1.5, is mixed with silicon carbide powder as aggregate and molded, and the obtained molded body is fired in nitrogen atmosphere, and thereby silicon nitride as a silicon source and a carbonaceous solid as a carbon source react with each other so as to generate silicon carbide and form a neck to connect the aggregate. The electroconductive characteristics are controlled according to the mixing ratio of silicon nitride powder and carbonaceous solid powder to silicon carbide powder.

Description

本発明は、導電特性を有する炭化けい素質多孔体の製造方法に関する。 The present invention relates to a method for producing a silicon carbide porous body having conductive properties.

従来より、電気炉などに用いられるセラミックス抵抗発熱体として、炭化けい素質焼結体が広く用いられている(例えば、特許文献1)。炭化けい素は半導体であり、温度上昇に伴って抵抗値が急激に低下するという温度依存性がある。抵抗値は、通電特性及び発熱量に関係するため、加熱制御において、抵抗値を所望の範囲内に収めることは重要な技術課題である。抵抗値の温度依存性が大きいと温度制御が困難となるため、抵抗値とその温度依存性の両方を制御できることが望まれる。 Conventionally, a silicon carbide sintered body has been widely used as a ceramic resistance heating element used in an electric furnace or the like (for example, Patent Document 1). Silicon carbide is a semiconductor and has a temperature dependency in which the resistance value rapidly decreases as the temperature rises. Since the resistance value is related to the energization characteristics and the heat generation amount, it is an important technical problem to keep the resistance value within a desired range in heating control. Since temperature control becomes difficult when the temperature dependence of the resistance value is large, it is desired that both the resistance value and the temperature dependence thereof can be controlled.

特開平6−506530号公報JP-A-6-506530

一般に、このような半導体特性を有する材料の抵抗値を制御するためは、不純物のドープが行われる。しかし、この方法では微量なドープ量のコントロールが難しく、原料の配合時に微量の不純物を添加し抵抗値を調整しようとする場合、秤量の微小な誤差、焼成中の揮発などにより、最終的に得られる焼結体の抵抗値が目標値から大きくずれるおそれがあるという問題があった。 In general, doping of impurities is performed in order to control the resistance value of a material having such semiconductor characteristics. However, with this method, it is difficult to control the amount of a small amount of doping, and when a resistance value is adjusted by adding a small amount of impurities when blending raw materials, it is finally obtained due to a minute error in weighing, volatilization during firing, etc. There is a problem that the resistance value of the sintered body to be obtained may be greatly deviated from the target value.

そこで、本発明は、所望の導電特性に制御することができる炭化けい素質多孔体の製造方法を実現することを目的とする。 Then, an object of this invention is to implement | achieve the manufacturing method of the silicon carbide porous body which can be controlled to a desired electroconductivity characteristic.

この発明は、上記目的を達成するため、請求項1に記載の発明では、骨材としての炭化けい素粉末50〜95重量%に、窒化けい素中のけい素成分とカーボンのモル比(Si/C)が0.5〜1.5である窒化けい素粉末及び炭素質固体粉末を50〜5重量%混合した混合粉末を成形し、得られた成形体を窒素雰囲気で焼成する炭化けい素質多孔体の製造方法であって、炭化けい素粉末に対する窒化けい素粉末及び炭素質固体粉末の混合比により、炭化けい素質多孔体の導電特性を制御する、という技術的手段を用いる。 In order to achieve the above object, according to the present invention, in the invention described in claim 1, the silicon carbide powder as an aggregate is 50 to 95% by weight, and the molar ratio of silicon component to carbon in silicon nitride (Si / C) Silicon carbide powder in which 50 to 5 wt% mixed powder of silicon nitride powder and carbonaceous solid powder with 0.5 to 1.5 is molded, and the resulting molded body is fired in a nitrogen atmosphere A method for producing a porous body, which uses a technical means for controlling the conductive characteristics of the silicon carbide porous body by the mixing ratio of the silicon nitride powder and the carbonaceous solid powder to the silicon carbide powder.

