JPH08267355A - Manufacture of abrasive fine powder - Google Patents

Manufacture of abrasive fine powder

Info

Publication number
JPH08267355A
JPH08267355A JP7760195A JP7760195A JPH08267355A JP H08267355 A JPH08267355 A JP H08267355A JP 7760195 A JP7760195 A JP 7760195A JP 7760195 A JP7760195 A JP 7760195A JP H08267355 A JPH08267355 A JP H08267355A
Authority
JP
Japan
Prior art keywords
polishing
powder
abrasive
pulverization
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7760195A
Other languages
Japanese (ja)
Inventor
Hisaki Owaki
寿樹 大脇
Toshio Nozaki
敏雄 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP7760195A priority Critical patent/JPH08267355A/en
Publication of JPH08267355A publication Critical patent/JPH08267355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE: To provide a method of manufacturing abrasive fine powder for precision polishing use, being excellent in polishing speed and quality balance. CONSTITUTION: Abrasive raw material is pulverized into being less than about 10μm in mean abrasive grain by a dry grinding process and then it is further reduced into powder of mean grain size being smaller than powder obtained through the dry grinding process by a wet grinding process, through which such an abradant as being excellent in polishing speed and balance in polishing surface quakity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は研磨剤として使用する微
粉末の製造方法に関し、さらに詳しくは精密研磨におい
て研磨効率(速度)と研磨面の品質(粗さ、欠陥)のバ
ランスが優れた研磨剤微粉末を得るための粉砕方法を骨
子とする研磨剤微粉末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine powder used as an abrasive, and more particularly, in precision polishing, the polishing efficiency (speed) and polishing surface quality (roughness, defects) are excellent in balance. The present invention relates to a method for producing fine abrasive powder, which has a crushing method for obtaining fine agent powder.

【0002】[0002]

【従来の技術】半導体単結晶、各種の金属材料、ハード
ディスクの基板、ガラス板、レンズ及び水晶等の金属又
は無機材料の表面を研磨する場合に、研磨剤微粉末を水
等の液体に懸濁してスラリー化したものが研磨剤として
広く使用されている。このような研磨は被研磨物と定
磐、パッド又はクロス等との間の往復、回転等の相対運
動の下に加工圧力を加えつつ研磨剤としてスラリー化し
たものを供給し、表面を研削することにより行われるも
のである。一般的には、粗い研磨剤を使った粗研磨から
微粉研磨剤を使った精密研磨まで2回以上の研磨を行う
ことが多く、それぞれの研磨工程に適した研磨剤が選択
・使用されている。
2. Description of the Related Art When polishing the surfaces of semiconductor single crystals, various metal materials, hard disk substrates, glass plates, lenses and crystal or other metal or inorganic materials, fine abrasive powder is suspended in a liquid such as water. Those made into slurry are widely used as abrasives. Such polishing is performed by applying a slurry as an abrasive while applying a processing pressure under a relative motion such as reciprocation and rotation between an object to be polished and a fixed pan, pad or cloth, and grinds the surface. It is done by a thing. Generally, polishing is performed twice or more from rough polishing with a coarse polishing agent to precision polishing with a fine polishing agent, and the polishing agent suitable for each polishing process is selected and used. .

【0003】使用される研磨剤粒子は、一部の例外を除
いて、天然の鉱物や合成セラミックス等の材料の溶融
物、仮焼物又はこれらの粗粉末を粉砕・分級して所定の
粒度に調整したものが用いられる。特に精密研磨におい
ては研磨面を高い品質にするために、研磨剤の改良・開
発の努力が数多くなされている。研磨面の品質評価とし
て、表面粗さ(凹凸)、スクラッチ(引っ掻き傷)等の
外見上のものの他、研磨剤粒子によって与えられる力に
よる表面近傍の内部の傷やストレス等も問題となる。研
磨剤の性能の他の一面は研磨効率、すなわち研磨速度で
あり、作業時間の短縮、経済性の面から研磨速度の大き
い研磨剤が求められている。そして、これらの研磨剤粒
子の粉砕方法には、ボールミル、ジェットミル、振動ミ
ル、アトライター等種々の方法があるが、目的によって
一種の方法で行うのが通常であって、2種以上の粉砕方
法を組み合わせて行うことはほとんどない。
Abrasive particles used, with some exceptions, are prepared by pulverizing and classifying a melt of a material such as natural minerals and synthetic ceramics, a calcined product, or coarse powder of these, to a predetermined particle size. What is done is used. Particularly in precision polishing, many efforts have been made to improve and develop the polishing agent in order to improve the quality of the polished surface. As the quality evaluation of the polished surface, in addition to the external appearance such as surface roughness (irregularities) and scratches (scratches), internal scratches and stresses near the surface due to the force given by the abrasive particles pose a problem. Another aspect of the performance of the polishing agent is the polishing efficiency, that is, the polishing rate, and there is a demand for a polishing agent having a high polishing rate in terms of shortening the working time and economy. And, there are various methods such as a ball mill, a jet mill, a vibration mill, an attritor, etc. as a method for crushing these abrasive particles, but it is usually carried out by a kind of method depending on the purpose, and two or more kinds of crushing are carried out. There is almost no combination of methods.

