JPS6156187B2 - - Google Patents

Info

Publication number
JPS6156187B2
JPS6156187B2 JP55023161A JP2316180A JPS6156187B2 JP S6156187 B2 JPS6156187 B2 JP S6156187B2 JP 55023161 A JP55023161 A JP 55023161A JP 2316180 A JP2316180 A JP 2316180A JP S6156187 B2 JPS6156187 B2 JP S6156187B2
Authority
JP
Japan
Prior art keywords
less
silicon carbide
heating element
sic
theoretical density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55023161A
Other languages
Japanese (ja)
Other versions
JPS56120573A (en
Inventor
Shoichi Watanabe
Akyasu Okuno
Yasushi Matsuo
Shunkichi Nozaki
Taketo Fukura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2316180A priority Critical patent/JPS56120573A/en
Publication of JPS56120573A publication Critical patent/JPS56120573A/en
Priority to US06/707,257 priority patent/US4668452A/en
Publication of JPS6156187B2 publication Critical patent/JPS6156187B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された強度と低抵抗の炭化珪素発
熱体の製造法に関する。 従来炭化珪素発熱体は従来の電気炉用発熱体に
用いられてきた。最近は各種産業機器用の発熱素
子にも使われ、この用途には高い強度と低い電気
抵抗と負の抵抗温度係数が小さいこと、高温での
耐酸化性の大きいことが要求されるが最近開発さ
れたSiCの焼結に関する二三の方法を紹介する
と、 (1) ゼネラルエレクトリツク社より提案された特
開昭50−78609号「高密度炭化珪素セラミツク
の製造方法」でSiCと硼素化合物と炭素系材料
の混合物をAr中2050℃で60分焼結することに
より、理論密度の95%以上の焼結体が得られ
る。然し比抵抗は数Ω−cm以上で、しかも高温
抵抗が極端に低くなるため発熱体として不適当
であつた。 又これを最初から窒素中で2200℃以下で焼結
すれば比抵抗は1.0Ω−cm以下であるが理論密
度の80%程度にしか焼結せず強度が弱く、又よ
り高温で焼結すれば理論密度の約90%迄焼結す
るが、比抵抗は10〜106Ω−cmと大きくしかも
安定性に欠けるという難があつた。 (2) カーボランダム社より提案された特開昭52−
110499号「新規炭化珪素組成物より成る燃料点
火器及び該組成物の製造法」はSiC95%以上の
粉末をホツトプレスにより2.5g/c.c.に焼結し、
N、P、As、Sb、Biを固相又は気相でドーピ
ングし常温での比抵抗を0.66Ω−cmとする方法
であるが、1350℃の比抵抗が0.12Ω−cmで抵抗
温度係数が悪く省電力型の発熱体として不向き
であつた。 (3) 又同じカーボランダム社から提案された特開
昭53−121810「高密度耐熱衝撃性焼結炭化珪
素」はSiCに0.3〜3.0重量%の添加剤BN、BP、
AiB2とこの添加剤の150〜500重量%のCを添
加し1900〜2500℃に加熱して理論密度の85%以
上とするものであるがゼネラルエレクトリツク
社から提案された常圧焼結体と本質的に同等で
あり、理論密度の95%以上の密度を有する焼結
体では、B、B4C添加系に比べ耐酸化性が若干
劣つているという難があつた。 そこで本出願人は先に特願昭54−72464号「炭
化珪素発熱体の製造法」において、平均粒径1.0
μ以下のSiC粉末にその0.3〜3.0重量%の硼素に
相当する量の硼素又は硼素化合物と0.1〜3.0重量
%の炭素に相当する量の炭素又は炭素質化合物を
添加し、混合成形し、真空中又は窒素以外の不活
性雰囲気中で理論密度の70〜95%に焼結する一次
焼成と次いで窒素ガス雰囲気中で1600〜2200℃の
温度で理論密度の80%以上抵抗1.0Ω−cm以下の
炭化珪素発熱体に再焼結する二次焼成とからなる
炭化珪素発熱体の製造法を提供した。これによつ
て得られる材質は密度が高いため強度が大きく且
つ低抵抗で、高温抵抗も極端に低くならないもの
である。 然しこの後二次焼成における窒素雰囲気を窒素
の加圧雰囲気に変えることにより、窒素添加の影
響を一段と高め抵抗値を小さくすることができ
た。これにより本願発明の要旨は平均粒径1.0μ
以下のSiC粉末にその0.3〜3.0重量%の硼素に相
当する量の硼素又は硼素化合物と、0.1〜6.0重量
%の炭素に相当する量の炭素又は炭素質化合物を
添加し、混合成形し真空中又は不活性雰囲気中で
理論密度の70〜95%に焼結する一次焼成と次いで
加圧窒素ガス雰囲気で1500〜2300℃の温度で理論
密度の80%以上比抵抗1.0Ω−cm以下の炭化珪素
発熱体に再焼結する二次焼成とからなる炭化珪素
発熱体の製造法を提供するもので窒素の加圧雰囲
気は1気圧を超える圧力以上で且つ200気圧以下
が好ましく1.5気圧上100気圧以下が特に好まし
い、しかして焼結を真空中又は不活性雰囲気中で
焼結する一次焼成と加圧窒素中で焼結する二次焼
成に分けるのは、最初より加圧の窒素中で焼結し
ても望む比抵抗値内に制御された焼結体を得るこ
とができるが密度が理論密度の80%以上となら
ず、従つて破壊強度が必要な値に達しないためで
ある。又一次焼成の焼結密度を理論密度の70〜95
%とするのは70%以下では二次焼成を行つても最
終的に必要とされる理論密度の80%に到らないた
めであり、又上限を95%とするのは95%上では焼
結体中に閉鎖気孔を生じ中心迄貫通した開口気孔
が出来ず、二次焼成の窒素中焼成で窒素の影響が
中心部迄及ばないためである。又出発原料である
SiCの粒径を1.0μ以下にする理由の一つはそれ以
上では要求に応じた密度を有する焼結体が得られ
ないためであり、他の1つは一次焼結体の比表面
積を大きくして窒素のドーピングを十分行うため
である。又添加する硼素化合物は元素状硼素又は
炭化硼素その他の硼素化合物も好ましく、SiCの
焼結性を改善するがその下限を0.3%としたのは
0.3%以下ではその焼結性改善効果が小さく、又
上限を3.0%としたのは3.0%上では硼素化合物は
SiCの粒成長を促進してかえつて焼結性を劣化
し、又硼素元素が電気的には正のドーピング剤で
ある為、電気特性も改善できないためである。一
方炭素はSiC粒子表面の酸化を脱酸素して焼結性
を改善し且つ粒成長を抑制する効果があるがその
下限を0.1%としたのは0.1%以下では、これらの
効果が期待できないためであり、上限を6.0%と
したは、6.0%以上加えると遊離の炭素を生じ、
焼結体の物理的特性、特に破壊強度を害するため
である。 又第2段階の窒素中焼結は比抵抗を小さくする
作用があるが、この焼成温度を1500〜2300℃とし
たのは、1500℃以下では窒素原子の侵入による比
抵抗低下の作用が乏しく、2300℃以上では揮発量
が多いうえに、N2とSiCが反応し、焼結体表面に
スケールがつき、又比抵抗も10〜106Ω−cmと却
つて大きくなるためである。その状態を第1図に
示す。図中横軸は二次焼成の温度、縦軸は焼結体
の比抵抗を示し、点線はN2雰囲気圧力が1気圧
の場合、実線は80気圧の場合を示す。これによれ
ば、例えば80気圧でN2中で焼結した場合、抵抗
は全体に下り、従つて1500〜2300℃において、比
抵抗を1.0Ω−cm以下とすることができる。又二
次焼成雰囲気を加圧雰囲気とする理由は、第2図
に示す如く、N2ガス圧力を高めることにより、
比抵抗を著しく低めることができるからである。
これによれば、N2ガス雰囲気の圧力を1気圧
(大気圧)より大きくするにつれ、比抵抗は小さ
くなるが、その効果の効率は圧力が高くなるほど
低下し、200気圧以上ではそれ以上圧力を増して