請求項1に記載する発明によれば、骨材としての炭化けい素粉末に、窒化けい素中のけい素成分とカーボンのモル比(Si/C)が0.5〜1.5である窒化けい素粉末及び炭素質固体粉末を所定量混合して成形し、得られた成形体を窒素雰囲気で焼成することにより、けい素源の窒化けい素と炭素源の炭素質固体とが反応して炭化けい素が生成して骨材をつなぐネックが形成された炭化けい素質多孔体を製造することができる。
ここで、窒素雰囲気で焼成することにより、窒化けい素の分解によって生成した窒素が、ネックの炭化けい素、骨材としての炭化けい素に不純物として含有される。これにより、炭化けい素中に含有量を容易に制御して不純物を導入することができ、炭化けい素質多孔体がn型半導体となるため、導電性が向上する。そして、炭化けい素粉末に対する窒化けい素粉末及び炭素質固体粉末の混合比により、窒素の含有量やネック形状、気孔率などの多孔体構造などを制御することができるので、導電特性を制御することができる。
According to the first aspect of the present invention, the silicon carbide powder as the aggregate is nitrided with a silicon component / carbon molar ratio (Si / C) in the silicon nitride of 0.5 to 1.5. A predetermined amount of silicon powder and carbonaceous solid powder are mixed and molded, and the resulting molded body is fired in a nitrogen atmosphere to react silicon source silicon nitride and carbon source carbonaceous solid. It is possible to produce a silicon carbide porous body in which a neck for generating aggregate and connecting aggregates is formed.
Here, by firing in a nitrogen atmosphere, nitrogen generated by decomposition of silicon nitride is contained as impurities in the silicon carbide neck and the silicon carbide as the aggregate. Thereby, impurities can be introduced by easily controlling the content in silicon carbide, and the silicon carbide porous body becomes an n-type semiconductor, so that the conductivity is improved. And, the mixing ratio of the silicon nitride powder and the carbonaceous solid powder to the silicon carbide powder can control the porous structure such as the nitrogen content, neck shape, porosity, etc., so that the conductive characteristics are controlled. be able to.

請求項2に記載の発明では、請求項1に記載の炭化けい素質多孔体の製造方法において、前記窒化けい素粉末及び炭素質固体粉末の混合比を増大させることにより比抵抗を低減させる、という技術的手段を用いる。 According to a second aspect of the invention, in the method for producing a silicon carbide porous body according to the first aspect, the specific resistance is reduced by increasing the mixing ratio of the silicon nitride powder and the carbonaceous solid powder. Use technical means.

請求項2に記載の発明のように、窒化けい素粉末及び炭素質固体粉末の混合比を増大させることにより比抵抗を低減させることができる。 As in the second aspect of the invention, the specific resistance can be reduced by increasing the mixing ratio of the silicon nitride powder and the carbonaceous solid powder.

請求項3に記載の発明では、請求項1または請求項2に記載の炭化けい素質多孔体の製造方法において、前記窒化けい素粉末及び炭素質固体粉末の混合比を増大させることにより比抵抗の温度依存性を小さくさせる、という技術的手段を用いる。 According to a third aspect of the present invention, in the method for producing a silicon carbide porous body according to the first or second aspect, the resistivity is increased by increasing the mixing ratio of the silicon nitride powder and the carbonaceous solid powder. Use technical means to reduce temperature dependence.

請求項3に記載の発明のように、窒化けい素粉末及び炭素質固体粉末の混合比を増大させることにより比抵抗の温度依存性を小さくさせることができる。 As in the third aspect of the invention, the temperature dependency of the specific resistance can be reduced by increasing the mixing ratio of the silicon nitride powder and the carbonaceous solid powder.

本発明の製造方法により製造された炭化けい素質多孔体の比抵抗及びその温度依存性と、窒化けい素粉末及び炭素質固体粉末の混合比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the specific resistance of the silicon carbide porous body manufactured by the manufacturing method of this invention, its temperature dependence, and the mixing ratio of a silicon nitride powder and a carbonaceous solid powder.

本発明に係る炭化けい素質多孔体の製造方法について説明する。 The method for producing a silicon carbide porous body according to the present invention will be described.

出発原料として、骨材としての炭化けい素粉末50〜95重量%に、窒化けい素中のけい素成分とカーボンのモル比(Si/C)が0.5〜1.5である窒化けい素粉末及び炭素質固体粉末の混合物(以下、ネック原料、という)を50〜5重量%を配合する。 Silicon nitride having 50 to 95% by weight of silicon carbide powder as aggregate as a starting material and a molar ratio (Si / C) of silicon component to carbon in silicon nitride of 0.5 to 1.5 A mixture of powder and carbonaceous solid powder (hereinafter referred to as neck material) is blended in an amount of 50 to 5% by weight.

