JP2006240960A - High specific resistance silicon carbide sintered compact - Google Patents

High specific resistance silicon carbide sintered compact Download PDF

Info

Publication number
JP2006240960A
JP2006240960A JP2005062454A JP2005062454A JP2006240960A JP 2006240960 A JP2006240960 A JP 2006240960A JP 2005062454 A JP2005062454 A JP 2005062454A JP 2005062454 A JP2005062454 A JP 2005062454A JP 2006240960 A JP2006240960 A JP 2006240960A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
carbide sintered
specific resistance
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005062454A
Other languages
Japanese (ja)
Other versions
JP5132034B2 (en
Inventor
Toyokazu Matsuyama
豊和 松山
Hiroyasu Hirata
博康 平田
Hideyuki Kanai
秀之 金井
Jun Seko
順 瀬古
Masahiro Ando
正博 安藤
Seiichi Fukuoka
聖一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2005062454A priority Critical patent/JP5132034B2/en
Publication of JP2006240960A publication Critical patent/JP2006240960A/en
Application granted granted Critical
Publication of JP5132034B2 publication Critical patent/JP5132034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mechanical Sealing (AREA)
  • Ceramic Products (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high specific resistance silicon carbide sintered compact suitably usable, e.g. as an insulating member for semiconductor fabrication equipment and liquid crystal device fabrication equipment, and further capable of coping with the enlargement, the increase of precision and the complication in the above member or the like. <P>SOLUTION: The high specific resistance silicon carbide sintered compact in which the content of nitrogen is 0.4 to 0.5 wt%, a part of the nitrogen is allowed to enter into solid solution in silicon carbide crystals, the balance is present on the grain boundaries of the silicon carbide crystals as boron nitride crystals, and specific resistance is ≥0.1 GΩ cm is obtained by an atmospheric pressure sintering process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体製造装置、液晶デバイス製造装置等におけるステッパ、チャンバ部品、静電気除去端子等に用いられるセラミックス部材や、メカニカルシール、軸受け等の摺動部品に好適な高比抵抗炭化ケイ素焼結体に関する。   The present invention is a high resistivity silicon carbide sintered body suitable for ceramic members used in steppers, chamber parts, static electricity removal terminals, etc. in semiconductor manufacturing apparatuses, liquid crystal device manufacturing apparatuses, etc., and sliding parts such as mechanical seals and bearings. About.

半導体や液晶デバイスの製造装置のうち、例えば、ステッパ部材であるステージには、軽量であり、放電し難い材料として、従来はアルミニウムが用いられていた。
この場合、紫外線等の短波長光の反射を抑制して高精度で露光するために、アルミニウム材の表面にブラックアルマイト処理を施していた。
Among semiconductor and liquid crystal device manufacturing apparatuses, for example, aluminum is conventionally used as a material that is lightweight and difficult to discharge on a stage that is a stepper member.
In this case, the surface of the aluminum material is subjected to black alumite treatment in order to suppress the reflection of short wavelength light such as ultraviolet rays and perform exposure with high accuracy.

近年、液晶基板の大型化に伴い、液晶用のステージは大型化が進み、アルミニウムに替わる材料として、軽量かつ高剛性であるアルミナ、ムライト、炭化ケイ素、窒化ケイ素等のセラミックス(焼結体)を用いることが検討されている。
これらのうち、炭化ケイ素焼結体は、黒〜黒褐色であり、紫外線反射率が3%未満であるため、黒色化処理を施さなければならない他のセラミックスに比べて有利である。
In recent years, with the increase in size of liquid crystal substrates, the size of liquid crystal stages has increased, and as a material to replace aluminum, ceramics (sintered bodies) such as alumina, mullite, silicon carbide, and silicon nitride, which are lightweight and highly rigid, are used. Use is under consideration.
Among these, the silicon carbide sintered body is black to black brown and has an ultraviolet reflectance of less than 3%, which is advantageous compared to other ceramics that must be subjected to blackening treatment.

