JPS62153167A - Sic sintered body with high electric resistivity - Google Patents

Sic sintered body with high electric resistivity

Info

Publication number
JPS62153167A
JPS62153167A JP60290454A JP29045485A JPS62153167A JP S62153167 A JPS62153167 A JP S62153167A JP 60290454 A JP60290454 A JP 60290454A JP 29045485 A JP29045485 A JP 29045485A JP S62153167 A JPS62153167 A JP S62153167A
Authority
JP
Japan
Prior art keywords
sic
sintered body
density
sic sintered
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60290454A
Other languages
Japanese (ja)
Inventor
哲雄 遠藤
敏和 森口
敏昭 坂井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60290454A priority Critical patent/JPS62153167A/en
Publication of JPS62153167A publication Critical patent/JPS62153167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気絶縁性基板、電気抵抗体などに使用される
SiC焼結体に関し、さらに詳しくは高密度にして電気
比抵抗の大きなSiC焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a SiC sintered body used for electrically insulating substrates, electrical resistors, etc., and more specifically to a SiC sintered body with high density and high electrical resistivity. Regarding.

従来の技術 SiCは一般に導電性であり、その通常の焼結体も導電
性があって電気絶縁基板には適さない。また発熱体にし
ても電気比抵抗の大きなものはつくるのがむずかしい。
Prior Art SiC is generally conductive, and its normal sintered body is also conductive, making it unsuitable for electrically insulating substrates. Furthermore, it is difficult to make a heating element with a large electrical resistivity.

特にSiCは焼結しにくいため、密度が小さい焼結体は
強度が弱く、実用的でないので高密度にする必要あるが
、そうすると一層電気抵抗は上る。
In particular, since SiC is difficult to sinter, a sintered body with a low density has low strength and is not practical, so it is necessary to increase the density, but this will further increase the electrical resistance.

これを改良したものにSiCに少量のBe又はBeOを
添加して焼結したものがある(特開昭57−If3G3
6i5 、同513−69473、同57−15637
3 、同57−166365 、  回59−6134
73号)。
An improved version of this is one in which a small amount of Be or BeO is added to SiC and sintered (JP-A-57-If3G3
6i5, 513-69473, 57-15637
3, 57-166365, 59-6134
No. 73).

発明が解決しようとする問題点   □Be又はBeO
を添加したSiC焼結体は確かに電気抵抗は上るが、B
eが有tflであるため扱いにくい。
Problem to be solved by invention □Be or BeO
It is true that the electrical resistance of SiC sintered bodies added with B increases, but
It is difficult to handle because e has tfl.

またSiCにBeやBeOを加えただけでは密度が上ら
ないのでホットプレスする必要があり、そのためrli
純な形状のものしかできず、高価になるなどの欠点を有
する。
Also, simply adding Be or BeO to SiC does not increase the density, so hot pressing is necessary, so rli
It has drawbacks such as it can only be made in a pure form and is expensive.

SiCは焼結しにくいので常圧下では高密度の焼結体を
得ることは容易でないが、SiCに少量のC,B、AI
等を添加すれば常圧下でも高密度になることが知られて
いる。SiCにはα、βと呼ばれる結晶形の異なるもの
かあるが、」二足の添加物により両者とも高密度化が図
れる。
SiC is difficult to sinter, so it is not easy to obtain a high-density sintered body under normal pressure.
It is known that by adding such substances, high density can be obtained even under normal pressure. SiC has different crystal forms called α and β, but both can be made to have higher densities by adding two types of additives.

一般にこれらの焼結体はSiCを粉砕して微粉末にし、
これに上記の添加物を加え、成形後、加圧もしくは非加
圧下で高温に加熱して製造されている。この焼結体の゛
電気比抵抗を計ると通常103ΩC1n以下とかなり低
い。
Generally, these sintered bodies are made by crushing SiC into fine powder.
The above-mentioned additives are added to this, and after molding, it is heated to a high temperature with or without pressure. When the electrical specific resistance of this sintered body is measured, it is usually 103ΩC1n or less, which is quite low.

SiCにBe又はBeOを添加すれば電気抵抗は上るこ
とはわかっているが、上記したような欠点があるため、
本発明者はBe又はBeOを添加せずに電気抵抗を一ヒ
げるごとを種々研究し、本発明に到達した。
It is known that adding Be or BeO to SiC increases the electrical resistance, but because of the drawbacks mentioned above,
The present inventor conducted various studies to increase the electrical resistance without adding Be or BeO, and arrived at the present invention.

即ち1本発明の目的はBe又はBeOを添加しなくとも
高密度にして電気抵抗の高いSiC焼結体を得ることに
ある。
That is, one object of the present invention is to obtain a SiC sintered body with high density and high electrical resistance without adding Be or BeO.

