JPS6242878B2 - - Google Patents

Info

Publication number
JPS6242878B2
JPS6242878B2 JP53107664A JP10766478A JPS6242878B2 JP S6242878 B2 JPS6242878 B2 JP S6242878B2 JP 53107664 A JP53107664 A JP 53107664A JP 10766478 A JP10766478 A JP 10766478A JP S6242878 B2 JPS6242878 B2 JP S6242878B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
density
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53107664A
Other languages
Japanese (ja)
Other versions
JPS5537414A (en
Inventor
Yukio Takeda
Kosuke Nakamura
Teruyuki Kagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10766478A priority Critical patent/JPS5537414A/en
Priority to DE19792934968 priority patent/DE2934968A1/en
Priority to GB7930509A priority patent/GB2031027A/en
Publication of JPS5537414A publication Critical patent/JPS5537414A/en
Publication of JPS6242878B2 publication Critical patent/JPS6242878B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化珪素焼結体に係り、特に緻密な無
気孔性の炭化珪素焼結体の製造方法に関する。 炭化珪素は化学的安定性に優れ、高温での強度
が大きく、かつ耐食性、耐酸化性などの多くの優
れた特徴を有する材料である。このため、炭化珪
素は高温の構造材料とくに高温ガスタービンのブ
レード材として有望である。 従来、炭化珪素焼結体はホツトプレス法、反応
焼結法、気相反応法によつて製造されていた。こ
のうち、気相反応法は炭素および珪素の化合物
(主として有機化合物またはハロゲン化合物)を
キヤリヤガスに同伴させて反応室に導き、これら
を熱分解して適当な基体上に炭化珪素を生成させ
る方法である。この方法では均質で緻密な炭化珪
素焼結体が得られるが、せいぜい1mm程度の薄膜
で厚さの大きいものは得にくい。また、反応焼結
法による炭化珪素焼結体は通常、炭素と珪素また
は二酸化珪素の粉末を混合し、これを焼成して得
るもので、形状の比較的大きいものは得られる
が、緻密な炭化珪素焼結体は得にくい。緻密で大
型のものはホツトプレス法以外に今のところな
い。炭化珪素は従来焼結しにくい材料として知ら
れていたが、アリエグロら(J.am.Ceram.Soc.,
39386〜389(1956)がアルミニウムや鉄などを添
加してホツトプレスすることにより、理論密度
(3.21g/cm3)に近い焼結体が得られることを報告
して以来、種々の添加剤が検討され、更に、原料
の炭化珪素粉末の粒径なども検討されるようにな
つてきた。例えば、ゼネラル・エレクトリツク社
のサヴアンテ・プロチヤツカは公開特許公報49−
99308号にホウ素または炭化ホウ素を、ホウ素分
として0.5〜3.0(重量)部を炭化珪素100(重
量)部に添加し、ホツトプレスすることにより理
論密度の98パーセントのセラミツクを得ている。
このホウ素または炭化ホウ素を添加剤とするもの
は公開特許公報50−78609号、同52−6716号でも
述べられている。また、ノートン社のウイーヴア
ー・キー・ジエラルドらは公開特許公報49−7311
号でアルミニウムまたは酸化アルミニウムを添加
剤として0.5〜5.0重量%加えたものについて理論
密度が99パーセントを超えるものを得ている。ま
た、アルミニウムまたは酸化アルミニウム、鉄、
珪素などを添加剤としたものが公開特許公報51−
65111号に述べられている。 上述した従来の技術によれば、緻密な炭化珪素
体を得るためには、炭化珪素のサブミクロン微粉
末または数ミクロン以下の粒子径を有する微粉末
が使用され、また、添加剤でも同様な微粉末を使
用しなければならなかつた。また、添加剤の微粉
末と炭化珪素の微粉末の均一な分散体を得るため
の操作も必要とされ、一般にはタングステンカー
バイド球の入つた適当な容器内でボールミル処理
する工程が必要であつた。 本発明の目的は簡易で緻密な炭化珪素の焼結体
を製造する方法を提供し、副次的に強度のばらつ
きを低減し信頼性を向上することにある。 本発明は、元素周期律表の第1〜第4周期の元
素で、a族、b族、a族および族から選
ばれた元素の少くとも1種が1.0より多く10.0重
量%以下固溶している炭化珪素の粉末を、真空中
または不活性ガス中において、1900℃〜2050℃の
温度および100〜700Kg/cm2の圧力下で5〜60分間
ホツトプレスすることにありこれにより、緻密な
炭化珪素の焼結体を生成させることができる。
(第1〜第4周期のa,b,a,族の元
素とは、Be,Mg,Ca,Cr,Fe,Co,Ni,B,
Al,Gaなどである。)更に理論密度の95パーセン
ト以上の炭化珪素の焼結体が得られる。これは高
温の構造材例えば高温ガスタービン用材料として
利用できる。 炭化珪素は前述した様に、焼結し難い材料であ
るため、添加剤を加えることが必要である。従
来、添加剤は炭化珪素粉末とは別に添加剤として
の粉末を用意し、ボールミル処理手段などにより
均一に混合されていたが、本発明に従えば、この
ようなミリング工程は必要としない。本発明で
は、炭化珪素の微粉末を得るときにあらかじめ、
前述した元素を固溶しておけばよい。かかる炭化
珪素は通常の方法で容易に合成することができ
る。 炭化珪素焼結体を得る場合の添加剤の効果は正
確には理解されていないが、大略次のように考ら
れている。それは、炭化珪素と添加剤との混合物
が加圧下で約2000℃に加熱されたとき、添加剤の
原子が拡散して炭化珪素の結晶格子中に入り込み
この結果、炭化珪素体の結晶粒同志の結合が進
み、結果として緻密な焼結体になるものと考えら
れる。この場合、添加剤は均一に分散しているこ
とが必須条件で、分散が悪いと部分的に焼結が進
まない個所ができる。従来の方法では炭化珪素粉
末とは別に添加剤を加えるため、例えばF.F.
Lange〔J.Mater.Sci.,10,314〜320(1975)〕が
述べているように、炭化珪素の粒塊にアルミニウ
ムが偏在することが起る。これは例えば炭化珪素
焼結体が1500℃以上の高温にさらされたとき、添
加剤成分が偏在している個所で劣化が起る原因と
なる。 本発明の方法ではあらかじめ添加剤成分が炭化
珪素中に固溶されているため、部分的な不均一さ
は発生しにくい。また、炭化珪素中の添加剤成分
は加圧下で約2000℃に加熱したとき粒子中で相互
に拡散するため、添加剤成分が焼結体中で偏在す
るということもほとんど起らないという点が優れ
ている。 炭化珪素をホツトプレスして緻密な焼結体を得
るための重要な条件が幾つか存在する。出発原料
である炭化珪素粉末については、第1には炭化珪
素原料粉末中に固溶されている添加剤成分の量で
ある。この量が1.0重量%以下では緻密な炭化珪
素焼結体が得られにくく、10重量%より多い場合
は、緻密化は容易に達成されるが、粒成長の進行
が顕著で強度や耐酸化性が低下してしまう。最適
な添加量は2〜5重量%である。なお、添加剤成
分の固溶量の異なる炭化珪素原料粉末を2種以上
配合したり、また添加剤が全く固溶されていない
ものを併用することもできる。但しこの場合偏在
することがないよう注意が肝要である。第2は炭
化珪素粉末の平均粒径も重要な条件の一つで、粒
径は小さければ小さいほど好ましいが、10ミクロ
ン以下であれば緻密化が可能である。但し20重量
%の範囲内であれば、粒径が20〜70ミクロンの粒
子径の粉末が混在していてもよい。 次にホツトプレスの条件としては、温度、圧力
および時間が重要であり、これらは相互に関係す
る。緻密な炭化珪素の焼結体を得るためにはまず
第1に温度を1900℃以上にする必要がある。これ
より低い温度では添加剤成分の拡散が十分起らな
いために緻密な焼結体が得られない。また、2050
℃を越えると、過度な粒成長が起り易い。第2は
圧力であるが、これについては使用するダイスの
材料によつて制限される要因が大きい。黒鉛製の
ダイスを用いた場合、700Kg/cm2の圧力はほぼ上
限であるが温度や時間を調節することにより、
100Kg/cm2でも緻密な焼結体を得ることが可能で
ある。更に、焼結時間も重要な条件の一つであ
り、温度と圧力の関係から最適な時間が決められ
る。一般的には温度(2000℃以上)、圧力(400
Kg/cm2)が高い場合には5分から15分で焼結し、
温度、圧力が低い場合には30分から60分を要す
る。しかし、これ以上時間を長く保持しても焼結
密度はそれ以上向上しないばかりか、過度の粒成
長が起る。 更に重要な条件は焼結時の雰囲気で、酸化性の
雰囲気は炭化珪素を酸化し二酸化珪素が生成する
ため使用できない。このため、真空中または不活
性ガス雰囲気が使用される。 上述した条件の範囲で炭化珪素粉末をホツトプ
レスすることにより、理論密度に対して95パーセ
ント以上の密度を有する炭化珪素の焼結体を得る
ことができる。 次に、本発明を実施例によつて説明する。 実施例 1 アルミニウムを固溶した平均粒径が3ミクロン
の炭化珪素粉末の成分について化学分析を行つ
た。分析表は第1表の通りであつた。