しかしながら、アルミナ、ムライト、窒化ケイ素等のセラミックスは、絶縁材料であるのに対して、炭化ケイ素焼結体は、103〜106Ω・cmと広範囲にわたる比抵抗を示すものである。
しかも、炭化ケイ素焼結体は、上記のようなステッパ部材に用いる際は、プロセス毎に除電処理しなければならず、特に、大型の部材の場合には、除電処理の所要時間が長くなり、また、塵埃の付着や吸着も防止しなければならなかった。
However, ceramics such as alumina, mullite, and silicon nitride are insulating materials, whereas silicon carbide sintered bodies exhibit a specific resistance over a wide range of 10 3 to 10 6 Ω · cm.
Moreover, when the silicon carbide sintered body is used for a stepper member as described above, it must be neutralized for each process, and in particular, in the case of a large-sized member, the time required for the neutralization treatment becomes long. In addition, it was necessary to prevent dust adhesion and adsorption.

したがって、軽量かつ高剛性であり、低反射率である炭化ケイ素焼結体は、これらの優れた特性に加えて、高抵抗化を図ることができれば、大型液晶のステッパ部材に好適に用いることができる材料となる。   Therefore, a lightweight, high-rigidity, low-reflectance silicon carbide sintered body can be suitably used for a large-size liquid crystal stepper member, in addition to these excellent characteristics, as long as the resistance can be increased. It becomes a material that can be made.

ところで、従来、炭化ケイ素焼結体の製造においては、焼結体の緻密化を図るために、炭化ケイ素原料に、焼結助剤として炭化ホウ素が添加されていた。
しかしながら、これにより得られる炭化ケイ素焼結体は、剛性および強度は高く、大型化への対応も可能であるが、比抵抗は高々106Ω・cmオーダーであり、半導体製造装置、液晶デバイス製造装置における絶縁性を要求される前記部材等に適用するには、十分な比抵抗であるとは言えなかった。
By the way, conventionally, in the manufacture of a silicon carbide sintered body, boron carbide has been added as a sintering aid to the silicon carbide raw material in order to make the sintered body dense.
However, the silicon carbide sintered body obtained in this way has high rigidity and strength and can cope with an increase in size, but the specific resistance is at most on the order of 10 6 Ω · cm. It could not be said that the specific resistance was sufficient to be applied to the member or the like that requires insulation in the apparatus.

これに対して、高比抵抗の炭化ケイ素焼結体を得る方法としては、例えば、特許文献1に、炭化ケイ素粉末原料に、ベリリウムまたはベリリウム化合物を添加して、ホットプレス焼結を行うことにより、比抵抗が1GΩ・cmに達する炭化ケイ素焼結体が得られることが開示されている。   On the other hand, as a method of obtaining a silicon carbide sintered body having a high specific resistance, for example, in Patent Document 1, beryllium or a beryllium compound is added to a silicon carbide powder raw material and hot press sintering is performed. It is disclosed that a silicon carbide sintered body having a specific resistance of 1 GΩ · cm can be obtained.

また、特許文献2には、焼結助剤として、窒化ホウ素1〜20質量%と、炭素または/および炭化ホウ素を併用して、ホットプレス焼結することにより、高比抵抗の炭化ケイ素焼結体が得られることが開示されている。
特開昭57−156373号公報 特開2003−277152号公報(段落0013等)
Patent Document 2 discloses that high resistivity silicon carbide sintered by hot press sintering using boron nitride 1-20 mass% and carbon or / and boron carbide as a sintering aid. It is disclosed that a body is obtained.
JP 57-156373 A JP 2003-277152 A (paragraph 0013 etc.)

しかしながら、上記特許文献1記載の炭化ケイ素焼結体は、非常に高い比抵抗が得られているが、添加されるベリリウムまたはベリリウム化合物は、毒性の問題があり、また、ホットプレス焼結では、近年の液晶の大型化に伴う製造装置部材の大型化、高精度化、複雑化に対応する炭化ケイ素焼結体を得ることは困難であった。   However, although the silicon carbide sintered body described in Patent Document 1 has a very high specific resistance, the added beryllium or beryllium compound has a problem of toxicity, and in hot press sintering, It has been difficult to obtain a silicon carbide sintered body corresponding to the increase in size, accuracy, and complexity of manufacturing apparatus members accompanying the increase in the size of liquid crystals in recent years.