も余り目立つた効果を示さなくなり、替りに設備
費が著しく増大する難点を生ずる。同様の理由に
より、1.5気圧以下が最も好ましい。このように
N2ガス雰囲気を加圧することにより、比抵抗を
下げ得る理由は明確でないが、加圧によりN原子
の固溶がより有効に行われ、C原子とN原子置換
による自由電子の増加がより顕著になるためと考
えられる。又その密度を理論密度の80%以上とし
たのは80%以下では破壊強度が低過ぎるためであ
り比抵抗を1.0Ω−cm以下とするのは1.0Ω−cm以
上では省電力型の発熱体として設計し難いためで
ある。 以下実施例により一そう具体的に説明する。 実施例 1 平均粒径0.3μのβ−SiC粉末とこれに対し0.5
%の炭化硼素粉をSiC粉に対して6%のフエノー
ル樹脂を溶解したアセトン溶液中に分散し湿式混
合し、乾燥し、篩通し、プレスし、真空中800℃
で仮焼し、成形体を用意した。 この成形体をAr気流中で1800〜2050℃に60分
焼結して、一次焼成を行い一次焼結体とした。得
られた一次焼結体について密度を測定した後、8
×25×4mmに平面研削し、デジタルテスター(1
Ωcm上のとき)又は四端針法(1Ωcm以下のと
き)にて室温比抵抗を測定した。一次焼成温度と
比抵抗との関係を第3図に示す。 次に上記一次焼結体をN2中で第1表に示す温
度、圧力にて60分再加熱することにより、二次焼
成を行い二次焼結体とした。得られた二次焼結体
について一次焼結体の場合と同様に密度と室温比
抵抗を測定し、更に3点曲げによる抗折強度を測
定した結果を第1表に示す。
The present invention relates to a method of manufacturing silicon carbide heating elements with improved strength and low resistance. Conventionally, silicon carbide heating elements have been used as heating elements for conventional electric furnaces. Recently, it is also used as a heating element for various industrial equipment, and this application requires high strength, low electrical resistance, small negative temperature coefficient of resistance, and high oxidation resistance at high temperatures, but recently developed Introducing a few methods for sintering SiC that have been developed. By sintering a mixture of these materials in Ar at 2050°C for 60 minutes, a sintered body with a theoretical density of over 95% can be obtained. However, the specific resistance was several Ω-cm or more, and the high temperature resistance was extremely low, making it unsuitable as a heating element. If this is sintered from the beginning at 2200℃ or lower in nitrogen, the resistivity will be 1.0Ω-cm or less, but it will only be sintered to about 80% of the theoretical density and its strength will be weak. Although it can be sintered to about 90% of its theoretical density, it has a large resistivity of 10 to 10 6 Ω-cm and is unstable. (2) JP-A-52-1 proposed by Carborundum
No. 110499 "Fuel igniter made of a new silicon carbide composition and method for producing the composition" is a method of sintering SiC powder containing 95% or more to 2.5 g/cc by hot pressing,
This is a method of doping N, P, As, Sb, Bi in solid phase or gas phase to make the resistivity at room temperature 0.66 Ω-cm, but the resistivity at 1350℃ is 0.12 Ω-cm and the temperature coefficient of resistance is 0.66 Ω-cm. Unfortunately, it was unsuitable as a power-saving heating element. (3) JP-A-53-121810 ``High Density Thermal Shock Resistant Sintered Silicon Carbide'' proposed by the same Carborundum company contains additives BN, BP, 0.3 to 3.0% by weight to SiC.
A pressureless sintered body proposed by General Electric Company is made by adding AiB 2 and 150 to 500% by weight of C to this additive and heating it to 1900 to 2500°C to achieve a density of 85% or more of the theoretical density. However, a sintered body having a density of 95% or more of the theoretical density has a problem in that its oxidation resistance is slightly inferior to that of a system containing B and B 4 C. Therefore, the present applicant previously proposed in Japanese Patent Application No. 54-72464 ``Method for manufacturing silicon carbide heating element'' an average particle size of 1.0.