炭化けい素粉末は、平均粒径が50μm以下が好ましく、粒度分布が異なる複数の粉末を混合することもできる。
窒化けい素粉末は、ネックを形成する炭素質固体粉末との反応を促進するために平均粒径が100μm以下が好ましい。
炭素質固体粉末として、カーボンブラック、アセチレンブラックなどを用いることができる。窒化けい素粉末との反応を促進させるために平均粒径が10μm以下であることが好ましい。炭素質固体粉末として、フェノール、フラン、ポリイミドなどの熱分解し炭素源となる有機系樹脂などを使用することもできる。
The silicon carbide powder preferably has an average particle size of 50 μm or less, and a plurality of powders having different particle size distributions can be mixed.
The silicon nitride powder preferably has an average particle size of 100 μm or less in order to promote the reaction with the carbonaceous solid powder forming the neck.
Carbon black, acetylene black, etc. can be used as the carbonaceous solid powder. In order to promote the reaction with the silicon nitride powder, the average particle size is preferably 10 μm or less. As the carbonaceous solid powder, an organic resin such as phenol, furan or polyimide which is thermally decomposed to become a carbon source can be used.

上述の原料粉末を所定の割合で配合し、メチルセルロース等の有機バインダーや水分等の添加剤を添加し、混合・混錬した混錬物を押出成形、鋳込成形、プレス成形、射出成形などにより所望の形状に成形する。 The above raw material powder is blended at a predetermined ratio, an organic binder such as methylcellulose and additives such as moisture are added, and the mixed and kneaded kneaded product is extruded, cast, press molded, injection molded, etc. Mold into a desired shape.

作製された成形体を窒素雰囲気において1600〜2300℃で焼成する。焼成工程では、窒化けい素と炭素質固体とが反応して炭化けい素が生成し、骨材としての炭化けい素をつなぐネックを形成して反応焼結するとともに、気孔が形成され、炭化けい素質多孔体が形成される。 The produced molded body is fired at 1600 to 2300 ° C. in a nitrogen atmosphere. In the firing process, silicon nitride reacts with carbonaceous solids to form silicon carbide, which forms a neck that connects the silicon carbide as an aggregate and reacts and sinters, and pores are formed and silicon carbide is formed. A porous material is formed.

ここで、窒素雰囲気で焼成することにより、窒化けい素の分解によって生成した窒素が、ネックの炭化けい素、骨材としての炭化けい素に不純物として含有される。これにより、炭化けい素中に含有量を容易に制御して不純物を導入することができ、炭化けい素質多孔体がn型半導体となるため、導電性が向上する。なお、窒素は、炭化けい素に固溶するのみならず、炭化けい素との反応によって化合物として存在することもある。 Here, by firing in a nitrogen atmosphere, nitrogen generated by decomposition of silicon nitride is contained as impurities in the silicon carbide neck and the silicon carbide as the aggregate. Thereby, impurities can be introduced by easily controlling the content in silicon carbide, and the silicon carbide porous body becomes an n-type semiconductor, so that the conductivity is improved. Nitrogen not only dissolves in silicon carbide, but also may exist as a compound by reaction with silicon carbide.

焼成温度が1600℃より低いと、窒化けい素の炭化反応が十分でなく、骨材の炭化けい素をつなぐネックに窒化けい素が残存するため比抵抗が高くなる。また、焼成温度が2300℃を越えると昇華が始まり、ネック部が細くなり、同様に比抵抗が高くなる。 When the firing temperature is lower than 1600 ° C., the carbonization reaction of silicon nitride is not sufficient, and the silicon nitride remains in the neck connecting the silicon carbide of the aggregate, so that the specific resistance increases. Further, when the firing temperature exceeds 2300 ° C., sublimation starts, the neck portion becomes thin, and the specific resistance similarly increases.