問題点を解決するための手段 本発明者の研究によればSiC焼結体の電気抵抗はその
中に含有するN成分に大きく影響されることがわかった
。そこで本発明は焼結体中のN成分を 200ppm以
下に抑えて電気抵抗を上げ、かつC,Bを特定量含有さ
せてSiCの高密度化を図ったものである。
Means for Solving the Problems According to research conducted by the present inventors, it has been found that the electrical resistance of a SiC sintered body is greatly influenced by the N component contained therein. Therefore, the present invention aims to increase the electrical resistance by suppressing the N component in the sintered body to 200 ppm or less, and to increase the density of SiC by containing specific amounts of C and B.

即ち、本発明はG O,5〜3.0重量%、B O,1
〜1.5重jIY%、 N 200ppm以下、残部が
実質的にSicからなり、嵩密度が3−Og / c 
m”以北、′セ気比41(抗が1(1’  90m以上
である電気比抵抗の高いSiC焼結体である。SiCは
α、β、あるいはその混合のいずれでもよい。上記にお
いて、 CはSiCとしてのC以外のもので遊離のもの
又は84C等の結合炭素であってもよい。Bも同様遊離
又は結合のものである。Nは固溶等の形で存在している
と思われるが、 200ppm以下にしないと電気抵抗
が北らない。Nが多いとなぜ電気抵抗が下るかは、Nが
SiCに固溶し、ドナーとして(動き、フリーキャリヤ
ー(?l!子)を増加させると考えられる。
That is, the present invention uses G O, 5 to 3.0% by weight, B O, 1
~1.5% by weight, N 200ppm or less, the remainder substantially consists of Sic, and the bulk density is 3-Og/c
It is a SiC sintered body with a high electrical resistivity of 90 m or more. SiC may be α, β, or a mixture thereof. In the above, C may be free or bonded carbon such as 84C other than C as SiC. B is also free or bonded. N is thought to exist in the form of solid solution, etc. However, the electrical resistance does not increase unless it is below 200 ppm.The reason why the electrical resistance decreases when there is a large amount of N is because N dissolves in SiC and acts as a donor (moves), increasing free carriers (?l! children). It is thought that the

Cが上記範囲としたのはSiC焼結体の密度を上げるた
め及びCが3.0重量%を越えると電気抵抗が下るから
である。またBについてもo、t−t、s重量%の範囲
がSIGの密度を上げる上で好ましく、また電気抵抗を
上げる点からも0.1重量%以上である必要があり、0
.lO〜0.14重量%が特に好ましい。SiC焼結体
は電気絶縁基板にする場合は高熱伝導性が要求され、そ
れには密度を上げることか必要であり、その他の用途に
も密度は高い方がよい。そこで本発明では密度を3.0
 g / c m’以上とした。
The reason why C is set in the above range is to increase the density of the SiC sintered body and because if C exceeds 3.0% by weight, the electrical resistance decreases. Also, for B, the range of o, t-t, s weight % is preferable in order to increase the density of SIG, and from the viewpoint of increasing the electrical resistance, it must be 0.1 weight % or more, and 0.
.. Particularly preferred is IO to 0.14% by weight. When a SiC sintered body is used as an electrically insulating substrate, it is required to have high thermal conductivity, which requires increasing the density, and for other uses, the higher the density is, the better. Therefore, in the present invention, the density is set to 3.0.
g/cm' or more.

次に本発明の焼結体の製法について述べる。Next, a method for manufacturing the sintered body of the present invention will be described.

SiCはシリカの炭素還元法、いわゆるアチソン法でつ
くったものが工業的には有利である。このSiCを微粉
砕する。通常のSiC焼結体ではNの含有j、1は問題
にしていないのでボールミル等で空気中で粉砕されてい
る。しかし空気中での粉砕ではSiCにかなりのNが吸
着されることがわかった。そしてこのNは焼結中には殆
んど抜けない。
SiC produced by a silica carbon reduction method, the so-called Acheson method, is industrially advantageous. This SiC is pulverized. In ordinary SiC sintered bodies, the N content j, 1 is not a problem, so they are pulverized in air using a ball mill or the like. However, it was found that a considerable amount of N was adsorbed on SiC when pulverized in air. This N hardly escapes during sintering.