Boron or a boron compound in an amount equivalent to 0.3 to 3.0% by weight of boron and carbon or a carbonaceous compound in an amount equivalent to 0.1 to 3.0% by weight of carbon are added to SiC powder with a size of less than μ, and the mixture is molded and vacuum molded. Primary sintering to 70-95% of the theoretical density in an inert atmosphere other than nitrogen, followed by sintering at a temperature of 1,600-2,200°C in a nitrogen gas atmosphere to a resistance of 80% or more of the theoretical density or less than 1.0Ω-cm. A method for manufacturing a silicon carbide heating element is provided, which comprises secondary firing of resintering the silicon carbide heating element. The material obtained by this method has high strength and low resistance because of its high density, and its high temperature resistance does not become extremely low. However, by changing the nitrogen atmosphere during the subsequent secondary firing to a pressurized nitrogen atmosphere, it was possible to further increase the effect of nitrogen addition and reduce the resistance value. As a result, the gist of the present invention is that the average particle size is 1.0μ.
Boron or a boron compound in an amount equivalent to 0.3 to 3.0% by weight of boron and carbon or a carbonaceous compound in an amount equivalent to 0.1 to 6.0% by weight of carbon are added to the following SiC powder, mixed and molded in a vacuum. Or silicon carbide with a specific resistance of 80% or more of the theoretical density and 1.0Ω-cm or less at a temperature of 1500 to 2300°C in a pressurized nitrogen gas atmosphere after primary sintering to 70 to 95% of the theoretical density in an inert atmosphere. This provides a method for producing a silicon carbide heating element, which comprises secondary firing of resintering the heating element, and the pressurized atmosphere of nitrogen is preferably 1.5 atm or more and 200 atm or less, preferably 1.5 atm or more and 100 atm or less. is particularly preferred, and the reason why sintering is divided into primary firing, which is sintering in a vacuum or an inert atmosphere, and secondary firing, which is sintering in pressurized nitrogen, is because sintering is performed in pressurized nitrogen from the beginning. This is because although it is possible to obtain a sintered body with a resistivity controlled within the desired value, the density does not reach 80% or more of the theoretical density, and therefore the breaking strength does not reach the required value. Also, the sintered density of the primary firing is 70 to 95 of the theoretical density.
% because if it is less than 70%, even if secondary firing is performed, it will not reach the final theoretical density of 80%, and the upper limit is set to 95% because if it is above 95%, the This is because closed pores are formed in the compact and open pores that penetrate to the center are not formed, and the influence of nitrogen does not reach the center during secondary firing in nitrogen. It is also a starting material
One of the reasons for setting the SiC grain size to 1.0μ or less is that a sintered body with the required density cannot be obtained if it is larger than that, and the other reason is to increase the specific surface area of the primary sintered body. This is to ensure sufficient nitrogen doping. The boron compound to be added is preferably elemental boron, boron carbide or other boron compounds, which improve the sinterability of SiC, but the lower limit is set at 0.3%.
Below 0.3%, the effect of improving sinterability is small, and the upper limit was set at 3.0% because above 3.0%, the boron compound
This is because it promotes the grain growth of SiC, which deteriorates the sinterability, and because the boron element is an electrically positive doping agent, the electrical properties cannot be improved. On the other hand, carbon has the effect of deoxidizing the oxidation on the surface of SiC particles, improving sinterability, and suppressing grain growth, but the lower limit was set at 0.1% because these effects cannot be expected below 0.1%. The upper limit was set at 6.0% because adding more than 6.0% will result in free carbon.