The present invention relates to a silicon carbide sintered body, and particularly to a method for manufacturing a dense, non-porous silicon carbide sintered body. Silicon carbide is a material that has many excellent characteristics such as excellent chemical stability, high strength at high temperatures, and corrosion resistance and oxidation resistance. For this reason, silicon carbide is promising as a high-temperature structural material, particularly as a blade material for high-temperature gas turbines. Conventionally, silicon carbide sintered bodies have been manufactured by hot pressing, reaction sintering, and gas phase reaction methods. Among these, the gas phase reaction method is a method in which carbon and silicon compounds (mainly organic compounds or halogen compounds) are introduced into a reaction chamber along with a carrier gas, and are thermally decomposed to produce silicon carbide on a suitable substrate. be. Although a homogeneous and dense silicon carbide sintered body can be obtained by this method, it is difficult to obtain a thin film with a thickness of about 1 mm at most. In addition, silicon carbide sintered bodies produced by the reaction sintering method are usually obtained by mixing carbon and silicon or silicon dioxide powder and firing the mixture. Silicon sintered bodies are difficult to obtain. At present, there is no method other than the hot press method to produce dense and large-sized products. Silicon carbide has traditionally been known as a material that is difficult to sinter, but Alliegro et al. (J.am.Ceram.Soc.,
39386-389 (1956) reported that a sintered body close to the theoretical density (3.21 g/cm 3 ) could be obtained by hot pressing with the addition of aluminum, iron, etc. Since then, various additives have been investigated. Furthermore, the particle size of the raw material silicon carbide powder has also been studied. For example, General Electric Company's Savante Prochatka is published in Published Patent Publication No. 49-
99308, 0.5 to 3.0 parts (by weight) of boron is added to 100 parts (by weight) of silicon carbide, and the ceramic is hot pressed to obtain a ceramic having a theoretical density of 98%.
Products using boron or boron carbide as an additive are also described in Japanese Unexamined Patent Publications Nos. 50-78609 and 52-6716. Also, Weaver K. Gierard et al. of Norton Corporation published patent publication No. 49-7311
In No. 1, we obtained products with theoretical densities exceeding 99% for products to which 0.5 to 5.0% by weight of aluminum or aluminum oxide was added as an additive. Also, aluminum or aluminum oxide, iron,
Published Patent Publication No. 51- uses silicon as an additive.
65111. According to the above-mentioned conventional technology, in order to obtain a dense silicon carbide body, a submicron fine powder of silicon carbide or a fine powder having a particle size of several microns or less is used, and the same fine powder is used as an additive. I had to use powder. Additionally, operations were required to obtain a uniform dispersion of fine additive powder and silicon carbide powder, which generally required a ball milling process in a suitable container containing tungsten carbide spheres. . An object of the present invention is to provide a method for producing a simple and dense sintered body of silicon carbide, and to reduce variations in strength and improve reliability. The present invention is an element in the first to fourth periods of the Periodic Table of Elements, in which at least one element selected from Group A, Group B, Group A, and Group A is dissolved as a solid solution in an amount of more than 1.0% and not more than 10.0% by weight. The process involves hot pressing silicon carbide powder in a vacuum or inert gas at a temperature of 1900°C to 2050°C and a pressure of 100 to 700 kg/ cm2 for 5 to 60 minutes, resulting in dense carbonization. A sintered body of silicon can be produced.
(The elements of groups a, b, a in the first to fourth periods are Be, Mg, Ca, Cr, Fe, Co, Ni, B,
Al, Ga, etc. ) Furthermore, a sintered body of silicon carbide having a theoretical density of 95% or more can be obtained. This can be used as a high-temperature structural material, such as a material for high-temperature gas turbines. As mentioned above, silicon carbide is a material that is difficult to sinter, so it is necessary to add additives. Conventionally, additive powder was prepared separately from silicon carbide powder and mixed uniformly by ball milling means, but according to the present invention, such a milling step is not necessary. In the present invention, when obtaining fine powder of silicon carbide, in advance,