また、上記特許文献2記載の炭化ケイ素焼結体も、ホットプレス焼結により緻密化が図られ、高い比抵抗が得られるものの、これも、上記特許文献1記載の炭化ケイ素焼結体と同様に、大型かつ複雑な形状の焼結体とすることは困難であった。   The silicon carbide sintered body described in Patent Document 2 is also densified by hot press sintering, and a high specific resistance is obtained. This is also the same as the silicon carbide sintered body described in Patent Document 1. In addition, it has been difficult to obtain a sintered body having a large and complicated shape.

本発明は、上記技術的課題を解決するためになされたものであり、半導体製造装置、液晶デバイス製造装置用の絶縁性部材等として好適に用いることができ、また、大型化、高精度化、複雑化にも対応することができる高比抵抗炭化ケイ素焼結体を提供することを目的とするものである。   The present invention has been made in order to solve the above technical problem, and can be suitably used as an insulating member for a semiconductor manufacturing apparatus, a liquid crystal device manufacturing apparatus, etc. An object of the present invention is to provide a high resistivity silicon carbide sintered body that can cope with complications.

本発明に係る高比抵抗炭化ケイ素焼結体は、常圧焼結法により得られる炭化ケイ素焼結体であって、窒素含有量が0.4wt%以上0.5wt%以下であり、前記窒素の一部が炭化ケイ素結晶に固溶しており、残部が炭化ケイ素結晶粒界に窒化ホウ素結晶として存在し、かつ、比抵抗が0.1GΩ・cm以上であることを特徴とする。
上記のような高比抵抗の炭化ケイ素焼結体は、紫外線の反射率が低く、軽量かつ高剛性であるため、半導体製造装置、液晶デバイス製造装置等における大型の絶縁性セラミックス材として好適に用いることができる。
The high resistivity silicon carbide sintered body according to the present invention is a silicon carbide sintered body obtained by a normal pressure sintering method, wherein the nitrogen content is 0.4 wt% or more and 0.5 wt% or less, and the nitrogen Is partly dissolved in the silicon carbide crystal, the remainder is present as a boron nitride crystal at the silicon carbide crystal grain boundary, and the specific resistance is 0.1 GΩ · cm or more.
Since the silicon carbide sintered body having a high specific resistance as described above has low ultraviolet reflectance, is light and highly rigid, it is suitably used as a large-sized insulating ceramic material in semiconductor manufacturing equipment, liquid crystal device manufacturing equipment, and the like. be able to.

前記高比抵抗炭化ケイ素焼結体においては、強度の観点から、窒化ホウ素結晶は、径が4μm以下であり、数密度が120個/mm2以下であることが好ましい。 In the high resistivity silicon carbide sintered body, from the viewpoint of strength, the boron nitride crystal preferably has a diameter of 4 μm or less and a number density of 120 pieces / mm 2 or less.

上述したとおり、本発明に係る高比抵抗炭化ケイ素焼結体は、短波長光の反射率が低く、軽量かつ高剛性であり、比抵抗が0.1GΩ・cm以上と高く、静電気の発生を抑制することができ、静電気が発生した場合であっても、容易に除電することができる。
したがって、本発明に係る高比抵抗炭化ケイ素焼結体は、半導体製造装置、液晶デバイス製造装置における1mを超える大型のステージやチャンバ部品、静電気除去端子等に用いられるセラミックス部材として、また、メカニカルシール、軸受け等の摺動部品にも好適に用いることができる。
As described above, the high resistivity silicon carbide sintered body according to the present invention has low reflectance of short wavelength light, is lightweight and highly rigid, has a high specific resistance of 0.1 GΩ · cm or more, and generates static electricity. Even if static electricity is generated, it can be easily removed.
Therefore, the high specific resistance silicon carbide sintered body according to the present invention is used as a ceramic member used for a large stage and chamber parts exceeding 1 m in a semiconductor manufacturing apparatus and a liquid crystal device manufacturing apparatus, a static electricity removal terminal, etc. It can also be suitably used for sliding parts such as bearings.

