JP2017178771A - Production method of conductive silicon carbide-based sintered body and conductive silicon carbide-based sintered body - Google Patents

Production method of conductive silicon carbide-based sintered body and conductive silicon carbide-based sintered body Download PDF

Info

Publication number
JP2017178771A
JP2017178771A JP2017018726A JP2017018726A JP2017178771A JP 2017178771 A JP2017178771 A JP 2017178771A JP 2017018726 A JP2017018726 A JP 2017018726A JP 2017018726 A JP2017018726 A JP 2017018726A JP 2017178771 A JP2017178771 A JP 2017178771A
Authority
JP
Japan
Prior art keywords
silicon carbide
aggregate
sintered body
particles
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017018726A
Other languages
Japanese (ja)
Other versions
JP6387128B2 (en
Inventor
晋 清木
Susumu Seiki
晋 清木
知幸 山田
Tomoyuki Yamada
知幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Publication of JP2017178771A publication Critical patent/JP2017178771A/en
Application granted granted Critical
Publication of JP6387128B2 publication Critical patent/JP6387128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a conductive silicon carbide-based sintered body, with which degradation of mechanical strength and thermal shock resistance is suppressed and porosity is increased, and to provide the conductive silicon carbide-based sintered body produced by the production method.SOLUTION: In a production method of a conductive silicon carbide-based sintered body in which a silicon carbide-based conductive phase composed of silicon carbide including a dopant, generated from a silicon source and a carbon source, is made to surround an aggregate and is sintered, by burning a molding molded from a mixed raw material including a silicon carbide-producing raw material including the silicon source and the carbon source and the aggregate, aggregated particles composed of sintered primary particles are used as the aggregate. The conductive silicon carbide-based sintered body obtained by the production method is configured such that the aggregated particles with a primary particle diameter of 0.5 to 5 μm and a secondary particle diameter of 2 to 25 μm are sintered in a state in which they are surrounded by the silicon carbide-based conductive phase composed of particles with particle diameters smaller than the secondary particle diameter of the aggregated particles.SELECTED DRAWING: Figure 3

Description

本発明は、導電性炭化珪素質焼結体の製造方法、及び、該製造方法により製造される導電性炭化珪素質焼結体に関するものである。   The present invention relates to a method for producing a conductive silicon carbide sintered body, and a conductive silicon carbide sintered body produced by the production method.

炭化珪素は、熱伝導率が高いことに加えて熱膨張率が小さいことから耐熱衝撃性に優れるため、高温下で使用されるフィルタ、触媒担体、熱交換体などの基体として適している。また、高純度の炭化珪素は電気抵抗が高く絶縁体に近いが、導電性が付与された炭化珪素質焼結体(炭化珪素質セラミックス焼結体)は、通電により発熱させる自己発熱型の構造体として使用することが可能である。   Since silicon carbide has a high thermal conductivity and a low coefficient of thermal expansion, it has excellent thermal shock resistance and is therefore suitable as a substrate for filters, catalyst carriers, heat exchangers and the like used at high temperatures. High-purity silicon carbide has high electrical resistance and is close to an insulator, but a silicon carbide sintered body (silicon carbide ceramic sintered body) with conductivity is a self-heating type structure that generates heat when energized. It can be used as a body.

例えば、導電性炭化珪素質焼結体でガスを流通可能な構造体を形成し、この構造体に通電して自己発熱させた状態で、揮発性有機化合物(VOC)を含む排ガスを流通させれば、ヒータやバーナ等によって外部加熱する必要なく、VOCを分解処理することができる(例えば、特許文献1参照)。また、導電性炭化珪素質焼結体の構造体をディーゼルパティキュレートフィルタ(DPF)の基体とすれば、フィルタ基体に通電して自己発熱させることにより、ヒータやバーナ等によって外部加熱する必要なく、フィルタに捕集され堆積した粒子状物質を燃焼・除去してフィルタを再生することができる(例えば、特許文献2参照)。   For example, an electrically conductive silicon carbide sintered body can be used to circulate an exhaust gas containing a volatile organic compound (VOC) in a state where a gas circulated structure is formed and the structure is energized and self-heated. For example, the VOC can be decomposed without the need for external heating with a heater, a burner, or the like (see, for example, Patent Document 1). Also, if the structure of the conductive silicon carbide sintered body is used as the base of the diesel particulate filter (DPF), the filter base is energized and self-heated, so there is no need for external heating by a heater, burner, etc. The filter can be regenerated by burning and removing the particulate matter collected and deposited by the filter (see, for example, Patent Document 2).

このように、導電性炭化珪素質焼結体を自己発熱型の構造体として使用する場合、短時間で使用温度に達することが望ましい。セラミックス焼結体を短時間で昇温させる手段としては、高気孔率として熱容量を小さくすることを想到し得る。しかしながら、単に気孔率を高めるだけでは、機械的強度や耐熱衝撃性が低下するおそれがある。   Thus, when the conductive silicon carbide sintered body is used as a self-heating structure, it is desirable to reach the operating temperature in a short time. As a means for raising the temperature of the ceramic sintered body in a short time, it can be conceived to reduce the heat capacity as a high porosity. However, simply increasing the porosity may reduce mechanical strength and thermal shock resistance.

特許第5142146号公報Japanese Patent No. 5142146 特許第3642836号公報Japanese Patent No. 3642836

そこで、本発明は、上記の実情に鑑み、機械的強度や耐熱衝撃性の低下を抑えて気孔率を高めることができる導電性炭化珪素質焼結体の製造方法、及び、該製造方法により製造される導電性炭化珪素質焼結体の提供を、課題とするものである。   Therefore, in view of the above circumstances, the present invention provides a method for producing a conductive silicon carbide sintered body capable of increasing the porosity by suppressing a decrease in mechanical strength and thermal shock resistance, and produced by the production method. It is an object of the present invention to provide a conductive silicon carbide sintered body.

上記の課題を解決するため、本発明にかかる導電性炭化珪素質焼結体の製造方法(単に、「製造方法」と称することがある)は、
「珪素源及び炭素源を含む炭化珪素生成原料と骨材とを含む混合原料から成形された成形体を焼成することにより、前記珪素源及び前記炭素源から生成した炭化珪素がドーパントを含んでいる炭化珪素質導電性相が、前記骨材を取り囲んで焼結している導電性炭化珪素質焼結体を製造する方法であり、
前記骨材として、一次粒子が焼結している凝集粒子を使用する」ものである。
In order to solve the above problems, a method for producing a conductive silicon carbide sintered body according to the present invention (sometimes simply referred to as “manufacturing method”)
“The silicon carbide produced from the silicon source and the carbon source contains a dopant by firing a molded body formed from a mixed raw material comprising a silicon carbide producing raw material containing a silicon source and a carbon source and an aggregate. A method of producing a conductive silicon carbide sintered body in which a silicon carbide conductive phase surrounds and sinters the aggregate;
As the aggregate, aggregated particles in which primary particles are sintered are used.