従ってNの低いSiC焼結体にするには粉末SiCのN
の含有量を下げなければならない。従来のSiC粉末中
のNは殆んどが粉砕中に入るので、本発明においてはS
iCの粉砕を非窒素雰囲気下、例えばアルゴン雰囲気下
で行なう。粉砕はできるだけ細かく、望ましくは5角以
下とする。粉砕中に入つppm以下である。その結晶形
はα、βのいずれも用いることができる。
Therefore, in order to make a SiC sintered body with low N content, N of powdered SiC is
content must be lowered. Most of the N in conventional SiC powder enters the grinding process, so in the present invention, S
The iC is ground under a non-nitrogen atmosphere, for example under an argon atmosphere. Grinding should be as fine as possible, preferably less than 5 squares. It is below the ppm that enters during pulverization. Either α or β crystal form can be used.

SiC粉末に加えるCはカーボンブラック等の炭素粉末
を分散媒により分散して用いることもできるが、液状の
フェノール樹脂等を加え、 SiCの焼結中に炭化して
Cにすることが望ましい。この場合は、樹脂の炭化率等
を考慮し、またCがSiC中の61 nのS+02’J
の還元によりガス化して逸出する場合はその量も考慮し
、焼結体中に前記したCのQ′Eが残るように樹脂の添
加量を定める必要がある。
The C added to the SiC powder can be used by dispersing carbon powder such as carbon black with a dispersion medium, but it is preferable to add a liquid phenol resin or the like and carbonize it to C during sintering of the SiC. In this case, consider the carbonization rate of the resin, and also consider that C is S+02'J of 61 n in SiC.
In the case where the resin gasifies and escapes due to the reduction of the resin, it is necessary to take into consideration the amount thereof and determine the amount of the resin added so that the above-mentioned Q'E of C remains in the sintered body.

Bは中休ホウ素、B4C,等の粉末が使用される。B is a powder of suspended boron, B4C, etc.

?i体ホウ素の形で添加してもSiC焼結体中では84
Gの形になっているものが多いと考えられる。
? Even if it is added in the form of i-boron, it is 84% in the SiC sintered body.
It is thought that many of them are in the shape of a G.

上記のようにNを極力少なくしたSiC粉末にC1B源
を加え、PVA等の一次結合剤を加え所望の形状に成形
する。成形体は加熱焼結する。焼結は加圧でも非加圧で
もよいが、成形体が複雑な形状の場合は非加圧が適する
。焼結温度は1800〜2200℃の範囲が適当である
。焼結はAr等の不活性雰囲気下で行なうが、N雰囲気
は避ける。
A C1B source is added to the SiC powder containing as little N as possible as described above, a primary binder such as PVA is added, and the powder is molded into a desired shape. The molded body is heated and sintered. Sintering may be performed with or without pressure, but if the molded object has a complicated shape, non-pressure is suitable. Sintering temperature is suitably in the range of 1800 to 2200°C. Sintering is performed under an inert atmosphere such as Ar, but a N atmosphere is avoided.

実施例 アチソン法でつくった純度96%のα−3iC粒を粉砕
して2.5gm以下の粉末を得た。粉砕はNが入らない
ようにするため以下のようにした。ボールミル内に数m
mの大きさのSiC粉を入れ、真空ポンプで脱気し、1
04TorrにしArを注入した。これを2回くり返し
、その後1日間粉砕した。このものを取出し、塩酸でF
eを除去し、沈降法で分級した。
EXAMPLE α-3iC grains with a purity of 96% produced by the Acheson method were ground to obtain a powder of 2.5 gm or less. The pulverization was carried out as follows to prevent N from entering. Several meters inside the ball mill
Put SiC powder of size m, degas it with a vacuum pump,
The temperature was set to 0.04 Torr and Ar was injected. This was repeated twice, and then crushed for one day. Take this thing out and F with hydrochloric acid.
e was removed and classified by the sedimentation method.

その結果得られたSiC粉末はN含有量190ppmで
あった。このSiC粉末100重量部に84G O,1
53重着部、カーボンブラック 1.0重量部をよく混
合し、さらに水300ccとPVA 2重量部を加え2
0時間混合した後スプレードライヤーで顆粒化した。こ
の顆粒を直径50mff1、厚さ8mmに加圧成形し、
Ar雰囲気中無加圧で2100℃、60分加熱し焼結し
た。その特性を第1表のNo、1に示す。
The resulting SiC powder had an N content of 190 ppm. 84G O,1 to 100 parts by weight of this SiC powder
53 overlapped parts and 1.0 parts by weight of carbon black were mixed well, and then 300 cc of water and 2 parts by weight of PVA were added.
After mixing for 0 hours, the mixture was granulated using a spray dryer. The granules were pressure-molded to a diameter of 50mff1 and a thickness of 8mm,
It was sintered by heating at 2100° C. for 60 minutes in an Ar atmosphere without pressure. Its characteristics are shown in No. 1 in Table 1.