以下、本発明を、より詳細に説明する。
本発明に係る高比抵抗炭化ケイ素焼結体は、常圧焼結法により得られる炭化ケイ素焼結体であって、窒化ホウ素粒子を含み、窒素含有量が0.4wt%以上0.5wt%以下であり、かつ、比抵抗が0.1GΩ・cm以上のものである。
このように、本発明に係る炭化ケイ素焼結体は、軽量かつ高剛性であるセラミックス一般の特性に加えて、紫外線等の短波長光の反射が少なく、高比抵抗のものである。
Hereinafter, the present invention will be described in more detail.
The high resistivity silicon carbide sintered body according to the present invention is a silicon carbide sintered body obtained by a normal pressure sintering method, includes boron nitride particles, and has a nitrogen content of 0.4 wt% or more and 0.5 wt%. The specific resistance is 0.1 GΩ · cm or more.
As described above, the silicon carbide sintered body according to the present invention has high specific resistance in addition to the general characteristics of ceramics that are lightweight and highly rigid, and has little reflection of short wavelength light such as ultraviolet rays.

上記のような本発明に係る高比抵抗炭化ケイ素焼結体は、例えば、炭化ケイ素粉末原料に、焼結助剤として窒化ホウ素、カーボンブラックおよび有機バインダを用いて、スラリーを混合して調製する工程と、前記スラリーを造粒した後、これを加圧成形により成形体とする工程と、前記成形体を2100〜2300℃で常圧焼結させる工程とを経ることにより、容易に製造することができる。
このような製造方法によれば、従来のようなホットプレスによる焼結を行う必要がないため、半導体製造装置や液晶デバイス製造装置におけるチャンバ部品のような複雑形状の部材等であっても比較的容易に製造することができ、また、前記部材の大型化、高精度化にも対応することが可能である。
The high resistivity silicon carbide sintered body according to the present invention as described above is prepared, for example, by mixing a slurry using boron nitride, carbon black and an organic binder as a sintering aid to a silicon carbide powder raw material. It is easy to manufacture by granulating the slurry, followed by a step of forming the slurry by pressure molding, and a step of sintering the molded body at 2100 to 2300 ° C. under normal pressure. Can do.
According to such a manufacturing method, since it is not necessary to perform sintering by hot pressing as in the prior art, even a member having a complicated shape such as a chamber part in a semiconductor manufacturing apparatus or a liquid crystal device manufacturing apparatus is relatively It can be easily manufactured, and it is possible to cope with an increase in size and accuracy of the member.

前記炭化ケイ素粉末原料としては、純度98%程度のα‐SiCからなる市販品の炭化ケイ素粉末を用いることができる。
なお、前記炭化ケイ素粉末中に、Alが100〜300ppm含まれている場合がある。このAlはp型形成元素であるため、電気抵抗を半導体レベルにまで低下させるものであり、本発明においては、このような炭化ケイ素粉末を用いる場合は、高抵抗に維持するために、n型形成元素であるNを300ppm以上含む粉末を添加して使用する。
また、前記炭化ケイ素粉末原料の粒径は、スラリー調製時における分散性等の観点から、平均粒径1.0μm以下であることが好ましい。
As the silicon carbide powder raw material, commercially available silicon carbide powder made of α-SiC having a purity of about 98% can be used.
The silicon carbide powder may contain 100 to 300 ppm of Al. Since this Al is a p-type forming element, the electric resistance is lowered to the semiconductor level. In the present invention, when such silicon carbide powder is used, the n-type is used to maintain a high resistance. A powder containing 300 ppm or more of N as a forming element is added and used.
Further, the particle diameter of the silicon carbide powder raw material is preferably an average particle diameter of 1.0 μm or less from the viewpoint of dispersibility during slurry preparation.