【0004】[0004]

【発明が解決しようとする課題】上述のような従来の研
磨剤微粉末の製造方法によって製造されている精密研磨
用研磨剤微粉末では、その原材料、粉砕方法や分級方法
等を工夫することにより粒子形状、粒径及びその分布を
調整してその性能を向上させる努力がなされて来てい
た。しかし、研磨速度と研磨面の品質は本来両立しにく
いものであって、両者のバランスにおいて満足できるも
のがなかなか得られないのが実状である。一つの方法と
して、分級の回数を多く繰り返して粒度分布をシャープ
にして、研磨速度と品質のバランスを良くすることは可
能であるが、製造コストが高くなってしまうという問題
がある。
The fine abrasive powder for precision polishing produced by the conventional method for producing fine abrasive powder as described above has its raw materials, pulverization method, classification method, etc. devised. Efforts have been made to adjust the particle shape, particle size and its distribution to improve its performance. However, the polishing rate and the quality of the polished surface are originally difficult to be compatible with each other, and in reality, it is difficult to obtain a satisfactory balance between the two. As one method, it is possible to repeat the classification many times to sharpen the particle size distribution and improve the balance between the polishing rate and the quality, but there is a problem that the manufacturing cost becomes high.

【0005】本発明は上述のような問題点を解決するた
めになされたもので、従来行われている粉砕方法を改良
することにより、研磨速度と品質のバランスの優れた精
密研磨用の研磨剤微粉末の製造方法を提供することを目
的とするものである。
The present invention has been made to solve the above-mentioned problems, and by improving the conventional crushing method, an abrasive for precision polishing having an excellent balance of polishing rate and quality. It is an object of the present invention to provide a method for producing fine powder.

【0006】[0006]

【課題を解決するための手段】本発明に係る研磨剤微粉
末の製造方法は、粉砕によって研磨剤微粉末を製造する
に当たって、まず乾式粉砕で材料に高いエネルギーを与
えながら粉砕限界値に達するまで粉砕した後、比較的温
和な条件の下で湿式粉砕を行うことによって更に細かく
粉砕することを特徴とするものである。以下、本発明を
詳細に説明する。
In the method for producing fine abrasive powder according to the present invention, in producing fine abrasive powder by pulverization, first, dry pulverization is performed until high energy is applied to the material until the pulverization limit value is reached. After the pulverization, the pulverization is further finely performed by performing wet pulverization under a relatively mild condition. Hereinafter, the present invention will be described in detail.

【0007】本発明の研磨剤微粉末の材料としては、ア
ルミナ(酸化アルミニウム)とジルコン(ジルコニウム
の鉱石)の混合物、溶融アルミナ、仮焼アルミナ、シリ
カ(酸化ケイ素)、ジルコニア(酸化ジルコニウム)又
は炭化ケイ素等の公知の研磨剤用の粉末を使用できる。
これらの内、材料が溶融インゴットとして供給されるも
のは、あらかじめ粗粉砕によって適当な粗さ、例えば数
mmの粉末にしておくことが望ましい。そして、前述の
ように、まず乾式粉砕で材料に高いエネルギーを与えな
がら粉砕する。乾式粉砕の初期においては粒度は時間に
比例して小さくなるが、粉砕時間が長くなるにつれて粒
度の小さくなり方はだんだん鈍り、ついにはそれ以上小
さくならなくなる。この飽和値が上述の粉砕限界値であ
る。本発明の効果が有効に発揮されるためには、この乾
式粉砕において粉砕限界値に近い粒径まで粉砕しておく
ことが効果的であり、この段階で得られる粉末の粒径が
あまり大きくないことが肝要である。一般的には、粉砕
限界値は粉砕条件によって変化するものであるが、一つ
の目安として10μm以下であることが好ましい。
As the material of the fine abrasive powder of the present invention, a mixture of alumina (aluminum oxide) and zircon (ore of zirconium), fused alumina, calcined alumina, silica (silicon oxide), zirconia (zirconium oxide) or carbonized. Known abrasive powders such as silicon can be used.
Of these, the material to be supplied as a molten ingot is preferably coarsely pulverized in advance into powder having an appropriate roughness, for example, several mm. Then, as described above, first, the material is pulverized by dry pulverization while giving high energy to the material. In the initial stage of dry pulverization, the particle size becomes smaller in proportion to time, but as the pulverization time becomes longer, the particle size becomes smaller gradually, and finally it does not become smaller. This saturation value is the above-mentioned crushing limit value. In order to effectively bring out the effect of the present invention, it is effective in this dry pulverization to grind to a particle size close to the grinding limit value, and the particle size of the powder obtained at this stage is not so large. It is essential. Generally, the crushing limit value varies depending on the crushing conditions, but as one guide, it is preferably 10 μm or less.