炭素源と珪素源とから炭化珪素を反応生成させて炭化珪素の焼結体を得る場合(反応焼結)、反応生成の核とすると共に、焼結体の機械的強度を担保するために、原料に骨材を混合するのが一般的である。従来、骨材としては、粒子径が10μm〜50μmの粗大粒子を使用していた。これに対し、本構成では、粗大粒子に代替して、多数の一次粒子が焼結により集合している凝集粒子を骨材として使用する。これにより、詳細は後述するように、骨材として粗大粒子を使用していた従来の製造方法に比べて、高気孔率でありながら機械的強度が高く、耐熱衝撃性の低下が抑制された導電性炭化珪素質焼結体を製造することができる。従って、本構成の製造方法によれば、機械的強度や耐熱衝撃性の低下を抑えて気孔率を高めることにより、熱容量の小さい導電性炭化珪素質焼結体を製造することができる。   When silicon carbide is reacted and generated from a carbon source and a silicon source to obtain a sintered body of silicon carbide (reaction sintering), in addition to the core of reaction generation, in order to ensure the mechanical strength of the sintered body, It is common to mix aggregate with the raw material. Conventionally, coarse particles having a particle diameter of 10 μm to 50 μm have been used as aggregates. On the other hand, in this configuration, instead of coarse particles, aggregated particles in which a large number of primary particles are aggregated by sintering are used as aggregates. As a result, as will be described in detail later, compared to the conventional manufacturing method using coarse particles as aggregate, the conductivity is high, while the mechanical strength is high and the decrease in thermal shock resistance is suppressed. A silicon carbide sintered body can be produced. Therefore, according to the manufacturing method of this configuration, a conductive silicon carbide sintered body having a small heat capacity can be manufactured by suppressing a decrease in mechanical strength and thermal shock resistance and increasing the porosity.

なお、凝集粒子の材質を炭化珪素とすれば、製造される導電性炭化珪素質焼結体において、凝集粒子を取り囲んで焼結している炭化珪素質導電性相と熱膨張率が等しいため、望ましい。   If the material of the agglomerated particles is silicon carbide, in the conductive silicon carbide sintered body to be produced, the thermal expansion coefficient is equal to the silicon carbide conductive phase that surrounds and sinters the agglomerated particles. desirable.

本発明にかかる導電性炭化珪素質焼結体の製造方法は、上記構成において、
「前記一次粒子の粒子径は、0.5μm〜5μmである」ものとすることができる。また、「前記凝集粒子の二次粒子径は、2μm〜25μmである」ものとすることができる。
The method for producing a conductive silicon carbide sintered body according to the present invention has the above-described configuration.
“The particle diameter of the primary particles is 0.5 μm to 5 μm”. In addition, “the secondary particle diameter of the aggregated particles is 2 μm to 25 μm”.

凝集粒子を構成する一次粒子の粒子径、及び、凝集粒子の二次粒子径を上記範囲とすることにより、詳細は後述するように、骨材として粗大粒子を使用していた従来の製造方法により製造される焼結体と比較して、優位性の高い導電性炭化珪素質焼結体を製造することができる。   By setting the particle diameter of the primary particles constituting the aggregated particles and the secondary particle diameter of the aggregated particles in the above range, as will be described in detail later, according to a conventional manufacturing method in which coarse particles are used as aggregates. Compared with the manufactured sintered body, a conductive silicon carbide based sintered body having a superiority can be manufactured.

次に、本発明にかかる導電性炭化珪素質焼結体は、
「一次粒子径が0.5μm〜5μmで、二次粒子径が2μm〜25μmの凝集粒子を、
該凝集粒子の二次粒子径より粒子径の小さい粒子からなる炭化珪素質導電性相が取り囲んで焼結している」ものである。
Next, the conductive silicon carbide based sintered body according to the present invention is:
“Agglomerated particles having a primary particle size of 0.5 μm to 5 μm and a secondary particle size of 2 μm to 25 μm,
A silicon carbide conductive phase composed of particles having a particle size smaller than the secondary particle size of the aggregated particles surrounds and sinters.

これは、上記構成の製造方法により製造される導電性炭化珪素質焼結体である。骨材として粗大粒子を含む従来の導電性炭化珪素質焼結体に比べて、高気孔率で熱容量が小さいにも関わらず、機械的強度が高く、耐熱衝撃性の低下が抑制されている。   This is a conductive silicon carbide sintered body manufactured by the manufacturing method having the above-described configuration. Compared to a conventional conductive silicon carbide sintered body containing coarse particles as an aggregate, the mechanical strength is high and the reduction in thermal shock resistance is suppressed despite the high porosity and small heat capacity.

以上のように、本発明の効果として、機械的強度や耐熱衝撃性の低下を抑えて気孔率を高めることができる導電性炭化珪素質焼結体の製造方法、及び、該製造方法により製造される導電性炭化珪素質焼結体を、提供することができる。   As described above, as an effect of the present invention, a method for producing a conductive silicon carbide sintered body capable of suppressing a decrease in mechanical strength and thermal shock resistance and increasing the porosity, and produced by the production method. A conductive silicon carbide sintered body can be provided.

実施例の骨材として使用した凝集粒子の二次粒子径分布の例である。It is an example of secondary particle size distribution of the aggregated particle used as an aggregate of an Example. 骨材の粒子径と4点曲げ強度との関係を、実施例と比較例とで対比したグラフである。It is the graph which contrasted the relationship between the particle diameter of an aggregate, and 4 point | piece bending strength with an Example and a comparative example. 見掛け気孔率と4点曲げ強度との関係を、実施例と比較例とで対比したグラフである。It is the graph which contrasted the relationship between an apparent porosity and 4-point bending strength by the Example and the comparative example. 耐熱衝撃性の指標となる数値と見掛け気孔率との関係を、実施例と比較例とで対比したグラフである。It is the graph which contrasted the relationship between the numerical value used as a parameter | index of a thermal shock resistance, and an apparent porosity with an Example and a comparative example. 平均気孔径と見掛け気孔率との関係を、実施例と比較例とで対比したグラフである。It is the graph which compared the relationship between an average pore diameter and an apparent porosity with an Example and a comparative example. 骨材の粒子径と平均気孔径及び見掛け気孔率との関係を、それぞれ実施例と比較例とで対比したグラフである。It is the graph which contrasted the relationship between the particle diameter of an aggregate, an average pore diameter, and an apparent porosity with an Example and a comparative example, respectively. (a)実施例の骨材である凝集粒子、及び(b)比較例の骨材である粗大粒子、それぞれの走査型電子顕微鏡による観察像である。(A) Aggregated particle | grains which are the aggregate of an Example, (b) Coarse particle | grains which are the aggregate of a comparative example, It is an observation image by each scanning electron microscope. 実施例の焼結体について(a)破断面、及び(b)研磨面、それぞれの走査型電子顕微鏡による観察像の例である。It is an example of the observation image by a scanning electron microscope about (a) fracture surface and (b) polished surface about the sintered compact of an Example.