骨材としての炭化けい素粉末が50重量%より少ない場合は、炭化けい素質多孔体の機械的強度が低下する。95重量%より多い場合は、ネック原料が少ないためネックの量が不足して焼結が不充分となる。 When the silicon carbide powder as the aggregate is less than 50% by weight, the mechanical strength of the silicon carbide porous body is lowered. When the amount is more than 95% by weight, the neck raw material is small, so that the amount of neck is insufficient and sintering becomes insufficient.

ネック原料のSi/Cが0.5より小さい場合は、窒化けい素の炭化反応に寄与せずに残存する炭素分が多くなり、粗大気孔が生じる原因となるとともに、ネックとして生成した炭化けい素の粒成長が阻害される。Si/Cが1.5より大きい場合は、ネックの炭化けい素の生成量が少なくなるため、焼結が不充分となる。 When the neck raw material Si / C is smaller than 0.5, the carbon content remaining without contributing to the carbonization reaction of silicon nitride increases, which causes rough atmospheric pores and silicon carbide produced as a neck. Grain growth is inhibited. If Si / C is greater than 1.5, the amount of neck silicon carbide produced is reduced, resulting in insufficient sintering.

本製造方法によれば、ネック原料の混合比により、窒素の含有量や炭化けい素質多孔体のネック形状、気孔率などの多孔体構造などを制御することができる。
ネック原料の混合比が増大すると、炭化けい素に含有される窒素量は増大するため、比抵抗が低減すると考えられる。また、炭化けい素質多孔体の気孔率は高くなり、ネック形状は太くなる傾向が認められる。
以下の実施例にも示すように、ネック原料の混合比が増大するほど、比抵抗が低下するとともにその温度依存性が小さくなる。これにより、ネック原料の混合比により、所望の比抵抗及びその温度依存性に制御することができる。
According to this production method, the content of nitrogen, the neck shape of the silicon carbide porous body, the porous structure such as the porosity, and the like can be controlled by the mixing ratio of the neck raw material.
It is considered that when the mixing ratio of the neck raw material increases, the amount of nitrogen contained in silicon carbide increases, so that the specific resistance decreases. Moreover, the porosity of the silicon carbide porous body is increased, and the neck shape tends to be thickened.
As shown in the following examples, as the mixing ratio of the neck raw material increases, the specific resistance decreases and the temperature dependency thereof decreases. Thereby, it can control to a desired specific resistance and its temperature dependence by the mixing ratio of a neck raw material.

また、導電特性が異なる炭化けい素粉末を用いる、例えば、粒径、結晶相を適宜選択することにより、更にワイドレンジで比抵抗を制御することが可能である。 In addition, the specific resistance can be controlled in a wider range by using silicon carbide powders having different conductive characteristics, for example, by appropriately selecting the grain size and the crystal phase.

本製造方法により製造された炭化けい素質多孔体は、比抵抗及びその温度依存性を所望の特性に制御することができるので、加熱制御が容易となり、ディーゼルエンジンから排出される微粒子を捕集し燃焼焼却するヒーター性能を有する通電加熱型ディーゼルパティキュレートフィルタや加熱ガス分解用途(自動車用排ガス、VOC)として、好適に用いることができる。また、発熱面積が大きく熱効率を高められるので、ダクトヒーター、大型ドライヤーの熱源に使用される熱風発生機用ヒーターとして好適に用いることができる。更に、暖房機器、調理機器、乾燥機器、焼成炉等に使用されるヒーターとしても好適に用いることができる。 Since the silicon carbide porous body manufactured by this manufacturing method can control the specific resistance and its temperature dependence to desired characteristics, heating control is facilitated and particulates discharged from the diesel engine are collected. It can be suitably used as an electric heating type diesel particulate filter having a heater performance for combustion and incineration or a heated gas decomposition application (exhaust gas for automobile, VOC). Moreover, since the heat generation area is large and the thermal efficiency can be increased, it can be suitably used as a heater for hot air generators used as a heat source for duct heaters and large dryers. Furthermore, it can also be suitably used as a heater used in heating equipment, cooking equipment, drying equipment, firing furnaces, and the like.