【0008】乾式粉砕においては、ボールミル、ジェッ
トミル、振動ミル等多くの種類の粉砕機が使用可能であ
るが、その形式、形状、大きさ、媒体(ボール等)、媒
体のサイズ、仕込み量、回転数又は振動振幅、周波数等
多くのパラメータを変えることによって、それぞれ異な
った所望の粉砕特性を得ることが可能である。従って、
研磨剤の材料や研磨対象物、また研磨の目的によって乾
式粉砕の機械、形式及び条件を選び、適当なエネルギー
を材料に与えて粒径を調整することが好ましい。このよ
うに、乾式粉砕においては材料になるべく高いエネルギ
ーを与えて粉砕することが本発明の目的に対して好まし
い。その意味で高い加速度を材料に付与することができ
る振動ミルは本発明の目的に対して好適である。
In the dry crushing, many kinds of crushers such as a ball mill, a jet mill, and a vibration mill can be used. The type, shape, size, medium (ball etc.), medium size, charged amount, It is possible to obtain different desired grinding characteristics by changing many parameters such as the number of revolutions, the vibration amplitude, and the frequency. Therefore,
It is preferable to select a dry crushing machine, type and conditions depending on the material of the polishing agent, the object to be polished, and the purpose of polishing, and apply appropriate energy to the material to adjust the particle size. Thus, in dry pulverization, it is preferable for the purpose of the present invention to pulverize by giving as high energy as possible to the material. In that sense, a vibrating mill capable of imparting a high acceleration to a material is suitable for the purpose of the present invention.

【0009】乾式粉砕に次いで湿式粉砕にかけられる。
湿式にする媒体には主として水が用いられるが、分散
剤、有機溶媒やその他種々の添加剤を含んでいてもよ
い。湿式粉砕においても、乾式粉砕と同様に、粉砕方
式、条件を変えることにより異なる粉砕特性を得ること
ができる。従って、同様に研磨剤の材料や研磨対象物、
最終の研磨面品質が得られる粉末粒径に対応する条件を
選ぶことが好ましい。そして、本発明における湿式粉砕
では乾式粉砕における条件よりも温和な条件を適用する
ことにより、粒径がさらに小さくなる。
Dry grinding is followed by wet grinding.
Water is mainly used as the medium for the wet process, but it may contain a dispersant, an organic solvent and various other additives. Also in the wet pulverization, different pulverization characteristics can be obtained by changing the pulverization method and conditions, as in the dry pulverization. Therefore, similarly, the material of the polishing agent and the object to be polished,
It is preferable to select the conditions corresponding to the powder particle size that gives the final polished surface quality. In the wet pulverization according to the present invention, the particle size is further reduced by applying milder conditions than those in the dry pulverization.

【0010】乾式粉砕で得られる粉末の粒径と湿式粉砕
により得られる最終的に目的とする研磨剤粉末の粒径と
の比について特に制約はないが、前者が後者の1.5〜
3倍以上になっていることが、本発明の目的に対して好
適である。このような温和な条件の湿式粉砕に適したも
のとして、湿式ボールミルは好適な粉砕手段である。そ
して通常は、湿式粉砕された粉末は湿式又は乾式分級し
て粒度及びその分布を調整する。このようにして分離さ
れたもののうち、粗粒は再びボールミルに帰してリサイ
クルすることが経済的に好ましい。
There is no particular restriction on the ratio of the particle size of the powder obtained by dry pulverization to the particle size of the finally desired abrasive powder obtained by wet pulverization, but the former is 1.5 to the latter.
It is suitable for the purpose of the present invention that it is three times or more. A wet ball mill is a suitable grinding means suitable for wet grinding under such mild conditions. Usually, the wet-milled powder is subjected to wet or dry classification to adjust the particle size and its distribution. Of the particles thus separated, it is economically preferable to return the coarse particles to the ball mill for recycling.