以下、本発明の一実施形態である導電性炭化珪素質焼結体の製造方法、及び、該製造方法により製造される導電性炭化珪素質焼結体について説明する。本実施形態の導電性炭化珪素質焼結体の製造方法は、珪素源及び炭素源を含む炭化珪素生成原料と骨材とを含む混合原料から成形された成形体を焼成することにより、珪素源及び炭素源から生成した炭化珪素がドーパントを含んでいる炭化珪素質導電性相が、骨材を取り囲んで焼結している導電性炭化珪素質焼結体を製造する方法であり、骨材として、一次粒子が焼結している凝集粒子を使用するものである。本実施形態では、骨材としての凝集粒子として、炭化珪素の凝集粒子を使用する。   Hereinafter, a method for producing a conductive silicon carbide sintered body according to an embodiment of the present invention and a conductive silicon carbide sintered body produced by the production method will be described. The method for producing a conductive silicon carbide sintered body according to the present embodiment includes a silicon source by firing a molded body formed from a mixed raw material including a silicon carbide generating raw material containing a silicon source and a carbon source and an aggregate. And a silicon carbide conductive phase in which silicon carbide generated from a carbon source contains a dopant surrounds and sinters the aggregate, and is a method for producing a conductive silicon carbide sintered body. The agglomerated particles in which the primary particles are sintered are used. In this embodiment, aggregated particles of silicon carbide are used as aggregated particles as aggregates.

炭化珪素生成原料の珪素源としては、珪素(単体)の他、窒化珪素など珪素化合物を使用可能である。一方、炭化珪素生成原料の炭素源としては、グラファイト、石炭、コークス、木炭、カーボンブラックなどの炭素質物質を使用可能である。炭化珪素生成原料における炭素に対する珪素のモル比(Si/C)が1のときに、化学量論的に過不足なく炭化珪素が生成するが、Si/Cが0.8〜1.2であれば、珪素及び炭素の過剰分または不足分が少なく、望ましい。   As a silicon source of the silicon carbide generating raw material, silicon compounds such as silicon nitride can be used in addition to silicon (simple substance). On the other hand, carbonaceous materials such as graphite, coal, coke, charcoal, and carbon black can be used as the carbon source of the silicon carbide generating raw material. When the molar ratio of silicon to carbon (Si / C) in the silicon carbide producing raw material is 1, silicon carbide is produced with no stoichiometric excess or deficiency, but Si / C is 0.8 to 1.2. For example, the excess or deficiency of silicon and carbon is small and desirable.

珪素源及び炭素源からドーパントを含んでいる炭化珪素を生成させて炭化珪素質導電性相を形成させる方法は、焼成雰囲気を窒素ガスを含む非酸化性雰囲気とし、雰囲気中の窒素を反応生成する炭化珪素にドープする方法とすることができる。この場合、窒素ガスを含む非酸化性雰囲気は、窒素ガス100%雰囲気、アルゴンやヘリウム等の希ガスと窒素ガスとの混合雰囲気とすることができる。   A method of forming silicon carbide-containing conductive phase by generating silicon carbide containing a dopant from a silicon source and a carbon source, wherein the firing atmosphere is a non-oxidizing atmosphere containing nitrogen gas, and nitrogen in the atmosphere is produced by reaction. A method of doping silicon carbide can be employed. In this case, the non-oxidizing atmosphere containing nitrogen gas can be a 100% nitrogen gas atmosphere or a mixed atmosphere of a rare gas such as argon or helium and nitrogen gas.

或いは、珪素源として窒化珪素を使用し、その分解により生じた窒素を、反応生成する炭化珪素にドープする方法とすることができる。この場合、焼成雰囲気は、上記の窒素ガスを含む非酸化性雰囲気の他、窒素ガスを含まない非酸化性雰囲気とすることができる。ここで、窒素ガスを含まない非酸化性雰囲気は、アルゴンやヘリウム等の希ガス雰囲気、真空雰囲気とすることができる。   Alternatively, silicon nitride can be used as a silicon source, and nitrogen generated by the decomposition can be doped into the silicon carbide produced by the reaction. In this case, the firing atmosphere can be a non-oxidizing atmosphere containing no nitrogen gas in addition to the non-oxidizing atmosphere containing nitrogen gas. Here, the non-oxidizing atmosphere containing no nitrogen gas can be a rare gas atmosphere such as argon or helium, or a vacuum atmosphere.

また或いは、炭化珪素生成原料及び骨材を含む混合原料に、ドーパントとなる窒素やアルミニウムの化合物を添加し、その混合原料から成形した成形体を、非酸化性雰囲気で焼成する方法とすることもできる。   Alternatively, it may be a method of adding a compound of nitrogen or aluminum as a dopant to a mixed raw material containing a silicon carbide forming raw material and an aggregate, and firing a molded body formed from the mixed raw material in a non-oxidizing atmosphere. it can.

なお、混合原料には、炭化珪素生成原料と骨材に加えて、炭化珪素の微細粒子を含有させることができる。この場合、焼成雰囲気を窒素ガスを含む非酸化性雰囲気とすれば、或いは、炭化珪素生成原料の珪素源を窒化珪素とすれば、微細粒子が焼結する際に、雰囲気中の窒素または窒化珪素の分解により生じた窒素がドープされる。つまり、この場合、ドーパントを含んでいる炭化珪素である炭化珪素質導電性相には、珪素源及び炭素源から反応生成した炭化珪素がドーパントを含んでいる相に加えて、炭化珪素の微細粒子に由来してドーパントを含んでいる相が含まれる。ここで、炭化珪素の微細粒子の粒子径は、骨材の粒子径の1/5〜1/40とすることができる。   The mixed raw material may contain fine particles of silicon carbide in addition to the silicon carbide generating raw material and the aggregate. In this case, if the firing atmosphere is a non-oxidizing atmosphere containing nitrogen gas, or if the silicon source of the silicon carbide generating raw material is silicon nitride, nitrogen or silicon nitride in the atmosphere is used when the fine particles are sintered. Nitrogen generated by decomposition of is doped. That is, in this case, the silicon carbide conductive phase, which is silicon carbide containing a dopant, includes silicon carbide fine particles of silicon carbide in addition to the phase containing silicon dopant produced by reaction from a silicon source and a carbon source. A phase containing a dopant derived from is included. Here, the particle diameter of the fine particles of silicon carbide can be 1/5 to 1/40 of the particle diameter of the aggregate.