骨材原料として平均粒径11μmの粗粒原料と平均粒径1μmの微粒原料とを65:35の割合で混合してなる炭化けい素粉末と、ネック原料としてカーボンに対する金属けい素のモル比を1.0:1.1に調整した窒化けい素粉末及びカーボンブラックの混合粉末を表1に示す割合で配合した原料100重量部に対して、有機バインダーを10重量部、水を20重量部添加し、混合・混練した後、押出成形により、外径6mm、内径4mmの円管状に成形し、窒素雰囲気中で2200℃、5時間焼成した。 A silicon carbide powder obtained by mixing a coarse raw material with an average particle diameter of 11 μm as an aggregate raw material and a fine raw material with an average particle diameter of 1 μm in a ratio of 65:35, and a molar ratio of metal silicon to carbon as a neck raw material. 10 parts by weight of organic binder and 20 parts by weight of water are added to 100 parts by weight of raw materials in which a mixed powder of silicon nitride powder and carbon black adjusted to 1.0: 1.1 is blended in the ratio shown in Table 1. Then, after mixing and kneading, it was formed into a circular tube having an outer diameter of 6 mm and an inner diameter of 4 mm by extrusion molding, and fired in a nitrogen atmosphere at 2200 ° C. for 5 hours.

Figure 2012046380
Figure 2012046380

得られた焼結体について、比抵抗及び気孔率を測定した。比抵抗は、測定温度50℃から350℃以下の範囲で、交流を用いて、4端子法により測定した。気孔率はアルキメデス法により測定した。 About the obtained sintered compact, the specific resistance and the porosity were measured. The specific resistance was measured by a four-terminal method using alternating current at a measurement temperature in the range of 50 ° C. to 350 ° C. or less. The porosity was measured by Archimedes method.

図1に、ネック原料の混合比毎に比抵抗及びその温度依存性を示す。図1に示すように、ネック原料の混合比が増大すると比抵抗が低下した。特に、低温側においてその傾向が顕著であり、例えば、50℃における比抵抗は、ネック原料の混合比5%での68Ω・cmに対し、混合比50%では28Ω・cmであり半分以下の値であった。
また、ネック原料の混合比が増大すると、温度上昇に伴う比抵抗の低下割合が小さくなり、温度依存性が小さくなった。
これにより、ネック原料の混合比により、炭化けい素質多孔体の比抵抗及びその温度依存性を制御できることが確認された。
FIG. 1 shows the specific resistance and its temperature dependence for each mixing ratio of the neck material. As shown in FIG. 1, the specific resistance decreased as the mixing ratio of the neck material increased. In particular, the tendency is remarkable on the low temperature side. For example, the specific resistance at 50 ° C. is 68 Ω · cm at a mixing ratio of 5% of the neck material, and is 28 Ω · cm at a mixing ratio of 50%, which is less than half. Met.
Further, when the mixing ratio of the neck raw material was increased, the decrease rate of the specific resistance accompanying the temperature rise was reduced, and the temperature dependency was reduced.
Thereby, it was confirmed that the specific resistance of the silicon carbide porous body and its temperature dependency can be controlled by the mixing ratio of the neck raw material.

また、炭化けい素質多孔体の気孔率は、ネック原料の混合比15%では47%、混合比50%では58%であり、ネック原料の混合比が高い方が気孔率は大きくなる傾向が認められた。 The porosity of the silicon carbide porous material is 47% when the mixing ratio of the neck raw material is 15% and 58% when the mixing ratio is 50%. The higher the mixing ratio of the neck raw material, the higher the porosity tends to be. It was.