【0011】[0011]

【作用】本発明においては、粉砕によって研磨剤微粉末
を製造するのであるが、まず乾式粉砕で粉砕限界値に達
するまで粉砕した後、湿式粉砕でさらに細かく粉砕して
研磨剤微粉末を製造するから、これを精密研磨に使用す
ると、従来の一種の粉砕手段で製造された粉末に比べ
て、研磨速度が大きく、しかも研磨面の品質において遜
色のない優れた研磨剤が得られる。換言すれば、研磨速
度と研磨面の品質とのバランスのよい研磨剤を製造する
ことが可能である。以下、その作用を詳細に説明する。
In the present invention, the fine abrasive powder is produced by pulverization. First, the fine abrasive powder is pulverized by dry pulverization until the pulverization limit value is reached, and then finely pulverized by wet pulverization to produce the fine abrasive powder. Therefore, when this is used for precision polishing, it is possible to obtain an excellent polishing agent which has a higher polishing rate and is comparable to the quality of the polished surface as compared with the powder produced by a conventional pulverizing means. In other words, it is possible to produce an abrasive having a good balance between the polishing rate and the quality of the polished surface. The operation will be described in detail below.

【0012】研磨剤の性能は、材質が同じであれば、研
磨剤粉末の粒径とその分布と粒子形状とによって決ま
る。粒径は研磨速度に最も大きな影響を与える因子であ
り、粒径が大きいと研磨速度は大きくなるが、反面研磨
面は粗くなり、表面近くの内部に発生する欠陥も多くな
る。一方、粒径の小さなものは面品質はよくなるが研磨
速度が小さくなるというように二律背反性が生じてく
る。粒子形状の研磨作用に及ぼす影響も重要で、例えば
球形に近いものより、角の多いエッジを持ったものが研
磨速度が大きいとされている。
The performance of the abrasive is determined by the particle size of the abrasive powder, its distribution and the particle shape if the material is the same. The grain size is a factor that most affects the polishing rate. When the grain size is large, the polishing rate increases, but on the other hand, the polished surface becomes rough and many defects are generated inside the surface. On the other hand, when the grain size is small, the surface quality is improved, but the polishing rate is reduced, which causes an antinomy. The effect of the particle shape on the polishing action is also important. For example, it is said that the one having more angular edges has a higher polishing rate than the one having a spherical shape.

【0013】本発明の研磨剤微粉末の材料としてあげら
れるアルミナとジルコンの混合物、溶融アルミナ、仮焼
アルミナ、シリカ、ジルコニア又は炭化ケイ素等のの材
料は、一般的に1μm以下の微細な1次粒子(単結晶)
が複数個凝集して数μm〜100μm程度の2次粒子を
形成している。本発明は、その粉砕手段によりこの2次
粒子を、目的とする粒径を有する研磨剤微粉末を形成す
るものである。この2次粒子の粒径と形状は粉砕手段の
機種・条件によって変わるものであって、一般的には媒
体との衝突力を大きくし、粒子に与えられるエネルギー
を大きくすれば、角が多くエッジを持った形状の粒子が
多く得られるが、反面、比較的速い段階で粒径が限界値
に達し、微粒子が得られない。すなわち、それ以上の微
粉砕が困難になる。この理由は、粒子に与えられるエネ
ルギーが大きくなると、それだけ粒子同志の衝突時の会
合力が大きくなり、粒子同志の会合が増加することによ
るものと考えられる。
Materials such as a mixture of alumina and zircon, fused alumina, calcined alumina, silica, zirconia or silicon carbide which are mentioned as the material of the fine abrasive powder of the present invention are generally fine primary particles of 1 μm or less. Particle (single crystal)
Are aggregated to form secondary particles having a size of several μm to 100 μm. According to the present invention, the pulverizing means forms the secondary particles into abrasive fine powder having a target particle size. The particle size and shape of the secondary particles vary depending on the model and conditions of the crushing means. Generally, if the collision force with the medium is increased and the energy given to the particles is increased, the number of corners increases. Although a large number of particles having a shape with a particle size are obtained, on the other hand, the particle size reaches a limit value at a relatively early stage, and fine particles cannot be obtained. That is, further pulverization becomes difficult. The reason for this is considered to be that as the energy given to the particles becomes larger, the associative force of the particles at the time of collision increases, and the association between the particles also increases.

【0014】本発明の第1段階で実施する乾式粉砕で
は、運転条件を適当に選ぶことによって粉末粒子に与え
るエネルギーを大きくすれば、角が多く、かつエッジを
持った形状の粒子が多く得られると考えられるが、反
面、比較的速い段階で粒径が限界値に達し、微粒子が得
られない。この限界値に達したところでは、見掛け上は
全体の平均粒径がほとんど変化しないようにみえるが、
実際には破砕されてできる小さい粒子と、粒子同志が衝
突により会合してできる大きい粒子が平衡状態を保って
いると考えられる。すなわち、内容的にはもとの粒子が
新しく破砕されてできた小さい粒子同志の会合物と入れ
替わっていくものと考えられる。
In the dry pulverization carried out in the first step of the present invention, if the energy given to the powder particles is increased by appropriately selecting the operating conditions, many particles having many corners and edges can be obtained. However, on the other hand, the particle size reaches the limit value at a relatively early stage, and fine particles cannot be obtained. When this limit value is reached, it seems that the average particle size of the whole hardly changes,
Actually, it is considered that the small particles that are formed by crushing and the large particles that are formed by the mutual association of the particles by collision maintain an equilibrium state. In other words, in terms of content, it is considered that the original particles will be replaced by the newly crushed small particles formed by the association of the particles.