以下同様にし、但し、B、Cの量を変えて焼結した結果
を第1表のNo、 2以下に示す。表中比較例のNo、
5以下はSiC粉砕を空気中で行なったものである。
The sintering process was repeated in the same manner, but the amounts of B and C were changed, and the results are shown in Table 1, No. 2 and below. No. of comparative example in the table,
5 or less means that SiC pulverization was performed in air.

(以下余白) 発明の効果 に記の結果が示すように本発明の焼結体は密度が高く、
かつ1E気比抵抗が大きいので電気絶縁、ノ、(板や発
熱体等に用いることができる。
(The following is a blank space) As shown in the results described in Effects of the Invention, the sintered body of the present invention has a high density;
Since it has a high 1E specific resistance, it can be used for electrical insulation, plates, heating elements, etc.

Claims (1)

【特許請求の範囲】[Claims]  C0.5〜3.0重量%、B0.1〜1.5重量%、
N200ppm以下、残部が実質的にSiCからなり、
嵩密度が3.0g/cm^3以上、電気比抵抗が10^
4Ωcm以上である電気比抵抗の高いSiC焼結体。
C0.5-3.0% by weight, B0.1-1.5% by weight,
N200ppm or less, the remainder substantially consisting of SiC,
Bulk density is 3.0g/cm^3 or more, electrical resistivity is 10^
A SiC sintered body with a high electrical specific resistance of 4 Ωcm or more.
JP60290454A 1985-12-25 1985-12-25 Sic sintered body with high electric resistivity Pending JPS62153167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290454A JPS62153167A (en) 1985-12-25 1985-12-25 Sic sintered body with high electric resistivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290454A JPS62153167A (en) 1985-12-25 1985-12-25 Sic sintered body with high electric resistivity

Publications (1)

Publication Number Publication Date
JPS62153167A true JPS62153167A (en) 1987-07-08

Family

ID=17756232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290454A Pending JPS62153167A (en) 1985-12-25 1985-12-25 Sic sintered body with high electric resistivity

Country Status (1)

Country Link
JP (1) JPS62153167A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167177A (en) * 1979-06-08 1980-12-26 Ngk Spark Plug Co Manufacture of silicon carbide heating body
JPS56120573A (en) * 1980-02-26 1981-09-21 Ngk Spark Plug Co Manufacture of silicon carbide heating body
JPS57179076A (en) * 1981-04-28 1982-11-04 Hitachi Chemical Co Ltd High density low electric specific resistance heat impact resistance silicon carbide sintered body and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55167177A (en) * 1979-06-08 1980-12-26 Ngk Spark Plug Co Manufacture of silicon carbide heating body
JPS56120573A (en) * 1980-02-26 1981-09-21 Ngk Spark Plug Co Manufacture of silicon carbide heating body
JPS57179076A (en) * 1981-04-28 1982-11-04 Hitachi Chemical Co Ltd High density low electric specific resistance heat impact resistance silicon carbide sintered body and manufacture

Similar Documents

Publication Publication Date Title
JPS62167253A (en) High electric resistivity sic sintered body
US4540673A (en) Sintered aluminum nitride and semi-conductor device using the same
CN103857622A (en) Silicon carbide powder and method for producing same
WO2000007959A1 (en) Silicon carbide sinter and process for producing the same
JPS59162178A (en) Manufacture of penetratively porous silicon carbide molded body
JPS62197353A (en) Manufacture of silicon carbide sintered body
US3287284A (en) Ceramic refractory bodies
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
JPS6156187B2 (en)
JPS62153167A (en) Sic sintered body with high electric resistivity
US3926857A (en) Electrically conducting material containing silicon carbide in a matrix of silicon nitride
JPH0329023B2 (en)
JPS6081064A (en) Manufacture of silicon carbide sintered body
JPS6065760A (en) Manufacture of highly electroconductive tin oxide film material
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JP2006240909A (en) Silicon carbide powder composition, method for producing silicon carbide sintered compact using the same, and silicon carbide sintered compact
JP2649054B2 (en) Particulate inorganic composite and method for producing the same
JPS60118671A (en) Manufacture of high density high strength graphite-ceramic composite sintered body
KR930001297B1 (en) Carbonization silicon making method for semiconductor plate
EP0064264A2 (en) Silicon carbide powder mixture and process for producing sintered bodies therefrom
JPS605062A (en) Manufacture of zinc oxide varistor
JPS58125667A (en) Composite carborundum sintered shape and its manufacture
TW206294B (en)
JPS6033262A (en) Manufacture of silicon carbide sintered body
CN116815137A (en) High-density composite doped tin oxide tantalum target material and preparation method thereof