[実施形態の効果]
本発明の炭化けい素質多孔体の製造方法によれば、骨材としての炭化けい素粉末に、窒化けい素中のけい素成分とカーボンのモル比(Si/C)が0.5〜1.5である窒化けい素粉末及び炭素質固体粉末を所定量混合して成形し、得られた成形体を窒素雰囲気で焼成することにより、けい素源の窒化けい素と炭素源の炭素質固体とが反応して炭化けい素が生成して骨材をつなぐネックが形成された炭化けい素質多孔体を製造することができる。
ここで、窒素雰囲気で焼成することにより、窒化けい素の分解によって生成した窒素が、ネックの炭化けい素、骨材としての炭化けい素に不純物として含有される。これにより、炭化けい素中に含有量を容易に制御して不純物を導入することができ、炭化けい素質多孔体がn型半導体となるため、導電性が向上する。そして、炭化けい素粉末に対する窒化けい素粉末及び炭素質固体粉末の混合比により、窒素の含有量やネック形状、気孔率などの多孔体構造などを制御することができるので、導電特性を制御することができる。
窒化けい素粉末及び炭素質固体粉末の混合比を増大させることにより比抵抗を低減させることができるとともに、温度依存性を小さくさせることができる。
[Effect of the embodiment]
According to the method for producing a silicon carbide porous body of the present invention, the silicon carbide powder as an aggregate has a silicon component to carbon molar ratio (Si / C) of 0.5 to 1. 5 by mixing a predetermined amount of silicon nitride powder and carbonaceous solid powder 5 and firing the resulting molded body in a nitrogen atmosphere, so that the silicon source silicon nitride and the carbon source carbonaceous solid Can produce a silicon carbide porous body in which a silicon carbide is formed by the reaction to form a neck for connecting the aggregates.
Here, by firing in a nitrogen atmosphere, nitrogen generated by decomposition of silicon nitride is contained as impurities in the silicon carbide neck and the silicon carbide as the aggregate. Thereby, impurities can be introduced by easily controlling the content in silicon carbide, and the silicon carbide porous body becomes an n-type semiconductor, so that the conductivity is improved. And, the mixing ratio of the silicon nitride powder and the carbonaceous solid powder to the silicon carbide powder can control the porous structure such as the nitrogen content, neck shape, porosity, etc., so that the conductive characteristics are controlled. be able to.
By increasing the mixing ratio of the silicon nitride powder and the carbonaceous solid powder, the specific resistance can be reduced and the temperature dependence can be reduced.

Claims (3)

骨材としての炭化けい素粉末50〜95重量%に、窒化けい素中のけい素成分とカーボンのモル比(Si/C)が0.5〜1.5である窒化けい素粉末及び炭素質固体粉末を50〜5重量%混合した混合粉末を成形し、得られた成形体を窒素雰囲気で焼成する炭化けい素質多孔体の製造方法であって、
炭化けい素粉末に対する窒化けい素粉末及び炭素質固体粉末の混合比により、炭化けい素質多孔体の導電特性を制御することを特徴とする炭化けい素質多孔体の製造方法。
Silicon nitride powder and carbonaceous material in which the silicon carbide powder as an aggregate is 50 to 95% by weight and the molar ratio (Si / C) of silicon component to carbon in silicon nitride is 0.5 to 1.5 A method for producing a silicon carbide porous body, comprising molding a mixed powder in which 50 to 5% by weight of a solid powder is mixed, and firing the obtained molded body in a nitrogen atmosphere,
A method for producing a silicon carbide porous material, wherein the conductive characteristics of the silicon carbide porous material are controlled by a mixing ratio of the silicon nitride powder and the carbonaceous solid powder to the silicon carbide powder.
前記窒化けい素粉末及び炭素質固体粉末の混合比を増大させることにより比抵抗を低減させることを特徴とする請求項1に記載の炭化けい素質多孔体の製造方法。 2. The method for producing a silicon carbide porous body according to claim 1, wherein a specific resistance is reduced by increasing a mixing ratio of the silicon nitride powder and the carbonaceous solid powder. 前記窒化けい素粉末及び炭素質固体粉末の混合比を増大させることにより比抵抗の温度依存性を小さくさせることを特徴とする請求項1または請求項2に記載の炭化けい素質多孔体の製造方法。 The method for producing a silicon carbide porous body according to claim 1 or 2, wherein the temperature dependence of the specific resistance is reduced by increasing the mixing ratio of the silicon nitride powder and the carbonaceous solid powder. .
JP2010190497A 2010-08-27 2010-08-27 Method for producing silicon carbide porous body Active JP5643575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190497A JP5643575B2 (en) 2010-08-27 2010-08-27 Method for producing silicon carbide porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190497A JP5643575B2 (en) 2010-08-27 2010-08-27 Method for producing silicon carbide porous body

Publications (2)

Publication Number Publication Date
JP2012046380A true JP2012046380A (en) 2012-03-08
JP5643575B2 JP5643575B2 (en) 2014-12-17

Family

ID=45901701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190497A Active JP5643575B2 (en) 2010-08-27 2010-08-27 Method for producing silicon carbide porous body

Country Status (1)