【0015】本発明者は、このようにして乾式粉砕で形
成された角が多く、エッジを持った形状の粒子の会合物
を比較的温和な条件で粉砕すれば、角が多く、エッジを
持った形状でかつ微細な粒子が得られるのではないかと
考えたのである。そして、まず第1段階として、高い加
速度を与えるような乾式粉砕で十分な時間粉砕して平衡
状態すなわち粉砕限界値近くまで到達せしめ、第2段階
での粉砕を温和な湿式粉砕で行うことを検討した結果、
本発明に到達したものである。これに対し、例えば最初
から第2段階のような温和な条件で粉砕して形成された
粉末は、1段で微粉末を得ることができるという利点が
あるけれども、粉末の形状は比較的球形に近いものであ
り、研磨速度の小さい砥粒になり、あまり得策ではない
ものと考えられる。また、以上のような考えから明らか
なように、本発明のにおける乾式粉砕で得られる粉末の
粒径はあまり大きいものであっては本発明の効果を発揮
し得ないものとなる。従って、乾式粉砕で得られる粉末
の粒径は約10μm以下であることが効果的である。
The inventor of the present invention has many corners and has edges when the aggregate of particles having a shape with many corners and edges formed by dry crushing is crushed under relatively mild conditions. I thought that fine particles with different shapes could be obtained. Then, as the first step, it is considered that the dry pulverization that gives a high acceleration is pulverized for a sufficient time to reach the equilibrium state, that is, near the pulverization limit value, and the pulverization in the second step is performed by mild wet pulverization. As a result,
The present invention has been reached. On the other hand, for example, the powder formed by pulverizing from the first to the second step under mild conditions has an advantage that a fine powder can be obtained in one step, but the shape of the powder is relatively spherical. It is considered to be an unfavorable measure because it is close to the above and the abrasive grains have a low polishing rate. Further, as is clear from the above idea, if the particle size of the powder obtained by dry pulverization in the present invention is too large, the effect of the present invention cannot be exhibited. Therefore, it is effective that the particle diameter of the powder obtained by dry pulverization is about 10 μm or less.

【0016】[0016]

【実施例】本発明の実施例と従来方式の比較例の説明に
おいて、粒径の測定はコールター社製コールターカウン
ターTA−2を使用し、細孔径14μmで測定した。ま
た、表面粗さの測定は、WYKO社製表面粗さ計TOP
O−3Dシステムで測定した。
EXAMPLES In the description of the examples of the present invention and the comparative example of the conventional method, the particle size was measured using a Coulter counter TA-2 manufactured by Coulter Co., Ltd. with a pore size of 14 μm. Also, the surface roughness is measured by the surface roughness meter TOP manufactured by WYKO.
It was measured with an O-3D system.

【0017】[実施例]まず、ギブサイト(gibbs
ite:水酸化アルミニウム)を1200℃で2時間焼
成してα−アルミナの粗粉末を得た。この粉末2kgと
15mmφのアルミナボールとを、直径210mm、内
容量7.75リットルの円筒型ポットに入れ、振動振幅
8で5時間乾式粉砕した。その結果、平均粒径1.5μ
mのα−アルミナの粉末が得られた。さらに、この粉末
を、ボールミルを使用して15mmφボール、回転数6
0rpmで2時間の湿式粉砕を行った。そして、この粉
末を静置式分級槽を用いて分級し、平均粒径0.8μm
の微粉末を形成した。
[Example] First, gibbsite (gibbs)
(ite: aluminum hydroxide) was fired at 1200 ° C. for 2 hours to obtain a coarse powder of α-alumina. 2 kg of this powder and 15 mmφ alumina balls were put into a cylindrical pot having a diameter of 210 mm and an internal capacity of 7.75 liters, and dry pulverized at a vibration amplitude of 8 for 5 hours. As a result, the average particle size is 1.5μ
m α-alumina powder was obtained. Further, this powder was ball milled with a 15 mmφ ball at a rotation speed of 6
Wet grinding was performed at 0 rpm for 2 hours. Then, this powder was classified using a stationary classification tank, and the average particle size was 0.8 μm.
Of fine powder was formed.