The above-mentioned elements may be dissolved in solid solution. Such silicon carbide can be easily synthesized by a conventional method. Although the effect of additives in obtaining a silicon carbide sintered body is not precisely understood, it is generally considered as follows. This is because when a mixture of silicon carbide and additives is heated to about 2000°C under pressure, the atoms of the additives diffuse into the crystal lattice of silicon carbide, and as a result, the crystal grains of the silicon carbide body are separated from each other. It is thought that the bonding progresses, resulting in a dense sintered body. In this case, it is essential that the additives be uniformly dispersed; poor dispersion will result in areas where sintering will not proceed. In the conventional method, additives are added separately from silicon carbide powder, so for example, FF
As stated by Lange [J. Mater. Sci., 10, 314-320 (1975)], aluminum is unevenly distributed in silicon carbide grains. For example, when a silicon carbide sintered body is exposed to a high temperature of 1500° C. or higher, it causes deterioration in areas where additive components are unevenly distributed. In the method of the present invention, since the additive components are dissolved in silicon carbide in advance, local non-uniformity is less likely to occur. In addition, since the additive components in silicon carbide mutually diffuse within the particles when heated to approximately 2000°C under pressure, it is almost impossible for the additive components to be unevenly distributed in the sintered body. Are better. There are several important conditions for hot pressing silicon carbide to obtain a dense sintered body. Regarding the silicon carbide powder that is the starting material, the first factor is the amount of additive components dissolved in the silicon carbide raw material powder. If this amount is less than 1.0% by weight, it is difficult to obtain a dense silicon carbide sintered body, and if it is more than 10% by weight, densification is easily achieved, but the progress of grain growth is significant, resulting in poor strength and oxidation resistance. will decrease. The optimum amount added is 2-5% by weight. Note that two or more kinds of silicon carbide raw material powders having different amounts of solid solution of additive components may be blended, or powders containing no additives in solid solution may be used together. However, in this case, it is important to be careful to avoid uneven distribution. Second, the average particle size of the silicon carbide powder is also an important condition; the smaller the particle size, the better; however, densification is possible if the particle size is 10 microns or less. However, as long as the amount is within the range of 20% by weight, powder having a particle size of 20 to 70 microns may be mixed. Next, as conditions for hot pressing, temperature, pressure and time are important, and these are interrelated. In order to obtain a dense silicon carbide sintered body, first of all it is necessary to raise the temperature to 1900°C or higher. At temperatures lower than this, the additive components do not diffuse sufficiently and a dense sintered body cannot be obtained. Also, 2050
If the temperature exceeds ℃, excessive grain growth tends to occur. The second factor is pressure, which is largely limited by the material of the die used. When using graphite dies, the pressure of 700Kg/ cm2 is almost the upper limit, but by adjusting the temperature and time,
It is possible to obtain a dense sintered body even at 100Kg/cm 2 . Furthermore, the sintering time is also one of the important conditions, and the optimum time is determined from the relationship between temperature and pressure. In general, temperature (over 2000℃), pressure (over 400℃)
Kg/cm 2 ) is high, sintering takes 5 to 15 minutes,
If the temperature and pressure are low, it will take 30 to 60 minutes. However, if the sintering time is kept longer than this, the sintered density will not improve any further, and excessive grain growth will occur. A more important condition is the atmosphere during sintering; an oxidizing atmosphere cannot be used because it oxidizes silicon carbide and produces silicon dioxide. For this purpose, a vacuum or an inert gas atmosphere is used. By hot-pressing silicon carbide powder under the above-mentioned conditions, a sintered body of silicon carbide having a density of 95% or more of the theoretical density can be obtained. Next, the present invention will be explained with reference to examples. Example 1 Chemical analysis was conducted on the components of silicon carbide powder containing aluminum as a solid solution and having an average particle size of 3 microns. The analysis table was as shown in Table 1.