This is because it harms the physical properties of the sintered body, especially its breaking strength. In addition, the second stage of sintering in nitrogen has the effect of reducing the resistivity, but the reason why this sintering temperature was set at 1500 to 2300°C is because below 1500°C, the effect of reducing the resistivity due to the intrusion of nitrogen atoms is poor. This is because, at temperatures above 2300°C, not only is there a large amount of volatilization, N 2 and SiC react, scale is formed on the surface of the sintered body, and the specific resistance is rather large, ranging from 10 to 10 6 Ω-cm. The state is shown in FIG. In the figure, the horizontal axis shows the secondary firing temperature, the vertical axis shows the specific resistance of the sintered body, the dotted line shows the case when the N 2 atmosphere pressure is 1 atm, and the solid line shows the case when the N 2 atmosphere pressure is 80 atm. According to this, when sintering in N 2 at 80 atmospheres, for example, the resistance decreases overall, and therefore the specific resistance can be made 1.0 Ω-cm or less at 1500 to 2300°C. The reason why the secondary firing atmosphere is a pressurized atmosphere is that, as shown in Figure 2, by increasing the N2 gas pressure,
This is because specific resistance can be significantly lowered.
According to this, as the pressure of the N2 gas atmosphere is increased above 1 atm (atmospheric pressure), the specific resistance decreases, but the efficiency of this effect decreases as the pressure increases; Even if the amount is increased, the effect will not be very noticeable, and the problem will be that the equipment cost will increase significantly. For the same reason, 1.5 atmospheres or less is most preferable. in this way
The reason why resistivity can be lowered by pressurizing the N2 gas atmosphere is not clear, but pressurization makes the solid solution of N atoms more effective, and the increase in free electrons due to the substitution of C atoms and N atoms becomes more pronounced. This is thought to be due to the purpose of The reason why the density is set to 80% or more of the theoretical density is because the breaking strength is too low if it is less than 80%, and the reason why the specific resistance is set to 1.0Ω-cm or less is that if it is more than 1.0Ω-cm, it is a power-saving heating element. This is because it is difficult to design as A more specific explanation will be given below with reference to Examples. Example 1 β-SiC powder with an average particle size of 0.3 μ and 0.5 μ
% of boron carbide powder is dispersed in an acetone solution containing 6% of phenolic resin per SiC powder, wet mixed, dried, passed through a sieve, pressed, and heated at 800℃ in vacuum.
The mixture was calcined to prepare a molded body. This molded body was sintered at 1800 to 2050°C for 60 minutes in an Ar flow to perform primary firing to obtain a primary sintered body. After measuring the density of the obtained primary sintered body, 8
Surface ground to x25 x 4mm, digital tester (1
The room temperature resistivity was measured using the four-point needle method (when the resistance was above Ωcm) or the four-point needle method (when the resistance was below 1Ωcm). FIG. 3 shows the relationship between primary firing temperature and specific resistance. Next, the primary sintered body was reheated in N 2 at the temperature and pressure shown in Table 1 for 60 minutes to perform secondary firing and obtain a secondary sintered body. The density and room temperature specific resistance of the obtained secondary sintered body were measured in the same manner as in the case of the primary sintered body, and the bending strength by three-point bending was also measured. The results are shown in Table 1.