前記炭化ケイ素粉末原料に添加する窒化ホウ素は、0.7wt%以上1wt%以下の範囲であることが好ましい。
前記窒化ホウ素の添加量が0.7wt%未満の場合、後述のように、得られる炭化ケイ素焼結体中にNが十分に導入されず、抵抗率の向上が図られない。一方、窒化ホウ素の添加量が1wt%を超える場合、成形工程において、成形性が著しく低下し、成形が困難となる。
なお、前記窒化ホウ素は、平均粒径5μm以下程度の粉末が、スラリー調製時における分散性等に優れているため好ましい。
The boron nitride added to the silicon carbide powder raw material is preferably in the range of 0.7 wt% to 1 wt%.
When the added amount of boron nitride is less than 0.7 wt%, as described later, N is not sufficiently introduced into the obtained silicon carbide sintered body, and the resistivity cannot be improved. On the other hand, when the addition amount of boron nitride exceeds 1 wt%, the moldability is remarkably lowered in the molding step, and molding becomes difficult.
As the boron nitride, a powder having an average particle size of about 5 μm or less is preferable because of excellent dispersibility during slurry preparation.

得られる炭化ケイ素焼結体中のBの含有量は、添加される窒化ホウ素中のBの含有量とほぼ等量となる。
これに対して、炭化ケイ素焼結体中のNの含有量は、Nの一部が揮散することにより、添加される窒化ホウ素中のNの含有量よりも少なくなる。
したがって、窒化ホウ素の添加量は、Nが窒化ホウ素結晶の状態で、炭化ケイ素焼結体中に残留することができる程度の量とすることが必要であり、これにより、炭化ケイ素焼結体の高抵抗化を図ることができる。
なお、本発明に係る炭化ケイ素焼結体の粒界中に窒化ホウ素結晶が残留していることは、電子エネルギー損失分光法(EELS:Electron Energy-Loss Spectroscopy)によって確認することができる。
The content of B in the obtained silicon carbide sintered body is substantially equal to the content of B in the added boron nitride.
On the other hand, the content of N in the silicon carbide sintered body is less than the content of N in the boron nitride added when a part of N is volatilized.
Therefore, the amount of boron nitride added must be such that N can remain in the silicon carbide sintered body in the form of boron nitride crystals. High resistance can be achieved.
In addition, it can be confirmed by electron energy loss spectroscopy (EELS) that the boron nitride crystal remains in the grain boundary of the silicon carbide sintered body according to the present invention.

上記のように、本発明に係る炭化ケイ素焼結体中には、窒化ホウ素結晶が存在していることを要するが、この窒化ホウ素結晶の凝集相が炭化ケイ素結晶粒界のほぼ三重点に形成される。前記窒化ホウ素結晶のサイズが大きすぎたり、数が多すぎる場合は、炭化ケイ素焼結体の密度が低下し、強度が低下することとなる。
このため、本発明に係る炭化ケイ素焼結体中に存在する窒化ホウ素結晶は少ないことが好ましく、すなわち、径が4μm以下であり、その数密度が120個/mm2以下であることが好ましく、より好ましくは、100個/mm2以下である。
As described above, the silicon carbide sintered body according to the present invention requires the presence of boron nitride crystals, and the aggregated phase of the boron nitride crystals is formed almost at the triple point of the silicon carbide crystal grain boundary. Is done. When the size of the boron nitride crystal is too large or too large, the density of the silicon carbide sintered body is lowered and the strength is lowered.
For this reason, it is preferable that there are few boron nitride crystals present in the silicon carbide sintered body according to the present invention, that is, the diameter is 4 μm or less, and the number density is preferably 120 pieces / mm 2 or less, More preferably, it is 100 pieces / mm 2 or less.