【表】 この炭化珪素粉末100重量部に対し、シリコー
ンオイル10容量部およびキシレン10容量部を加
え、混練した。これを金型に入れ1ton/cm2の圧力
で成形したのち、黒鉛製のダイスに入れた。金型
成形後の成形体の密度は1.71g/cm3であつた。ホ
ツトプレスは1×10〜4torr以下に減圧し、誘導加
熱炉内で行つた。200Kg/cm2の圧力を加えて、ホ
ツトプレスが終了するまで維持した。温度は室温
からホツトプレスの所定温度まで約2時間で昇温
し、所定温度で5〜100分保持した。その後、炉
は室温まで放冷した。 第1図には焼結時間を一定とし、焼結温度を変
えた場合に焼結体の密度を、第2図には焼結温度
を一定とし、焼結時間を変えた場合の焼結体の密
度を示している。この2つの図から、温度は1900
℃〜2050℃の範囲、時間は5分から60分の範囲で
緻密な焼結体が得られることがわかる。 実施例 2 炭化珪素の固溶されている元素の種類と濃度を
種々変えた平均粒径3ミクロンの炭化珪素の粉末
を用いて、実施例1と同様の操作を行い、炭化珪
素焼結体を得た。このときのホツトプレスの条件
は温度2000℃、圧力200Kg/cm2、時間を30分とし
た。添加した元素の種類および重量%と焼結体の
密度の関係を第2表に示した。
[Table] To 100 parts by weight of this silicon carbide powder, 10 parts by volume of silicone oil and 10 parts by volume of xylene were added and kneaded. This was placed in a mold and molded at a pressure of 1 ton/cm 2 , and then placed in a graphite die. The density of the molded product after molding was 1.71 g/cm 3 . The hot press was carried out in an induction heating furnace at a reduced pressure of 1×10 to 4 torr or less. A pressure of 200 Kg/cm 2 was applied and maintained until the hot pressing was completed. The temperature was raised from room temperature to the predetermined temperature of the hot press in about 2 hours, and maintained at the predetermined temperature for 5 to 100 minutes. Thereafter, the furnace was allowed to cool to room temperature. Figure 1 shows the density of the sintered body when the sintering time is constant and the sintering temperature is changed, and Figure 2 shows the density of the sintered body when the sintering temperature is constant and the sintering time is changed. shows the density of From these two figures, the temperature is 1900
It can be seen that a dense sintered body can be obtained within the range of 5 to 60 minutes at a temperature of 5 to 2050 degrees Celsius. Example 2 The same operation as in Example 1 was carried out using silicon carbide powder with an average particle size of 3 microns in which the type and concentration of elements dissolved in silicon carbide were varied, and a silicon carbide sintered body was obtained. Obtained. The hot pressing conditions at this time were a temperature of 2000° C., a pressure of 200 Kg/cm 2 and a time of 30 minutes. Table 2 shows the relationship between the type and weight % of added elements and the density of the sintered body.