骨材としての凝集粒子は、炭化珪素の焼結体を粉砕することにより得ることができる。粉砕は、乾式の破砕型造粒機、湿式のボールミルやビーズミルを使用して行うことができる。粉砕対象の炭化珪素焼結体は、上記の珪素源及び炭素源を反応焼結させた焼結体とすることができる。この場合、珪素源を窒化珪素とすることにより、或いは、焼結雰囲気を窒素ガスを含む非酸化性雰囲気とすることにより、骨材としての凝集粒子に導電性を付与することができる。或いは、炭化珪素の微細粒子をバインダ等と共に焼結させた焼結体を、粉砕対象の炭化珪素焼結体とすることができる。この場合も、焼結雰囲気を窒素ガスを含む非酸化性雰囲気とすることにより、骨材としての凝集粒子に導電性を付与することが可能である。なお、骨材としての凝集粒子は、炭化珪素焼結体を粉砕した後、分級することにより、粒子径(二次粒子径)を所定の範囲に揃えても良い。   Aggregated particles as an aggregate can be obtained by pulverizing a sintered body of silicon carbide. The pulverization can be performed using a dry crushing granulator, a wet ball mill or a bead mill. The silicon carbide sintered body to be crushed can be a sintered body obtained by reactively sintering the silicon source and the carbon source. In this case, conductivity can be imparted to the aggregated particles as the aggregate by using silicon nitride as the silicon source or by setting the sintering atmosphere to a non-oxidizing atmosphere containing nitrogen gas. Alternatively, a sintered body obtained by sintering fine particles of silicon carbide together with a binder or the like can be used as a silicon carbide sintered body to be pulverized. Also in this case, it is possible to impart conductivity to the aggregated particles as the aggregate by setting the sintering atmosphere to a non-oxidizing atmosphere containing nitrogen gas. The aggregated particles as the aggregate may be classified in a predetermined range by pulverizing the silicon carbide sintered body and then classifying the aggregated particles.

炭化珪素生成原料と骨材とを含む混合原料から成形された成形体を、焼成する際の焼成温度、及び、骨材としての凝集粒子の原材料となる炭化珪素焼結体(粉砕対象の焼結体)を得る際の焼成温度は、共に1800℃〜2350℃とすることができる。焼成温度が1800℃より低い場合は焼結が不十分となるおそれがあり、2350℃を超える場合は炭化珪素が昇華するおそれがある。   Silicon carbide sintered body (sintering object to be crushed) used as a raw material for aggregated particles as an aggregate and a firing temperature when a compact formed from a mixed raw material including a silicon carbide generating raw material and an aggregate is fired The firing temperature for obtaining the body can be 1800 ° C. to 2350 ° C. in both cases. If the firing temperature is lower than 1800 ° C., sintering may be insufficient, and if it exceeds 2350 ° C., silicon carbide may sublime.

<凝集粒子>
炭化珪素を反応生成させる珪素源として窒化珪素を、炭素源としてグラファイトを使用し、珪素及び炭素のモル比(Si/C)を1とした原料から、ペレット状の成形体を成形した。成形体を、窒素を含まない非酸化性雰囲気で焼成することにより、炭化珪素質焼結体を得た。得られた炭化珪素質焼結体をボールミルで粉砕した。その際、ボールの径と量によって粉砕条件を異ならせることにより、二次粒子径の異なる複数種類の凝集粒子を得た。なお、以下では骨材としての凝集粒子を「凝集粒子骨材」と称することがある。
<Aggregated particles>
A pellet-shaped molded body was molded from a raw material in which silicon nitride was used as a silicon source for reaction generation of silicon carbide, graphite was used as a carbon source, and the molar ratio of silicon to carbon (Si / C) was 1. The molded body was fired in a non-oxidizing atmosphere not containing nitrogen to obtain a silicon carbide sintered body. The obtained silicon carbide sintered body was pulverized with a ball mill. At that time, a plurality of types of agglomerated particles having different secondary particle diameters were obtained by varying the grinding conditions depending on the diameter and amount of the balls. Hereinafter, the aggregated particles as the aggregate may be referred to as “aggregated particle aggregate”.

<導電性炭化珪素質焼結体>
珪素源として珪素(単体)または窒化珪素を、炭素源としてグラファイトを使用し、珪素及び炭素のモル比(Si/C)を1とした炭化珪素生成原料に、上記のように調製した二次粒子径の異なる凝集粒子骨材のうちの一種と、炭化珪素の微細粒子とを加えて混合原料とした。混合原料にバインダ及び水を添加して混合し、混錬物を得た。混錬物の押出成形により、ハニカム構造体を成形した。ハニカム構造体は、36mm×36mm×100mmの角柱状とし、セル密度300セル/inch、隔壁の厚さ10mil(約0.25mm)とした。この成形体を乾燥・脱脂した後、窒素を含むアルゴン雰囲気で焼成することにより、実施例の導電性炭化珪素質焼結体である試料S1〜S10を作製した。
<Conductive silicon carbide sintered body>
Secondary particles prepared as described above for a silicon carbide forming raw material in which silicon (single) or silicon nitride is used as the silicon source, graphite is used as the carbon source, and the molar ratio of silicon to carbon (Si / C) is 1. One of aggregated aggregates having different diameters and fine particles of silicon carbide were added to obtain a mixed raw material. Binder and water were added to the mixed raw material and mixed to obtain a kneaded product. A honeycomb structure was formed by extrusion molding of the kneaded material. The honeycomb structure had a prismatic shape of 36 mm × 36 mm × 100 mm, a cell density of 300 cells / inch 2 , and a partition wall thickness of 10 mil (about 0.25 mm). After this molded body was dried and degreased, it was fired in an argon atmosphere containing nitrogen to prepare samples S1 to S10 which are conductive silicon carbide sintered bodies of the examples.

試料S1〜S10は、混合原料を構成する各原料、すなわち珪素源(S1〜S5,S10は珪素、S6〜S9は窒化珪素)の材質と粒子径、炭素源の材質と粒子径、微細粒子の材質と粒子径、及び、凝集粒子骨材の材質において共通しており、混合原料の組成と、凝集粒子骨材の粒子径とを異ならせることにより、種々の気孔径を有する導電性炭化珪素質焼結体を得ることを意図したものである。試料S1〜S10について、凝集粒子骨材の平均粒子径、及び、混合原料の組成を表1に示す。   Samples S1 to S10 consist of mixed raw materials, that is, the materials and particle sizes of silicon sources (S1 to S5 and S10 are silicon, and S6 to S9 are silicon nitride), carbon source materials and particle sizes, and fine particles. Conductive silicon carbide having various pore diameters by changing the composition of the mixed raw material and the particle diameter of the aggregated particle aggregate, which are common in the material, the particle diameter, and the aggregated particle aggregate material This is intended to obtain a sintered body. Table 1 shows the average particle diameter of the aggregated particle aggregate and the composition of the mixed raw material for the samples S1 to S10.

比較例として、従来法と同様に、骨材として炭化珪素の粗大粒子を使用した試料R1〜R6を作製した。試料R1〜R6は、混合原料を構成する各原料、すなわち珪素源(R1〜R4は窒化珪素、R5及びR6は珪素)の材質と粒子径、炭素源の材質と粒子径、及び、微細粒子の材質と粒子径において実施例と共通であり、混合原料の組成と、骨材としての粗大粒子(以下、「粗大粒子骨材」と称することがある)の粒子径とを異ならせることにより、種々の気孔径を有する導電性炭化珪素質焼結体を得ることを意図したものである。試料R1〜R6について、粗大粒子骨材の平均粒子径、及び、混合原料の組成を表1に合わせて示す。   As comparative examples, samples R1 to R6 using coarse particles of silicon carbide as an aggregate were prepared as in the conventional method. Samples R1 to R6 consist of raw materials constituting the mixed raw material, that is, materials and particle diameters of silicon sources (R1 to R4 are silicon nitride, R5 and R6 are silicon), carbon source materials and particle diameters, and fine particles The material and the particle diameter are the same as those in the examples, and by varying the composition of the mixed raw material and the particle diameter of coarse particles as aggregate (hereinafter sometimes referred to as “coarse particle aggregate”), various It is intended to obtain an electrically conductive silicon carbide sintered body having a pore diameter of. About samples R1-R6, the average particle diameter of a coarse particle aggregate and the composition of a mixed raw material are shown according to Table 1.