【0018】この微粉末190gに対して水1300m
l(ミリリットル)、添加剤として硝酸アルミニウム2
1gを加えて、研磨用スラリーを調製した。この研磨用
スラリーを用いてNi−Pメッキを施した3.5インチ
アルミニウム基板を材料として形成された磁気ディスク
基板の表面研磨を行った。研磨機はスピードファム社製
の両面研磨機を用い、研磨条件は回転数60rpm、荷
重80g/cm、スラリー注入量100ml/分であ
る。研磨試験の結果、研磨速度は0.63μm/分であ
り、面粗さはRaで1.0nmであった。また、研磨面
に欠陥は見られなかった。
190 g of this fine powder and 1300 m of water
1 (milliliter), aluminum nitrate 2 as an additive
1 g was added to prepare a polishing slurry. Using this polishing slurry, the surface of a magnetic disk substrate formed of a 3.5-inch aluminum substrate plated with Ni-P was polished. The polishing machine used was a double-sided polishing machine manufactured by Speed Fam Co., and the polishing conditions were a rotation speed of 60 rpm, a load of 80 g / cm 2 , and a slurry injection amount of 100 ml / min. As a result of the polishing test, the polishing rate was 0.63 μm / min and the surface roughness Ra was 1.0 nm. No defects were found on the polished surface.

【0019】[比較例]実施例と同じ乾式粉砕方法で調
製したα−アルミナの粗粉末を実施例の場合と同じボー
ルミルの条件で20時間湿式粉砕を行い、実施例と同じ
方法で分級して、平均粒径0.8μmの研磨用微粉末を
得た、この比較例粉末を用い実施例と同じ組成の研磨用
スラリーを調製し、実施例と同じ条件で磁気ディスク基
板の表面研磨を行った。研磨試験の結果、研磨速度は
0.40μm/分であり、面粗さはRaで1.0nmで
あった。また、この場合も研磨面に欠陥は見られなかっ
た。
[Comparative Example] The coarse powder of α-alumina prepared by the same dry pulverization method as in the example was wet pulverized for 20 hours under the same ball mill condition as in the example and classified by the same method as the example. A fine powder for polishing having an average particle diameter of 0.8 μm was obtained. Using this comparative powder, a polishing slurry having the same composition as that of the example was prepared, and the surface of the magnetic disk substrate was polished under the same conditions as the example. . As a result of the polishing test, the polishing rate was 0.40 μm / min, and the surface roughness Ra was 1.0 nm. Also in this case, no defect was found on the polished surface.

【0020】以上のように本実施例によれば、同一の研
磨・測定条件で比較した場合、実施例の研磨剤は研磨速
度において比較例より優れ、面粗さはほとんど同等の結
果を示した。この結果から、本実施例の研磨剤は、研磨
速度と研磨面品質のバランスが向上するという優れた効
果を示した。
As described above, according to this example, when compared under the same polishing and measurement conditions, the polishing agents of the examples were superior to the comparative example in the polishing rate, and the surface roughness showed almost the same result. . From these results, the polishing compound of this example showed an excellent effect of improving the balance between the polishing rate and the polishing surface quality.

【0021】[0021]

【発明の効果】以上のように本発明によれば、研磨剤原
材料を乾式粉砕法により平均粒径約10μm以下に粉砕
した後、湿式粉砕法によって乾式粉砕法で得られた粉末
より小さい平均粒径の粉末に粉砕するという研磨剤微粉
末の製造方法によって得られた微粒子研磨材を用いて研
磨剤を調製することにより、従来の研磨剤微粉末の製造
方法によって得られた微粒子研磨材を用いた研磨剤によ
るものに対して、研磨速度と研磨面品質のバランスの優
れた研磨剤を得ることができる。このように、研磨速度
と研磨面品質の著しいバランスの向上が達成されたこと
によって、研磨工程の所要時間が短縮され、能率、コス
ト面で大きな効果が得られる。
As described above, according to the present invention, the abrasive raw material is pulverized by the dry pulverizing method to an average particle size of about 10 μm or less, and then the average particle size smaller than the powder obtained by the dry pulverizing method by the wet pulverizing method. The fine particle abrasive obtained by the conventional method for producing fine abrasive powder is used by preparing the abrasive using the fine particle abrasive obtained by the method for producing fine abrasive powder that is pulverized into powder having a diameter of It is possible to obtain an abrasive having an excellent balance between the polishing rate and the quality of the polished surface, as compared with the conventional abrasive. In this way, the significant improvement in the polishing rate and the quality of the polished surface has been achieved, so that the time required for the polishing step can be shortened and a great effect can be obtained in terms of efficiency and cost.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月12日[Submission date] April 12, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】半導体単結晶、各種の金属材料、ハード
ディスクの基板、ガラス板、レンズ及び水晶等の金属又
は無機材料の表面を研磨する場合に、研磨剤微粉末を水
等の液体に懸濁してスラリー化したものが研磨剤として
広く使用されている。このような研磨は被研磨物と
、パッド又はクロス等との間の往復、回転等の相対運
動の下に加工圧力を加えつつ研磨剤としてスラリー化し
たものを供給し、表面を研削することにより行われるも
のである。一般的には、粗い研磨剤を使った粗研磨から
微粉研磨剤を使った精密研磨まで2回以上の研磨を行う
ことが多く、それぞれの研磨工程に適した研磨剤が選択
・使用されている。
2. Description of the Related Art When polishing the surfaces of semiconductor single crystals, various metal materials, hard disk substrates, glass plates, lenses and crystal or other metal or inorganic materials, fine abrasive powder is suspended in a liquid such as water. Those made into slurry are widely used as abrasives. Such polishing object to be polished and the constant
This is carried out by supplying a slurried slurry as an abrasive while applying a processing pressure under a relative motion such as reciprocation and rotation with a board , a pad, a cloth or the like, and grinding the surface. Generally, polishing is performed twice or more from rough polishing with a coarse polishing agent to precision polishing with a fine polishing agent, and the polishing agent suitable for each polishing process is selected and used. .