【表】【table】

【表】 炭化珪素中に固溶されている元素の和が1.0重
量%以下のNo.6は、焼結体の密度が著しく低い。 実施例 3 炭化珪素粉末(平均粒径3ミクロン)に固溶さ
れている元素の含有量が第3表に示すものを用い
て、実施例1と同様の操作により、炭化珪素の焼
結体を得た。ホツトプレスの圧力の影響を調べる
ため、焼結時の温度は2000℃、時間は30分とし、
圧力を変えた。
[Table] No. 6, in which the sum of elements dissolved in silicon carbide is 1.0% by weight or less, has a significantly low density of the sintered body. Example 3 A sintered body of silicon carbide was prepared in the same manner as in Example 1 using silicon carbide powder (average particle size 3 microns) containing the elements shown in Table 3. Obtained. In order to investigate the influence of hot press pressure, the temperature during sintering was 2000℃ and the time was 30 minutes.
Changed the pressure.

【表】 圧力を変えた場合の焼結体の密度は第3図に示
す。100Kg/cm2以下で密度3.10g/cm3以上になる。 実施例 4 実施例3の試料を用い、炭化珪素粉末の粒径を
変えたものを種々調製した。ホツトプレスは実施
例1と同様の操作により試料を調製し、2000℃、
200Kg/cm2で30分とした。平均粒径と密度の関係
を第4図に示す。平均粒径が10ミクロン以下では
焼結体密度が高くなることが判る。第4図に示す
平均粒径が9.4ミクロンの炭化珪素の粒径分布は
第4表に示すものであり、20〜70ミクロン以下の
粒径を持つ粒子が約20重量パーセントを越えると
焼結体密度は2.8g/cm3となる。
[Table] Figure 3 shows the density of the sintered body when the pressure is changed. Density is 3.10g/cm 3 or more at 100Kg/cm 2 or less. Example 4 Using the sample of Example 3, various silicon carbide powders with different particle sizes were prepared. For the hot press, a sample was prepared using the same procedure as in Example 1, and the sample was heated at 2000°C.
The test time was 200Kg/cm 2 for 30 minutes. Figure 4 shows the relationship between average particle size and density. It can be seen that when the average particle size is 10 microns or less, the density of the sintered body becomes high. The particle size distribution of silicon carbide with an average particle size of 9.4 microns is shown in Table 4, and if the particles with a particle size of 20 to 70 microns exceed about 20% by weight, the sintered body The density is 2.8g/ cm3 .