ここで、試料S1〜S10の凝集粒子骨材の二次粒子径、及び、試料R1〜R6の粗大粒子骨材の粒子径は、何れもレーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル社製、MT3000II)により測定した粒子径分布における体積基準メディアン径である。測定された粒子径分布によれば、何れの凝集粒子骨材も、二次粒子径2μm〜25μmの凝集粒子で全体の95体積%以上を占め、二次粒子径3μm〜25μmの凝集粒子で全体の80体積%以上を占めていた。例として、実施例S2〜S4,S6に使用した凝集粒子骨材の二次粒子径分布を、図1に示す。   Here, the secondary particle diameter of the aggregated particle aggregates of the samples S1 to S10 and the particle diameter of the coarse particle aggregates of the samples R1 to R6 are both laser diffraction / scattering particle size distribution measuring devices (Microtrack It is a volume-based median diameter in a particle size distribution measured by Bell Co., Ltd. (MT3000II). According to the measured particle size distribution, any aggregated aggregate is composed of aggregated particles with a secondary particle size of 2 μm to 25 μm and accounts for 95% by volume or more, and aggregated particles with a secondary particle size of 3 μm to 25 μm as a whole. Accounted for 80% by volume or more. As an example, the secondary particle size distribution of the aggregated particle aggregate used in Examples S2 to S4 and S6 is shown in FIG.

また、実施例の各試料に使用した凝集粒子骨材を、走査型電子顕微鏡で観察したところ、何れの試料においても、凝集粒子を形成している一次粒子の粒子径は0.5μm〜5μmであった。例として、実施例S2〜S4,S6に使用した凝集粒子骨材の走査型電子顕微鏡観察像を、図7(a)に示す。また、対比のために、比較例R2〜R4,R6に使用した粗大粒子骨材の走査型電子顕微鏡観察像を、図7(b)に示す。   Moreover, when the aggregated particle aggregate used for each sample of an Example was observed with the scanning electron microscope, the particle diameter of the primary particle which forms the aggregated particle in any sample is 0.5 micrometer-5 micrometers. there were. As an example, a scanning electron microscope observation image of the aggregated particle aggregate used in Examples S2 to S4 and S6 is shown in FIG. Moreover, the scanning electron microscope observation image of the coarse particle aggregate used for Comparative Examples R2 to R4 and R6 is shown in FIG. 7B for comparison.

実施例の試料S1〜S10、及び、比較例の試料R1〜R6の導電性炭化珪素質焼結体のそれぞれについて、次の方法で見掛け気孔率、4点曲げ強度、ヤング率を測定した。その結果を表2に示す。   The apparent porosity, 4-point bending strength, and Young's modulus of each of the conductive silicon carbide sintered bodies of the samples S1 to S10 of the example and the samples R1 to R6 of the comparative example were measured by the following methods. The results are shown in Table 2.

平均気孔径:水銀ポロシメータ(micromeritics社製,オートポアIV9500)を使用して水銀圧入法により測定した気孔径分布から、体積基準メディアン径として求めた。
見掛け気孔率:平均気孔径の測定に際し、試料に圧入された水銀体積と試料体積とから算出した。
4点曲げ強度:ハニカム構造の試料を5セル×4セル×40mmの大きさに切り出して試験片とした。JIS R1601に準拠し、下部支点間距離30mm、上部支点間距離10mm、クロスヘッドスピード0.5mm/minの条件で測定した。
ヤング率:JIS R1602に準拠し、4点曲げ強度試験における荷重点変位から算出した。
Average pore diameter: It was determined as a volume-based median diameter from a pore diameter distribution measured by a mercury intrusion method using a mercury porosimeter (manufactured by Micromeritics, Autopore IV9500).
Apparent porosity: In measuring the average pore diameter, it was calculated from the volume of mercury pressed into the sample and the sample volume.
Four-point bending strength: A sample having a honeycomb structure was cut into a size of 5 cells × 4 cells × 40 mm to obtain a test piece. Based on JIS R1601, the measurement was performed under the conditions of a distance between lower fulcrums of 30 mm, a distance between upper fulcrums of 10 mm, and a crosshead speed of 0.5 mm / min.
Young's modulus: Calculated from load point displacement in a four-point bending strength test in accordance with JIS R1602.

また、耐熱衝撃性の指標として、「4点曲げ強度/ヤング率」(σ/E)を算出した。これは、次式で表される熱衝撃破壊抵抗Rにおいて、材料固有の係数である熱膨張係数、及び、ヤング率と共に弾性限界内であれば材料固有の係数とみなされるポアソン比を、定数として扱ったものである。従って、この値(σ/E)が大きいほど、耐熱衝撃性が高いと評価することができる。各試料について、値(σ/E)の算出結果を表2に合わせて示す。
熱衝撃破壊抵抗 R=σ(1−ν)/αE
ここで、σ:応力
ν:ポアソン比
α:熱膨張係数
E:ヤング率
Further, “4-point bending strength / Young's modulus” (σ / E) was calculated as an index of thermal shock resistance. In the thermal shock fracture resistance R expressed by the following equation, the coefficient of thermal expansion, which is a coefficient inherent to the material, and the Poisson ratio, which is regarded as a coefficient inherent to the material within the elastic limit together with the Young's modulus, are taken as constants. It is what I handled. Therefore, it can be evaluated that the greater the value (σ / E), the higher the thermal shock resistance. Table 2 shows the calculation result of the value (σ / E) for each sample.
Thermal shock fracture resistance R = σ (1-ν) / αE
Where σ: stress
ν: Poisson's ratio
α: Thermal expansion coefficient
E: Young's modulus

表2から分かるように、実施例及び比較例の何れについても、約40%〜60%の範囲で種々の見掛け気孔率を有する試料が製造された。   As can be seen from Table 2, samples having various apparent porosities in the range of about 40% to 60% were produced for both the examples and the comparative examples.