【表】 第1表の結果から、理論密度の70〜95%に焼結
した一次焼結体を加圧窒素ガス雰囲気中で二次焼
結することにより理論密度に対して80%以上の密
度を有し、かつ1Ωcm以下の比抵抗を有する焼結
体が得られることがわかつた。第2表に従来品の
特性を示す。第1表から判るように本発明は比抵
抗1.00Ω−cm以下で負の温度係数も小さく、かつ
抗折力も大きな産業上利用価値の高い炭化珪素発
熱体の製造法を提供するものでグロープラグなど
内燃機関用点火器、イグナイターその他の発熱体
として利用範囲の広いものである。 実施例 2 SiCの原料を5%のα−SiCと95%のβ−SiCよ
りなるSiCとした以外はすべて実施例1と同様に
して試験したところ、第3表の如くなつた。
[Table] From the results in Table 1, by secondary sintering the primary sintered body sintered to 70-95% of the theoretical density in a pressurized nitrogen gas atmosphere, the density is 80% or more of the theoretical density. It was found that a sintered body having a specific resistance of 1 Ωcm or less can be obtained. Table 2 shows the characteristics of the conventional product. As can be seen from Table 1, the present invention provides a method for producing a silicon carbide heating element that has a specific resistance of 1.00 Ω-cm or less, a small negative temperature coefficient, and a large transverse rupture strength, and is of high industrial value. It has a wide range of uses as an igniter, igniter, and other heating elements for internal combustion engines. Example 2 Tests were conducted in the same manner as in Example 1 except that the SiC raw material was SiC consisting of 5% α-SiC and 95% β-SiC, and the results were as shown in Table 3.