【表】 実施例 5 実施例2で用いた炭化珪素粉末のNo.6に他の炭
化珪素粉末を種々の割合で混合し、実施例1と同
様の操作を行い、炭化珪素の焼結体を得た。この
ときのホツトプレス条件は2000℃,200Kg/cm2
30分とした。炭化珪素粉末の混合割合と得られた
炭化珪素の焼結体の密度の関係を第5表に示す。
[Table] Example 5 Silicon carbide powder No. 6 used in Example 2 was mixed with other silicon carbide powders in various proportions, and the same operation as in Example 1 was performed to form a sintered body of silicon carbide. Obtained. The hot press conditions at this time were 2000℃, 200Kg/cm 2 ,
It was set as 30 minutes. Table 5 shows the relationship between the mixing ratio of silicon carbide powder and the density of the obtained sintered body of silicon carbide.

【表】【table】

【表】 焼結体中に不均一な部分のあるものが
みられた。 また焼結体密度も低くなる。
実施例 6 上述した炭化珪素の焼結体のうちから、
3.20g/cm3以上の高密度焼結体が得られたものに
ついて、2mm×2mmの断面積と長さ5cmを有する
試験片を作成し、1ミクロンの粒子径のダイヤモ
ンドペーストで研摩し、スパン長さ3cmを有する
装置により、三点曲げ試験を行つた。 単純平均曲げ強度:測定数50個 室温:75〜109Kg/mm2 1300℃:70〜105Kg/mm2 実施例 7 第2表のNo.7にAlを1.5重量%、No.8にAlを5
重量%配合しボーミル混練したものをNo.11,No.12
とする。また、第2表No.6にBを1重量%,3重
量%配合しボールミル混練したものをNo.13および
No.14とする。 上記No.7,8,11〜14を実施例1と同様にホツ
トプレスにより焼結体を作成した。ホツトプレス
条件は2000℃,200Kg/cm2,30分間である。得ら
れた焼結体は実施例6に示す方法により曲げ試験
(室温)を実施した。試験はそれぞれ100個につい
て行ない単純平均強度と、ばらつきの指標である
ワイブル係数を算出し第6表に示した。 なお、焼結体などの脆性材料の破壊強度には固
有のばらつきがあり、それはワイブル分布に従う
ということで、統計的手法により扱うために次式
のようなワイブル分布函数が適用され、 P(σ)=1−Q(σ)=exp〔−σm/σ〕 mがワイブル係数である。但しP(σ)は、応力
σ下での非破壊確率で、σは尺度のパラメータ
を示す。ワイブル係数は大きい程強度のばらつき
が小さく信頼性が高いことを示す。
[Table] Items with non-uniform parts in the sintered body
It was seen. In addition, the density of the sintered body also decreases.
Example 6 Among the silicon carbide sintered bodies described above,
For those with a high density sintered body of 3.20 g/cm3 or more , a test piece with a cross-sectional area of 2 mm x 2 mm and a length of 5 cm was prepared, polished with diamond paste with a particle size of 1 micron, and spun. A three-point bending test was performed with a device having a length of 3 cm. Simple average bending strength: 50 measurements Room temperature: 75 to 109 Kg/mm 2 1300°C: 70 to 105 Kg/mm 2 Example 7 1.5% by weight of Al in No. 7 of Table 2, 5% of Al in No. 8
No. 11 and No. 12 were mixed by weight% and kneaded in a bow mill.
shall be. In addition, No. 13 and No. 13 were prepared by mixing 1% by weight and 3% by weight of B with No. 6 in Table 2 and kneading them in a ball mill.
Set it as No.14. Sintered bodies were prepared from the above Nos. 7, 8, 11 to 14 by hot pressing in the same manner as in Example 1. The hot press conditions were 2000°C, 200Kg/cm 2 , and 30 minutes. The obtained sintered body was subjected to a bending test (at room temperature) according to the method shown in Example 6. The test was conducted on 100 pieces of each, and the simple average strength and Weibull coefficient, which is an index of dispersion, were calculated and shown in Table 6. Note that there is inherent variation in the fracture strength of brittle materials such as sintered bodies, which follows the Weibull distribution, so in order to handle it using statistical methods, the following Weibull distribution function is applied, and P(σ )=1−Q(σ)=exp[−σ m0 ] m is the Weibull coefficient. However, P(σ) is the probability of non-destruction under stress σ, and σ 0 indicates a parameter of the scale. The larger the Weibull coefficient, the smaller the variation in strength and the higher the reliability.