ここで、実施例S4と比較例R5、実施例S10と比較例R6は、それぞれ骨材が凝集粒子であるか粗大粒子であるかのみが異なり、他の全ての条件、すなわち、骨材の平均粒子径、骨材の含有率、微細粒子の材質・粒子径・含有率、珪素源の材質・粒子径・含有率、及び、炭素源の材質・粒子径・含有率が同一である組み合わせである。これらの組み合わせそれぞれについて、骨材の粒子径(凝集粒子骨材の場合は二次粒子径)と4点曲げ強度との関係を、図2に示す。図2から、凝集粒子を骨材とする実施例は、粗大粒子を骨材とする比較例と骨材の粒子径が同程度であっても、高い機械的強度を示していることが分かる。   Here, Example S4 and Comparative Example R5, and Example S10 and Comparative Example R6 differ only in whether the aggregate is aggregated particles or coarse particles, and all other conditions, that is, the average of the aggregates. Particle size, aggregate content, fine particle material / particle size / content rate, silicon source material / particle size / content rate, and carbon source material / particle size / content rate are the same combination . FIG. 2 shows the relationship between the particle size of the aggregate (secondary particle size in the case of aggregated particle aggregate) and the 4-point bending strength for each of these combinations. From FIG. 2, it can be seen that the example in which the aggregated particles are aggregates shows high mechanical strength even when the particle diameter of the aggregate is approximately the same as the comparative example in which coarse particles are aggregated.

その他の試料も含め、見掛け気孔率と4点曲げ強度との関係を、図3に示す。図3から明らかなように、凝集粒子を骨材として使用した実施例と、粗大粒子を骨材として使用した比較例は、何れも見掛け気孔率の増加に伴い4点曲げ強度が下に凸の湾曲線を描くように減少している。そして、凝集粒子を骨材とする実施例は、粗大粒子を骨材とする比較例に比べて、同程度の4点曲げ強度を示す試料の見掛け気孔率が高い傾向を示している。換言すれば、凝集粒子を骨材とする実施例は、粗大粒子を骨材とする比較例に比べて、高気孔率であっても高い機械的強度を示している。このような実施例と比較例との差異は、見掛け気孔率が52%に達するまでは有意であった。見掛け気孔率が52%を超えると、実施例と比較例とで4点曲げ強度に有意な差異は見られなかった。   The relationship between the apparent porosity and the 4-point bending strength including other samples is shown in FIG. As is apparent from FIG. 3, the four-point bending strength is convex downward as the apparent porosity increases in both the example using the aggregated particles as the aggregate and the comparative example using the coarse particles as the aggregate. It decreases to draw a curved line. And the Example which uses an aggregated particle as an aggregate has shown the tendency for the apparent porosity of the sample which shows the same 4 point | piece bending strength compared with the comparative example which uses a coarse particle as an aggregate. In other words, the example in which the aggregated particles are aggregates shows high mechanical strength even at a high porosity as compared with the comparative example in which coarse particles are aggregated. Such a difference between the example and the comparative example was significant until the apparent porosity reached 52%. When the apparent porosity exceeded 52%, no significant difference was observed in the 4-point bending strength between the example and the comparative example.

また、耐熱衝撃性の指標である4点曲げ強度/ヤング率(σ/E)と見掛け気孔率との関係を、図4に示す。実施例及び比較例ともに、見掛け気孔率の増加に伴い耐熱衝撃性は僅かに低下しているが、実施例と比較例とは単一の直線に沿っている。このことから、骨材を凝集粒子にすることによって見掛け気孔率が増大しても、骨材が粗大粒子である場合に比べて耐熱衝撃性は低下していないことが分かる。   FIG. 4 shows the relationship between the 4-point bending strength / Young's modulus (σ / E), which is an index of thermal shock resistance, and the apparent porosity. In both the examples and the comparative examples, the thermal shock resistance slightly decreases with an increase in the apparent porosity, but the examples and the comparative examples are along a single straight line. From this, it can be seen that even if the apparent porosity is increased by making the aggregate into aggregated particles, the thermal shock resistance is not lowered as compared with the case where the aggregate is coarse particles.

このように、骨材を凝集粒子とすることにより、骨材が粗大粒子である場合に比べて、見掛け気孔率が高くても機械的強度が高く、且つ耐熱衝撃性の低下が抑制されているのは、骨材自体が多数の一次粒子が焼結により集合した凝集粒子であることによりネックの数(一次粒子間のネック、骨材と周囲の粒子とのネック)が増加するため、と考えられる。   Thus, by using aggregates as aggregated particles, mechanical strength is high even when the apparent porosity is high, and a decrease in thermal shock resistance is suppressed as compared with the case where aggregates are coarse particles. This is because the number of necks (neck between primary particles, neck between aggregate and surrounding particles) increases because the aggregate itself is an aggregated particle in which a large number of primary particles are aggregated by sintering. It is done.

更に、骨材である凝集粒子において一次粒子間に小さな空隙が存在することにより、凝集粒子である骨材の二次粒子径が小さくても高気孔率を実現できるために、骨材が粗大粒子である場合と同程度の気孔率であっても、骨材が粗大粒子である場合に比べて骨材粒子間の空隙が小さく、且つ、骨材と周囲の炭化珪素粒子との間の空隙も小さい。そのため、骨材が凝集粒子である場合は、骨材が粗大粒子である場合と同程度の気孔率であるときの平均気孔径が小さいことも、上記の理由の一つと考えられた。実施例及び比較例の各試料について、平均気孔径に対して見掛け気孔率をプロットしたグラフを図5に示す。図5から、同程度の見掛け気孔率を示す場合の平均気孔径は、骨材が凝集粒子である実施例の方が、骨材が粗大粒子である比較例より小さいことが明らかである。   Further, since the aggregated particles that are aggregates have small voids between the primary particles, high porosity can be realized even if the secondary particle size of the aggregates that are aggregated particles is small. Even when the porosity is the same as that of the case, the gap between the aggregate particles is small compared to the case where the aggregate is coarse particles, and the gap between the aggregate and the surrounding silicon carbide particles is also small. Therefore, when the aggregate is aggregated particles, the average pore diameter when the porosity is about the same as when the aggregate is coarse particles is also considered to be one of the reasons described above. FIG. 5 shows a graph in which the apparent porosity is plotted against the average pore diameter for each sample of the example and the comparative example. From FIG. 5, it is clear that the average pore diameter in the case of showing the same apparent porosity is smaller in the example in which the aggregate is aggregated particles than in the comparative example in which the aggregate is coarse particles.

また、骨材が凝集粒子であるか粗大粒子であるかのみが異なり、他の全ての条件が同一である上記の組み合わせ、実施例S4と比較例R5、及び、実施例S10と比較例R6について、骨材の粒子径(凝集粒子骨材の場合は二次粒子径)に対して、平均気孔径及び見掛け気孔率をそれぞれプロットしたグラフを、図6に示す。図6からも、骨材が凝集粒子である実施例では、骨材が粗大粒子である比較例より、平均気孔径は小さいが見掛け気孔率は大きいことが分かる。   Moreover, only about whether the aggregate is an aggregated particle or a coarse particle and the other combinations are the same, the above combination, Example S4 and Comparative Example R5, and Example S10 and Comparative Example R6 FIG. 6 is a graph in which the average pore diameter and the apparent porosity are plotted with respect to the particle diameter of the aggregate (secondary particle diameter in the case of the aggregated particle aggregate). FIG. 6 also shows that in the example in which the aggregate is aggregated particles, the average porosity is small but the apparent porosity is larger than in the comparative example in which the aggregate is coarse particles.