【表】【table】

【表】 これによりβ−SiCに少量のα−SiCを加えた
SiCを用いてもβ−SiCのみを用いた時と大差な
い性能を示すことが判つた。
[Table] As a result, a small amount of α-SiC was added to β-SiC.
It was found that even when SiC was used, the performance was not much different from when only β-SiC was used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二次焼成の焼成温度と比抵抗の関係を
第2図は1950℃で一次焼結したものを窒素中で二
次焼結した場合の窒素ガス圧力と比抵抗の関係を
示す図である。第3図は一次焼成温度と比抵抗の
関係を示す図である。
Figure 1 shows the relationship between the firing temperature and resistivity during secondary firing, and Figure 2 shows the relationship between nitrogen gas pressure and resistivity when the primary sintering was performed at 1950°C and the secondary sintering was performed in nitrogen. It is. FIG. 3 is a diagram showing the relationship between primary firing temperature and specific resistance.

Claims (1)

【特許請求の範囲】 1 平均粒径1.0μ以下のSiC粉末にその0.3〜3.0
重量%の硼素に相当する量の硼素又は硼素化合物
と0.1〜6.0重量%の炭素に相当する量の炭素又は
炭素質化合物を添加し、混合成形し真空中又は不
活性雰囲気中で理論密度の70〜95%に焼結する一
次焼成と次いで加圧窒素ガス雰囲気中で1500〜
2300℃の温度で理論密度の80%以上比抵抗1.0Ω
−cm以下の炭化珪素発熱体に再焼結する二次焼成
とからなる炭化珪素発熱体の製造法。 2 特許請求の範囲第1項において二次焼成の雰
囲気圧力が1気圧(大気圧)を超える圧力以上で
且つ200気圧以下である炭化珪素発熱体の製造
法。 3 特許請求の範囲第1項において二次焼成の雰
囲気圧力が1.5気圧以上100気圧以下である炭化珪
素発熱体の製造法。
[Claims] 1. SiC powder with an average particle size of 1.0μ or less and 0.3 to 3.0μ
Add boron or a boron compound in an amount equivalent to 0.1 to 6.0 weight % of carbon, and mix and mold in vacuum or in an inert atmosphere to a theoretical density of 70%. Primary firing to sinter to ~95% and then ~1500 in a pressurized nitrogen gas atmosphere
Specific resistance 1.0Ω over 80% of theoretical density at a temperature of 2300℃
A method for producing a silicon carbide heating element comprising secondary firing of resintering to form a silicon carbide heating element of -cm or less. 2. A method for manufacturing a silicon carbide heating element according to claim 1, wherein the atmospheric pressure during secondary firing is more than 1 atmosphere (atmospheric pressure) and less than 200 atmospheres. 3. A method for manufacturing a silicon carbide heating element according to claim 1, wherein the atmospheric pressure during secondary firing is 1.5 atm or more and 100 atm or less.
JP2316180A 1980-02-26 1980-02-26 Manufacture of silicon carbide heating body Granted JPS56120573A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2316180A JPS56120573A (en) 1980-02-26 1980-02-26 Manufacture of silicon carbide heating body
US06/707,257 US4668452A (en) 1980-02-26 1985-03-01 Process for producing silicon carbide heating elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316180A JPS56120573A (en) 1980-02-26 1980-02-26 Manufacture of silicon carbide heating body

Publications (2)

Publication Number Publication Date
JPS56120573A JPS56120573A (en) 1981-09-21
JPS6156187B2 true JPS6156187B2 (en) 1986-12-01

Family

ID=12102877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316180A Granted JPS56120573A (en) 1980-02-26 1980-02-26 Manufacture of silicon carbide heating body

Country Status (1)