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】本発明の研磨剤微粉末の材料としてあげら
れるアルミナとジルコンの混合物、溶融アルミナ、仮焼
アルミナ、シリカ、ジルコニア又は炭化ケイ素等の材
は、一般的に1μm以下の微細な1次粒子(単結晶)が
複数個凝集して数μm〜100μm程度の2次粒子を形
成している。本発明は、その粉砕手段によりこの2次粒
子を、目的とする粒径を有する研磨剤微粉末を形成する
ものである。この2次粒子の粒径と形状は粉砕手段の機
種・条件によって変わるものであって、一般的には媒体
との衝突力を大きくし、粒子に与えられるエネルギーを
大きくすれば、角が多くエッジを持った形状の粒子が多
く得られるが、反面、比較的速い段階で粒径が限界値に
達し、微粒子が得られない。すなわち、それ以上の微粉
砕が困難になる。この理由は、粒子に与えられるエネル
ギーが大きくなると、それだけ粒子同志の衝突時の会合
力が大きくなり、粒子同志の会合が増加することによる
ものと考えられる。
[0013] abrasive fine powder mixture of alumina and zircon cited as the material of the present invention, fused alumina, calcined alumina, silica, zirconia or wood charge such as silicon carbide are generally less fine primary 1μm A plurality of particles (single crystals) are aggregated to form secondary particles of about several μm to 100 μm. According to the present invention, the pulverizing means forms the secondary particles into abrasive fine powder having a target particle size. The particle size and shape of the secondary particles vary depending on the model and conditions of the crushing means. Generally, if the collision force with the medium is increased and the energy given to the particles is increased, the number of corners increases. Although a large number of particles having a shape with a particle size are obtained, on the other hand, the particle size reaches a limit value at a relatively early stage, and fine particles cannot be obtained. That is, further pulverization becomes difficult. The reason for this is considered to be that as the energy given to the particles becomes larger, the associative force of the particles at the time of collision increases, and the association between the particles also increases.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[比較例]実施例と同じ焼成方法で調製し
たα−アルミナの粗粉末を実施例の場合と同じボールミ
ルの条件で20時間湿式粉砕を行い、実施例と同じ方法
で分級して、平均粒径0.8μmの研磨用微粉末を得
た、この比較例粉末を用い実施例と同じ組成の研磨用ス
ラリーを調製し、実施例と同じ条件で磁気ディスク基板
の表面研磨を行った。研磨試験の結果、研磨速度は0.
40μm/分であり、面粗さはRaで1.0nmであっ
た。また、この場合も研磨面に欠陥は見られなかった。
[Comparative Example] A coarse powder of α-alumina prepared by the same firing method as in Example was wet-ground for 20 hours under the same ball mill conditions as in Example, and classified by the same method as in Example. A polishing slurry having the same composition as that of the example was prepared by using the powder of the comparative example, which was a fine powder for polishing having an average particle size of 0.8 μm, and the surface of the magnetic disk substrate was polished under the same conditions as the example. As a result of the polishing test, the polishing rate was 0.
The surface roughness was Ra of 1.0 nm. Also in this case, no defect was found on the polished surface.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 研磨剤原材料の研磨材粉砕工程における
研磨剤微粉末の製造方法において、 前記研磨剤原材料を乾式粉砕法により平均粒径約10μ
m以下に粉砕した後、 湿式粉砕法によって前記乾式粉砕法で得られた粉末より
小さい平均粒径の粉末に粉砕することを特徴とする研磨
剤微粉末の製造方法。
1. A method for producing fine abrasive powder in an abrasive pulverizing step of an abrasive raw material, wherein the abrasive raw material is dry-pulverized to have an average particle diameter of about 10 μm.
A method for producing fine abrasive powder, which comprises pulverizing to m or less and then pulverizing to a powder having an average particle size smaller than that of the powder obtained by the dry pulverizing method by a wet pulverizing method.
【請求項2】 前記乾式粉砕法は振動式ミルによる粉砕
であることを特徴とする請求項1記載の研磨剤微粉末の
製造方法。
2. The method for producing fine abrasive powder according to claim 1, wherein the dry pulverization method is pulverization by a vibrating mill.
【請求項3】 前記湿式粉砕法はボールミルによる粉砕
であることを特徴とする請求項1記載の研磨剤微粉末の
製造方法。
3. The method for producing fine abrasive powder according to claim 1, wherein the wet pulverization method is pulverization by a ball mill.
JP7760195A 1995-04-03 1995-04-03 Manufacture of abrasive fine powder Pending JPH08267355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7760195A JPH08267355A (en) 1995-04-03 1995-04-03 Manufacture of abrasive fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7760195A JPH08267355A (en) 1995-04-03 1995-04-03 Manufacture of abrasive fine powder