以上のように、本実施形態の製造方法によれば、骨材として凝集粒子を使用することにより、骨材として粗大粒子を使用していた従来の製造方法に比べて、高気孔率でありながら機械的強度が高く、耐熱衝撃性も同程度である導電性炭化珪素質焼結体を製造することができる。従って、機械的強度や耐熱衝撃性の低下を抑えつつ気孔率を高めることにより、熱容量の小さい導電性炭化珪素質焼結体を製造することができる。   As described above, according to the manufacturing method of the present embodiment, the aggregated particles are used as the aggregate, and the porosity is higher than that in the conventional manufacturing method in which coarse particles are used as the aggregate. A conductive silicon carbide sintered body having high mechanical strength and the same thermal shock resistance can be manufactured. Therefore, a conductive silicon carbide sintered body having a small heat capacity can be manufactured by increasing the porosity while suppressing a decrease in mechanical strength and thermal shock resistance.

加えて、粗大粒子を骨材としていた従来は、骨材は非導電性であった。これに対し、本実施形態の製造方法では、骨材とする凝集粒子を珪素源と炭素源とから反応生成させ、珪素源として窒化珪素を使用しているため、炭化珪素が生成する際に窒素がドープされて導電性の凝集粒子となる。これにより、骨材を取り囲むように焼結する炭化珪素質導電性相に加えて、骨材も導電性を有することとなり、導電性炭化珪素質焼結体全体としての導電性を高めることができる。   In addition, the aggregate has been non-conductive in the past where coarse particles were used as the aggregate. In contrast, in the manufacturing method of the present embodiment, aggregated particles as an aggregate are produced by reaction from a silicon source and a carbon source, and silicon nitride is used as the silicon source. Are doped to form conductive aggregated particles. Accordingly, in addition to the silicon carbide conductive phase that is sintered so as to surround the aggregate, the aggregate also has conductivity, and the conductivity of the entire conductive silicon carbide sintered body can be increased. .

そして、上記実施形態の製造方法により、一次粒子径が0.5μm〜5μmで、二次粒子径が2μm〜25μmの凝集粒子を、凝集粒子の二次粒子径より粒子径の小さい粒子からなる炭化珪素質導電性相が取り囲んで焼結している構成の導電性炭化珪素質焼結体が製造される。例として、実施例S2の導電性炭化珪素質焼結体について、破断面、及び研磨面の走査型電子顕微鏡による観察像を、それぞれ図8(a)及び図8(b)に示す。図7(a)との対比により、凝集粒子骨材(二次粒子径)と考えられる2μm〜25μmの凝集粒子を、0.2μm〜2μm未満の小粒子が取り囲んで焼結している様子が観察される。   And by the manufacturing method of the said embodiment, the carbonization which consists of a particle | grain with a primary particle diameter of 0.5 micrometer-5 micrometers and a secondary particle diameter of 2 micrometers-25 micrometers from a particle | grain with a particle diameter smaller than the secondary particle diameter of aggregated particle A conductive silicon carbide sintered body having a structure in which the silicon conductive phase is surrounded and sintered is manufactured. As an example, for the conductive silicon carbide sintered body of Example S2, a fracture surface and an image observed by a scanning electron microscope of the polished surface are shown in FIGS. 8 (a) and 8 (b), respectively. By contrast with FIG. 7 (a), it can be seen that aggregated particles of 2 μm to 25 μm considered to be aggregated particle aggregate (secondary particle diameter) are surrounded by small particles of 0.2 μm to less than 2 μm and sintered. Observed.

なお、本実施形態では、凝集粒子骨材として二次粒子径2μm〜25μmの凝集粒子が全体の95体積%以上を占める凝集粒子を使用していることにより、上記構成の導電性炭化珪素質焼結体を得ているが、このような粒子径の範囲は、上述したように、目的とする作用効果を発揮する凝集粒子骨材の粒子径として適している。凝集粒子の二次粒子径が2μmより小さければ、骨材としての役割を十分に発揮することができないと考えられる。一方、二次粒子径が25μmを超えれば、実施例S9の結果から推測されるように平均気孔径が大きくなり、比較例R4との対比から推測されるように、粗大粒子を骨材とした場合と見掛け気孔率に対する機械的強度が同程度となってしまい、凝集粒子を骨材とする利点が十分に得られないと考えられる。   In the present embodiment, the use of aggregated particles in which the aggregated particles having a secondary particle diameter of 2 μm to 25 μm occupy 95% by volume or more is used as the aggregated particle aggregate. Although a ligated body has been obtained, such a particle diameter range is suitable as the particle diameter of the aggregated aggregate that exhibits the intended effect as described above. If the secondary particle diameter of the aggregated particles is smaller than 2 μm, it is considered that the role as an aggregate cannot be sufficiently exhibited. On the other hand, if the secondary particle diameter exceeds 25 μm, the average pore diameter increases as estimated from the results of Example S9, and coarse particles are used as aggregates as estimated from the comparison with Comparative Example R4. It is considered that the mechanical strength with respect to the apparent porosity is almost the same as that in the case, and the advantage of using aggregated particles as an aggregate cannot be obtained sufficiently.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements can be made without departing from the scope of the present invention as described below. And design changes are possible.

例えば、上記では、珪素源及び炭素源を反応焼結させ、得られた焼結体を粉砕することにより、骨材とする凝集粒子を作製する場合を例示した。これに限定されず、炭化珪素を生成させる珪素源及び炭素源に、反応生成の核となる粗大粒子の骨材を加えて焼結させ、得られた焼結体を粉砕した後、分級によって粗大粒子を除くことにより、骨材とする凝集粒子を作製することもできる。   For example, in the above, the case where the aggregated particles used as the aggregate are produced by reacting and sintering the silicon source and the carbon source and pulverizing the obtained sintered body is illustrated. However, the present invention is not limited thereto, and a coarse particle aggregate that is a nucleus of reaction generation is added to a silicon source and a carbon source for generating silicon carbide, and sintered. After the obtained sintered body is pulverized, it is coarsened by classification. By removing the particles, aggregated particles can be produced as aggregates.