Country Link
JP (1) JPS56120573A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500655A (en) * 1986-09-16 1989-03-09 東洋製鋼株式会社 bicycle with folding frame
US6214755B1 (en) 1997-08-27 2001-04-10 Bridgestone Corporation Method for producing sintered silicon carbide
EP1990386A2 (en) 2007-05-07 2008-11-12 Shin-Etsu Chemical Co., Ltd. Primer compositions their use and coated articles
EP1997853A1 (en) 2007-05-28 2008-12-03 Shin-Etsu Chemical Co., Ltd. Abrasion-resistant coating composition and coated article
EP2161297A1 (en) 2008-09-08 2010-03-10 Shin-Etsu Chemical Co., Ltd. Method for preparing a primer composition and coated product
EP2239308A1 (en) 2009-04-09 2010-10-13 Shin-Etsu Chemical Co., Ltd. UV-shielding coating composition and coated article
EP2281857A1 (en) 2009-08-07 2011-02-09 Shin-Etsu Chemical Co., Ltd. Abrasion resistant silicone coating composition, coated article, and making method
EP2508579A1 (en) 2011-04-07 2012-10-10 Shin-Etsu Chemical Co., Ltd. Weather-Resistant Hard Coating Composition and Coated Article
WO2012141708A1 (en) 2011-04-14 2012-10-18 Exatec Llc Organic resin laminate
EP2868717A1 (en) 2013-11-01 2015-05-06 Shin-Etsu Chemical Co., Ltd. Titania-containing coating composition and coated article
WO2019191190A1 (en) 2018-03-28 2019-10-03 Kettering University Layered coating system for long-term outdoor exposure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564112B2 (en) * 1984-12-17 1996-12-18 東芝セラミックス 株式会社 Silicon carbide heating element
JPS62153167A (en) * 1985-12-25 1987-07-08 昭和電工株式会社 Sic sintered body with high electric resistivity

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500655A (en) * 1986-09-16 1989-03-09 東洋製鋼株式会社 bicycle with folding frame
US6214755B1 (en) 1997-08-27 2001-04-10 Bridgestone Corporation Method for producing sintered silicon carbide
EP1990386A2 (en) 2007-05-07 2008-11-12 Shin-Etsu Chemical Co., Ltd. Primer compositions their use and coated articles
EP1997853A1 (en) 2007-05-28 2008-12-03 Shin-Etsu Chemical Co., Ltd. Abrasion-resistant coating composition and coated article
EP2161297A1 (en) 2008-09-08 2010-03-10 Shin-Etsu Chemical Co., Ltd. Method for preparing a primer composition and coated product
US8592521B2 (en) 2008-09-08 2013-11-26 Shin-Etsu Chemical Co., Ltd. Method for preparing a primer composition and coated product
EP2239308A1 (en) 2009-04-09 2010-10-13 Shin-Etsu Chemical Co., Ltd. UV-shielding coating composition and coated article
EP2281857A1 (en) 2009-08-07 2011-02-09 Shin-Etsu Chemical Co., Ltd. Abrasion resistant silicone coating composition, coated article, and making method
EP2508579A1 (en) 2011-04-07 2012-10-10 Shin-Etsu Chemical Co., Ltd. Weather-Resistant Hard Coating Composition and Coated Article
WO2012141708A1 (en) 2011-04-14 2012-10-18 Exatec Llc Organic resin laminate
EP2868717A1 (en) 2013-11-01 2015-05-06 Shin-Etsu Chemical Co., Ltd. Titania-containing coating composition and coated article
WO2019191190A1 (en) 2018-03-28 2019-10-03 Kettering University Layered coating system for long-term outdoor exposure

Also Published As

Publication number Publication date
JPS56120573A (en) 1981-09-21

Similar Documents

Publication Publication Date Title
US4668452A (en) Process for producing silicon carbide heating elements
US4135938A (en) High density thermal shock resistant sintered silicon carbide
US2938807A (en) Method of making refractory bodies
JPS6138144B2 (en)
US4209474A (en) Process for preparing semiconducting silicon carbide sintered body
JPS6156187B2 (en)
JPH0672051B2 (en) Silicon carbide sintered body and method for producing the same
CA1092615A (en) High density hot pressed thermal shock resistant silicon carbide
JPH0341426B2 (en)
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JPS6242878B2 (en)
JPH0228539B2 (en)
JPS5849509B2 (en) Manufacturing method of silicon nitride sintered body
JPS644312B2 (en)
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JPH0253388B2 (en)
JP3277295B2 (en) Method for producing high-temperature silicon carbide heating element
JP2970131B2 (en) Method for producing silicon nitride sintered body
JPH0826827A (en) Electrically conductive reactional silicon carbide sintered compact, its production and use
JPH1192225A (en) Silicon carbide sintered product and its production
JPS6328871B2 (en)
JPS5848503B2 (en) silicon carbide material
SU1039925A1 (en) Method for roasting ceramic products from silicon carbide
JPS61291461A (en) Method of burning silicon carbide sintered body
JPS6212191B2 (en)