また、前記スラリー調製工程においては、分散性の向上、焼結体の均質化および緻密化を図る等の目的で、分散剤、バインダ等の助剤を、適宜添加してもよい。
前記バインダとしては、炭化率が高いことから、フェノール系樹脂が好適に用いられる。
前記バインダは、炭化ケイ素原料粉末に対して、Cの含有量が0.5〜4wt%となる量を添加することが好ましい。
前記Cの含有量が0.5wt%未満の場合は、成形性が劣る。一方、4wt%を超える場合は、得られる炭化ケイ素焼結体中に残留するCが多くなり、比抵抗の低下を招く。
また、スラリー調製時に用いられる分散媒は、揮発性液体であることが好ましく、例えば、水、アルコール等を用いることが好ましい。
In the slurry preparation step, auxiliary agents such as a dispersant and a binder may be appropriately added for the purpose of improving dispersibility and homogenizing and densifying the sintered body.
As the binder, a phenolic resin is preferably used because of its high carbonization rate.
The binder is preferably added in an amount such that the C content is 0.5 to 4 wt% with respect to the silicon carbide raw material powder.
If the C content is less than 0.5 wt%, the moldability is inferior. On the other hand, when it exceeds 4 wt%, C which remains in the obtained silicon carbide sintered body increases, and the specific resistance is lowered.
Moreover, it is preferable that the dispersion medium used at the time of slurry preparation is a volatile liquid, for example, it is preferable to use water, alcohol, etc.

前記スラリーからの造粒方法は、特に限定されるものではないが、通常は、スプレードライにより行われる。
また、成形工程においては、焼結体の緻密化を図るため、加圧成形することが好ましく、例えば、一軸プレス成形、CIP等により行うことができる。
The granulation method from the slurry is not particularly limited, but is usually performed by spray drying.
In the molding step, it is preferable to perform pressure molding in order to increase the density of the sintered body. For example, uniaxial press molding, CIP, or the like can be used.

上記のようにして造粒粉を加圧成形して得た成形体を、2100〜2300℃で焼成することにより、本発明に係る炭化ケイ素焼結体が得られる。
前記焼成温度が2100℃未満の場合は、焼結が十分に進行せず、密度および抵抗が低下する。一方、焼成温度が2300℃を超える場合は、焼結体中に添加した窒化ホウ素の蒸発による空隙が生じ、密度の低下および抵抗の低下を招く。
また、高比抵抗の焼結体を得るためには、不純物の混入防止の観点から、不活性ガス雰囲気下で焼結させることが好ましい。
なお、焼結時間およびその他の焼結条件は、製造する炭化ケイ素焼結体の形状、大きさ、用途等に応じて、適宜調整される。
The silicon carbide sintered body according to the present invention is obtained by firing the molded body obtained by pressure-molding the granulated powder as described above at 2100 to 2300 ° C.
When the firing temperature is less than 2100 ° C., the sintering does not proceed sufficiently, and the density and resistance decrease. On the other hand, when the firing temperature exceeds 2300 ° C., voids are generated due to evaporation of boron nitride added in the sintered body, leading to a decrease in density and a decrease in resistance.
In order to obtain a sintered body having a high specific resistance, it is preferable to sinter in an inert gas atmosphere from the viewpoint of preventing impurities from being mixed.
The sintering time and other sintering conditions are appropriately adjusted depending on the shape, size, application, etc. of the silicon carbide sintered body to be produced.

上記のようにして得られる本発明に係る炭化ケイ素焼結体は、高比抵抗であるため、半導体製造装置、液晶デバイス製造装置等における絶縁性セラミックス材として好適に用いることができる。
なお、高比抵抗であることは、除電の観点からは不利であるが、誘電し難いため、例えば、ステッパにおいて、露光作業中の放電を防止し、基板との放電によるパターン破壊を防止することができるという利点を有しており、1mを超える大型のステージやチャンバ部品、静電気除去端子等、また、メカニカルシール、軸受け等の摺動部品にも好適に用いることができる。
Since the silicon carbide sintered body according to the present invention obtained as described above has a high specific resistance, it can be suitably used as an insulating ceramic material in a semiconductor manufacturing apparatus, a liquid crystal device manufacturing apparatus or the like.
Note that a high specific resistance is disadvantageous from the standpoint of static elimination, but is difficult to generate a dielectric. For example, in a stepper, it prevents discharge during exposure work and prevents pattern destruction due to discharge with the substrate. And can be suitably used for sliding parts such as large stages and chamber parts exceeding 1 m, static electricity removal terminals, etc., mechanical seals, bearings, and the like.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]
平均粒径0.7μmの炭化ケイ素粉末原料(α‐SiC、純度98%)に対して、焼結助剤として窒化ホウ素0.8wt%と、フェノール樹脂系バインダをC換算で2wt%と、分散媒としてアルコールとを、樹脂製ボールミルにて混合してスラリーを調製した。
前記スラリーをスプレードライにより造粒した後、80mm×13mm×10mmの成形体を形成した。
前記成形体を圧力1200kg/cm2で一軸プレス成形し、2100℃で1時間焼成し、炭化ケイ素焼結体を作製した。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
For silicon carbide powder raw material (α-SiC, purity 98%) with an average particle size of 0.7μm, boron nitride 0.8wt% as a sintering aid and phenol resin binder 2wt% in terms of C Alcohol as a medium was mixed with a resin ball mill to prepare a slurry.
After the slurry was granulated by spray drying, a molded body of 80 mm × 13 mm × 10 mm was formed.
The formed body was uniaxial press-molded at a pressure of 1200 kg / cm 2 and fired at 2100 ° C. for 1 hour to produce a silicon carbide sintered body.