Publications (1)

Publication Number Publication Date
JPH08267355A true JPH08267355A (en) 1996-10-15

Family

ID=13638468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7760195A Pending JPH08267355A (en) 1995-04-03 1995-04-03 Manufacture of abrasive fine powder

Country Status (1)

Country Link
JP (1) JPH08267355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100284678B1 (en) * 1998-10-10 2001-03-15 최재원 Fine Grain Grinding Manufacturing Method
WO2002097004A1 (en) * 2001-05-29 2002-12-05 Mitsui Mining & Smelting Co.,Ltd. Method for producing cerium-based polishing agent
CN102701259A (en) * 2012-05-18 2012-10-03 湖南翰林新材料股份有限公司 Preparation method of nano rare earth polishing powder
JP2017178771A (en) * 2016-03-25 2017-10-05 東京窯業株式会社 Production method of conductive silicon carbide-based sintered body and conductive silicon carbide-based sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100284678B1 (en) * 1998-10-10 2001-03-15 최재원 Fine Grain Grinding Manufacturing Method
WO2002097004A1 (en) * 2001-05-29 2002-12-05 Mitsui Mining & Smelting Co.,Ltd. Method for producing cerium-based polishing agent
US6905527B2 (en) 2001-05-29 2005-06-14 Mitsui Mining & Smelting Co., Ltd. Method of manufacturing cerium-based polishing agent
CN102701259A (en) * 2012-05-18 2012-10-03 湖南翰林新材料股份有限公司 Preparation method of nano rare earth polishing powder
JP2017178771A (en) * 2016-03-25 2017-10-05 東京窯業株式会社 Production method of conductive silicon carbide-based sintered body and conductive silicon carbide-based sintered body

Similar Documents

Publication Publication Date Title
KR100278251B1 (en) Platy alumina and a method for producing the same
JP2875038B2 (en) Vitrified grinding wheel containing a mixture of sol-gel alumina-based abrasive grains and silicon carbide
US3121623A (en) Method of making crystalline alumina lapping powder
JP2003082333A (en) Cerium-based polishing material slurry and method for manufacturing the same
US20130086848A1 (en) Polycrystalline AL2O3 Bodies Based on Melted Aluminum Oxide
US20020129559A1 (en) Polishing particle and method for producing polishing particle
WO2002008122A1 (en) Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
JPH08267355A (en) Manufacture of abrasive fine powder
JP3416855B2 (en) Polishing composition and polishing method
JP4284771B2 (en) Α-alumina abrasive for metal polishing and its production method
JP3752083B2 (en) Abrasive and production method thereof
JP3203311B2 (en) Whetstone and its manufacturing method
JP4471072B2 (en) Method of grinding cerium oxide using a ball mill device
JP3603165B2 (en) Abrasive composition
JP2507571B2 (en) Abrasive manufacturing method
US2830884A (en) Abrasive composition
JP2000190228A (en) Fixed abrasive grain work tool
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP2631924B2 (en) Manufacturing method of alumina pulverizer member
JP2006193711A (en) Grinding material powder, grinding material slurry, grinding pad having fixed grinding particle, methods for producing them and method of grinding
US2347537A (en) Abrasive and method of making same
JPH012870A (en) Porous super finishing grinding wheel
JPS6038486A (en) Fine abrasive powder
JPH05179B2 (en)
JPS6086186A (en) Abrasive material for semiconductor wafer