Claims (4)

珪素源及び炭素源を含む炭化珪素生成原料と骨材とを含む混合原料から成形された成形体を焼成することにより、前記珪素源及び前記炭素源から生成した炭化珪素がドーパントを含んでいる炭化珪素質導電性相が、前記骨材を取り囲んで焼結している導電性炭化珪素質焼結体を製造する方法であり、
前記骨材として、一次粒子が焼結している凝集粒子を使用する
ことを特徴とする導電性炭化珪素質焼結体の製造方法。
Carbonization of silicon carbide produced from the silicon source and the carbon source by containing a dopant by firing a molded body formed from a mixed raw material comprising a silicon carbide production raw material containing a silicon source and a carbon source and an aggregate A method for producing a conductive silicon carbide sintered body in which a silicon conductive phase surrounds and sinters the aggregate,
An aggregated particle in which primary particles are sintered is used as the aggregate.
前記一次粒子の粒子径は、0.5μm〜5μmである
ことを特徴とする請求項1に記載の導電性炭化珪素質焼結体の製造方法。
2. The method for producing a conductive silicon carbide sintered body according to claim 1, wherein a particle diameter of the primary particles is 0.5 μm to 5 μm.
前記凝集粒子の二次粒子径は、2μm〜25μmである
ことを特徴とする請求項1または請求項2に記載の導電性炭化珪素質焼結体の製造方法。
The method for producing a conductive silicon carbide-based sintered body according to claim 1 or 2, wherein the aggregated particles have a secondary particle diameter of 2 to 25 µm.
一次粒子径が0.5μm〜5μmで、二次粒子径が2μm〜25μmの凝集粒子を、
該凝集粒子の二次粒子径より粒子径の小さい粒子からなる炭化珪素質導電性相が取り囲んで焼結している
ことを特徴とする導電性炭化珪素質焼結体。
Aggregated particles having a primary particle size of 0.5 μm to 5 μm and a secondary particle size of 2 μm to 25 μm,
A conductive silicon carbide sintered body characterized in that a silicon carbide conductive phase composed of particles having a particle diameter smaller than the secondary particle diameter of the aggregated particles is surrounded and sintered.
JP2017018726A 2016-03-25 2017-02-03 Method for producing conductive silicon carbide sintered body and conductive silicon carbide sintered body Active JP6387128B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016061244 2016-03-25
JP2016061244 2016-03-25

Publications (2)

Publication Number Publication Date
JP2017178771A true JP2017178771A (en) 2017-10-05
JP6387128B2 JP6387128B2 (en) 2018-09-05

Family

ID=60009231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017018726A Active JP6387128B2 (en) 2016-03-25 2017-02-03 Method for producing conductive silicon carbide sintered body and conductive silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP6387128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172495A (en) * 2018-03-28 2019-10-10 東京窯業株式会社 Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172673A (en) * 1984-09-13 1986-04-14 東芝セラミツクス株式会社 Manufacture of ceramic sintered body
JPH08217565A (en) * 1995-02-08 1996-08-27 Denki Kagaku Kogyo Kk Porous electrically conductive silicon carbide sintered body, its production and use
JPH08267355A (en) * 1995-04-03 1996-10-15 Fujimi Inkooporeetetsudo:Kk Manufacture of abrasive fine powder
JP2002338334A (en) * 2001-03-14 2002-11-27 Ngk Insulators Ltd Sintered ceramic compact and method of manufacturing for the same
JP2004138327A (en) * 2002-10-18 2004-05-13 Ngk Insulators Ltd Electromagnetic wave heating device, heating sheath used in the same, and manufacturing method of ceramics by using the same
JP2005021919A (en) * 2003-06-30 2005-01-27 Nippon Steel Corp Molding die using wear-resistant and anti-chipping ceramic and machining method using it
JP2011084451A (en) * 2009-10-19 2011-04-28 Tokyo Yogyo Co Ltd Method for producing electroconductive silicon carbide porous body
JP2012046380A (en) * 2010-08-27 2012-03-08 Tokyo Yogyo Co Ltd Method for producing silicon carbide porous body
JP2012101996A (en) * 2010-11-15 2012-05-31 National Institute Of Advanced Industrial Science & Technology Silicon carbide powder for producing silicon carbide single crystal, and production method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172673A (en) * 1984-09-13 1986-04-14 東芝セラミツクス株式会社 Manufacture of ceramic sintered body
JPH08217565A (en) * 1995-02-08 1996-08-27 Denki Kagaku Kogyo Kk Porous electrically conductive silicon carbide sintered body, its production and use
JPH08267355A (en) * 1995-04-03 1996-10-15 Fujimi Inkooporeetetsudo:Kk Manufacture of abrasive fine powder
JP2002338334A (en) * 2001-03-14 2002-11-27 Ngk Insulators Ltd Sintered ceramic compact and method of manufacturing for the same
JP2004138327A (en) * 2002-10-18 2004-05-13 Ngk Insulators Ltd Electromagnetic wave heating device, heating sheath used in the same, and manufacturing method of ceramics by using the same
JP2005021919A (en) * 2003-06-30 2005-01-27 Nippon Steel Corp Molding die using wear-resistant and anti-chipping ceramic and machining method using it
JP2011084451A (en) * 2009-10-19 2011-04-28 Tokyo Yogyo Co Ltd Method for producing electroconductive silicon carbide porous body
JP2012046380A (en) * 2010-08-27 2012-03-08 Tokyo Yogyo Co Ltd Method for producing silicon carbide porous body
JP2012101996A (en) * 2010-11-15 2012-05-31 National Institute Of Advanced Industrial Science & Technology Silicon carbide powder for producing silicon carbide single crystal, and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172495A (en) * 2018-03-28 2019-10-10 東京窯業株式会社 Manufacturing method of conductive carbonized silicon sintered body and conductive carbonized silicon sintered body
JP7213607B2 (en) 2018-03-28 2023-01-27 東京窯業株式会社 Manufacturing method of conductive silicon carbide sintered body and conductive silicon carbide sintered body

Also Published As

Publication number Publication date
JP6387128B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP2010503605A (en) Low CTE isotropic graphite
JP5674009B2 (en) High hardness conductive diamond polycrystal and method for producing the same
WO2017217378A1 (en) Silicon carbide production method and silicon carbide composite material
JP6387128B2 (en) Method for producing conductive silicon carbide sintered body and conductive silicon carbide sintered body
JP4991636B2 (en) Method for producing silicon carbide based porous material
JP2015074565A (en) Spherical silicon carbide powder and method for producing the same
JP5015500B2 (en) High thermal conductivity carbon material and method for producing the same
Liu et al. Properties of porous Si3N4/BN composites fabricated by RBSN technique
JP5208900B2 (en) Process for producing conductive silicon carbide based porous material for diesel particulate filter
TW202028154A (en) Mullite-base sintered compact and method for producing same
JP5350426B2 (en) Method for producing conductive ceramic sintered body
JP6046989B2 (en) Method for producing sintered silicon carbide
JP2005119934A (en) Silicon nitride porous body and method of manufacturing the same
JP6291446B2 (en) Method for producing conductive silicon carbide sintered body
JP4599344B2 (en) Method for producing non-oxide porous ceramic material
JP2001151579A (en) Silicon carbide porous body and method of producing the same
JP6778644B2 (en) Manufacturing method of conductive silicon carbide sintered body and conductive silicon carbide sintered body
JP4041879B2 (en) Ceramic porous body and method for producing the same
JP7213607B2 (en) Manufacturing method of conductive silicon carbide sintered body and conductive silicon carbide sintered body
JP5603765B2 (en) Silicon carbide heating element manufacturing method, silicon carbide heating element, honeycomb manufacturing method, and honeycomb
JP5281666B2 (en) Conductive ceramic sintered body
JP3605632B2 (en) High-strength porous alumina and method for producing the same
JP2019156672A (en) Porous silicon carbide sintered body and manufacturing method therefor
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JP2009126768A (en) Manufacturing method of silicon carbide compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180810

R150 Certificate of patent or registration of utility model

Ref document number: 6387128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250