Country Link
JP (1) JP5643575B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178771A (en) * 2016-03-25 2017-10-05 東京窯業株式会社 Production method of conductive silicon carbide-based sintered body and conductive silicon carbide-based sintered body
CN110698215A (en) * 2019-10-29 2020-01-17 中国科学院上海硅酸盐研究所苏州研究院 High-temperature-resistant corrosion-resistant reaction-sintered silicon carbide film support and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692736A (en) * 1992-09-14 1994-04-05 Tokai Carbon Co Ltd Method for controlling electric resistance of silicon carbide sintered compact
JPH08217565A (en) * 1995-02-08 1996-08-27 Denki Kagaku Kogyo Kk Porous electrically conductive silicon carbide sintered body, its production and use
JPH0971466A (en) * 1995-09-06 1997-03-18 Denki Kagaku Kogyo Kk Silicone-carbide honeycomb structure and its production
JP2003073168A (en) * 2001-08-30 2003-03-12 Tokai Konetsu Kogyo Co Ltd Reactive sintered silicon carbide heating element
JP2011084451A (en) * 2009-10-19 2011-04-28 Tokyo Yogyo Co Ltd Method for producing electroconductive silicon carbide porous body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692736A (en) * 1992-09-14 1994-04-05 Tokai Carbon Co Ltd Method for controlling electric resistance of silicon carbide sintered compact
JPH08217565A (en) * 1995-02-08 1996-08-27 Denki Kagaku Kogyo Kk Porous electrically conductive silicon carbide sintered body, its production and use
JPH0971466A (en) * 1995-09-06 1997-03-18 Denki Kagaku Kogyo Kk Silicone-carbide honeycomb structure and its production
JP2003073168A (en) * 2001-08-30 2003-03-12 Tokai Konetsu Kogyo Co Ltd Reactive sintered silicon carbide heating element
JP2011084451A (en) * 2009-10-19 2011-04-28 Tokyo Yogyo Co Ltd Method for producing electroconductive silicon carbide porous body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178771A (en) * 2016-03-25 2017-10-05 東京窯業株式会社 Production method of conductive silicon carbide-based sintered body and conductive silicon carbide-based sintered body
CN110698215A (en) * 2019-10-29 2020-01-17 中国科学院上海硅酸盐研究所苏州研究院 High-temperature-resistant corrosion-resistant reaction-sintered silicon carbide film support and preparation method thereof

Also Published As

Publication number Publication date
JP5643575B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
CN103787661B (en) A kind of MoSi 2the preparation method of-RSiC matrix material
CN101323524A (en) Preparation of oriented hole silicon carbide porous ceramic
JP2018168047A (en) Manufacturing method of silicon carbide sintered body
JP7145488B2 (en) Method for producing aluminum silicon carbide
CN106045520A (en) Low-resistivity linear-resistance silicon carbide and graphite composite and preparation method thereof
JP3681780B2 (en) Porous conductive silicon carbide sintered body, its production method and use
JP5643575B2 (en) Method for producing silicon carbide porous body
JP5208900B2 (en) Process for producing conductive silicon carbide based porous material for diesel particulate filter
JP4845112B2 (en) AlN-SiC-TiB2 composite sintered body manufacturing method
JP5415382B2 (en) Method for producing conductive silicon carbide based porous material
JP6046989B2 (en) Method for producing sintered silicon carbide
JP4796716B2 (en) Process for producing reaction sintered silicon carbide heating element
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JP3691536B2 (en) Method for producing porous conductive silicon carbide sintered body
JP6778644B2 (en) Manufacturing method of conductive silicon carbide sintered body and conductive silicon carbide sintered body
JP6291446B2 (en) Method for producing conductive silicon carbide sintered body
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JP5765277B2 (en) Low temperature thermistor material and manufacturing method thereof
JP2012041214A (en) Method for producing silicon carbide sintered compact, and silicon carbide sintered compact
JP2006240909A (en) Silicon carbide powder composition, method for producing silicon carbide sintered compact using the same, and silicon carbide sintered compact
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JP2019172495A (en) Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body
JP2012131686A (en) Method for manufacturing silicon carbide heating element, silicon carbide heating element, method for manufacturing honeycomb, and honeycomb
JP5539815B2 (en) Porous silicon carbide ceramic sintered body having conductivity
KR20060011550A (en) Silicon carbide with clay, preparation method thereof, and ceramic heater using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250