【表】 第6表において、No.11〜14は従来方式により添
加剤を配合したもので、本発明の方式によるNo.
7,8に比べワイブル係数が小さい。 本発明によれば、理論密度に近い、従来に無い
ワイブル係数の大きな炭化珪素焼結体を得ること
ができる。 なお、本発明においては、周期律表の第1〜第
4周期のa族、b族、a族および族の元
素1〜10重量%固溶することが必要であるが、こ
れ以外の元素が固溶されていても差つかえない。
[Table] In Table 6, Nos. 11 to 14 are additives mixed using the conventional method, and No. 1 using the method of the present invention.
The Weibull coefficient is smaller than 7 and 8. According to the present invention, it is possible to obtain a silicon carbide sintered body having a Weibull coefficient unprecedentedly large and close to the theoretical density. In addition, in the present invention, it is necessary to form a solid solution of 1 to 10% by weight of elements belonging to groups a, b, a, and groups of the first to fourth periods of the periodic table, but other elements are not included. Even if it is a solid solution, it makes no difference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1は焼結温度と炭化珪素焼結体の密度との関
係を示す曲線図、第2図は焼結時間と炭化珪素焼
結体の密度との関係を示す曲線図、第3図は焼結
時の圧力と炭化珪素焼結体の密度との関係を示す
曲線図、第4図は炭化珪素粉末の平均粒径と炭化
珪素焼結体の密度との関係を示す曲線図である。 1……焼結時間5分、2……焼結時間30分、3
……焼結時間60分、4……1900℃、5……2050
℃、6……2100℃。
The first is a curve diagram showing the relationship between sintering temperature and the density of silicon carbide sintered body, Figure 2 is a curve diagram showing the relationship between sintering time and density of silicon carbide sintered body, and Figure 3 is a curve diagram showing the relationship between sintering time and density of silicon carbide sintered body. FIG. 4 is a curve diagram showing the relationship between the pressure during compaction and the density of the silicon carbide sintered body. FIG. 4 is a curve diagram showing the relationship between the average particle size of silicon carbide powder and the density of the silicon carbide sintered body. 1...Sintering time 5 minutes, 2...Sintering time 30 minutes, 3
...Sintering time 60 minutes, 4...1900℃, 5...2050
℃, 6...2100℃.

Claims (1)

【特許請求の範囲】[Claims] 1 元素周期律表の第1ないし第4周期の元素
で、a族、b族、a族および族から選ば
れる少なくとも1種の元素が1.0重量%よりも多
く10.0重量%以下固溶している炭化珪素粉末を真
空中または不活性ガス中において1900℃ないし
2050℃,100Kg/mm2ないし700Kg/mm2の圧力で5分
以上ホツトプレスし、理論密度の95%以上の密度
とワイブル係数19以上の焼結体を得ることを特徴
とする炭化珪素焼結体の製造方法。
1 An element in the 1st to 4th period of the periodic table of elements, in which at least one element selected from group a, group b, group a, and group is dissolved in a solid solution of more than 1.0% by weight and 10.0% by weight or less Silicon carbide powder is heated to 1900℃ in vacuum or inert gas.
A silicon carbide sintered body characterized by hot pressing at 2050°C and a pressure of 100Kg/ mm2 to 700Kg/ mm2 for 5 minutes or more to obtain a sintered body with a density of 95% or more of the theoretical density and a Weibull coefficient of 19 or more. manufacturing method.
JP10766478A 1978-09-04 1978-09-04 Manufacture of silicon carbide sintered body Granted JPS5537414A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10766478A JPS5537414A (en) 1978-09-04 1978-09-04 Manufacture of silicon carbide sintered body
DE19792934968 DE2934968A1 (en) 1978-09-04 1979-08-29 Sintered silicon carbide product and process for its manufacture
GB7930509A GB2031027A (en) 1978-09-04 1979-09-03 Sintered silicon carbide product and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10766478A JPS5537414A (en) 1978-09-04 1978-09-04 Manufacture of silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS5537414A JPS5537414A (en) 1980-03-15
JPS6242878B2 true JPS6242878B2 (en) 1987-09-10

Family

ID=14464877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10766478A Granted JPS5537414A (en) 1978-09-04 1978-09-04 Manufacture of silicon carbide sintered body

Country Status (3)

Country Link
JP (1) JPS5537414A (en)
DE (1) DE2934968A1 (en)
GB (1) GB2031027A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2927226A1 (en) * 1979-07-05 1981-01-08 Kempten Elektroschmelz Gmbh Dense molded body made of polycrystalline beta-silicon carbide and process for its production by hot pressing
DE2923728A1 (en) * 1979-06-12 1980-12-18 Kempten Elektroschmelz Gmbh DENSITY MOLDED BODIES MADE OF POLYCRYSTALLINE ALPHA-SILICON CARBIDE AND METHOD FOR THEIR PRODUCTION BY HOT PRESSING
DE3064598D1 (en) 1979-11-05 1983-09-22 Hitachi Ltd Electrically insulating substrate and a method of making such a substrate
DE3044162A1 (en) * 1980-11-24 1982-06-03 Annawerk Keramische Betriebe GmbH, 8633 Rödental POLYCRYSTALLINE SHAPED BODY MADE FROM SILICON CARBIDE AND METHOD FOR THE PRODUCTION THEREOF
JPS6025389B2 (en) * 1981-03-20 1985-06-18 株式会社日立製作所 Electrically insulating silicon carbide powder composition
DE3237257C2 (en) * 1982-10-08 1985-09-26 Battenfeld Extrusionstechnik GmbH, 4970 Bad Oeynhausen Gear for twin screw extruder
DE3243570C2 (en) * 1982-11-25 1984-09-13 Hutschenreuther Ag, 8672 Selb Process for producing a dense polycrystalline molded body from SiC
US4682510A (en) * 1984-04-11 1987-07-28 Bausano & Figli S.P.A. High torque drive means for two closely spaced shafts which are also subjected to strong axial thrusts and application thereof to a double screw extruder
JPH0717972B2 (en) * 1984-05-21 1995-03-01 株式会社日立製作所 Manufacturing method of tough silicon carbide sintered body
JPS6171422U (en) * 1984-10-17 1986-05-15
DE3621450A1 (en) * 1986-06-26 1988-01-14 Kempten Elektroschmelz Gmbh ELECTRICALLY INSULATING SUBSTRATE MATERIALS MADE OF POLYCRYSTALLINE SILICON CARBIDE AND METHOD FOR THEIR PRODUCTION THROUGH ISOSTATIC HOT PRESSING
JP4900663B2 (en) * 2006-03-08 2012-03-21 独立行政法人産業技術総合研究所 Exhaust gas purification filter and manufacturing method thereof

Also Published As

Publication number Publication date
DE2934968A1 (en) 1980-03-20
JPS5537414A (en) 1980-03-15
GB2031027A (en) 1980-04-16

Similar Documents

Publication Publication Date Title
EP0626358B1 (en) Electrically conductive high strength dense ceramic
CA1261887A (en) Dense molded bodies of polycrystalline aluminum nitride and process for preparation without use of sintering aids
US4230497A (en) Dense sintered shaped articles of polycrystalline α-silicon carbide and process for their manufacture
US3262763A (en) High temperature-resistant materials of aluminum, boron, nitrogen, and silicon and preparation thereof
US2799912A (en) Processes for forming high temperature ceramic articles
US3966855A (en) Method of fabricating silicon carbide articles
US4467043A (en) Dense shaped articles of polycrystalline α-silicon carbide and process for the manufacture thereof by hot-pressing
JPS6242878B2 (en)
JPH0260633B2 (en)
US4135937A (en) High density hot pressed thermal shock resistant silicon carbide
CN108610055A (en) A kind of method that low-temp liquid-phase sintering prepares compact silicon nitride ceramics
CN113416076A (en) Preparation method of self-reinforced silicon carbide ceramic material
JPS6138149B2 (en)
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
US20140124700A1 (en) ALN Substrate And Method For Producing Same
US3041142A (en) Refractory boride and silicide shapes and method of making
EP0540685A4 (en) Preparing nitridable silicon-containing material, resulting material
JPH0253388B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JPH0481542B2 (en)
RU2788686C1 (en) Composition for high-temperature ceramics and method for production of high-temperature ceramics based on silicon carbide and molybdenum silicide
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JPH07165408A (en) Production of electrically conductive silicon carbide fine powder and sintered compact
JPH05330917A (en) Production of highly heat conductive silicon carbide sintered compact