得られた炭化ケイ素焼結体の密度は、3.15±0.03g/cm3、動弾性率は約400GPaであり、高比抵抗でない通常の炭化ケイ素焼結体と同程度の密度および強度を有していることが認められた。
この炭化ケイ素焼結体中の窒素含有量を測定したところ、0.42wt%であった。
また、TEM観察により、炭化ケイ素の結晶粒界に、窒化ホウ素粒子が存在していることが確認された。
The obtained silicon carbide sintered body has a density of 3.15 ± 0.03 g / cm 3 , a dynamic elastic modulus of about 400 GPa, and a density and strength comparable to those of a normal silicon carbide sintered body having no high specific resistance. It was found to have
It was 0.42 wt% when the nitrogen content in this silicon carbide sintered body was measured.
Further, TEM observation confirmed that boron nitride particles were present at the silicon carbide grain boundaries.

さらに、前記炭化ケイ素焼結体を3mm×4mm×40mmの試験片に加工して、四端子法(JIS R1637およびJIS K7194)により比抵抗を測定した結果、室温比抵抗で1GΩ・cmを超えることが認められた。
また、コール‐コールプロットによる比誘電率は220±20、誘電損失は0.8以下であり、通常の炭化ケイ素焼結体が、比誘電率300、誘電損失1.4であるのと比べていずれも低く、誘電し難いものであることが認められた。
Furthermore, the silicon carbide sintered body was processed into a 3 mm × 4 mm × 40 mm test piece, and the specific resistance was measured by the four-terminal method (JIS R1637 and JIS K7194). As a result, the room temperature specific resistance exceeded 1 GΩ · cm. Was recognized.
In addition, the relative dielectric constant according to the Cole-Cole plot is 220 ± 20, and the dielectric loss is 0.8 or less, compared with the case where a normal silicon carbide sintered body has a relative dielectric constant of 300 and a dielectric loss of 1.4. Both were found to be low and difficult to dielectric.

[実施例2]
窒化ホウ素の添加量を0.95wt%として、それ以外については、実施例1と同様にして、炭化ケイ素焼結体を作製し、窒素含有量および比抵抗を測定した。
これらの測定結果を表1に示す。
[Example 2]
A silicon carbide sintered body was produced in the same manner as in Example 1 except that the amount of boron nitride added was 0.95 wt%, and the nitrogen content and specific resistance were measured.
These measurement results are shown in Table 1.

[比較例1,2]
表1の比較例1,2に示すように、窒化ホウ素の添加量を変化させて、それ以外については、実施例1と同様にして、炭化ケイ素焼結体を作製し、窒素含有量および比抵抗を測定した。
これらの測定結果を表1に示す。
[Comparative Examples 1 and 2]
As shown in Comparative Examples 1 and 2 in Table 1, a silicon carbide sintered body was produced in the same manner as in Example 1 except that the addition amount of boron nitride was changed, and the nitrogen content and ratio were Resistance was measured.
These measurement results are shown in Table 1.

[比較例3]
窒化ホウ素に替えて、炭化ホウ素を0.15重量%添加し、それ以外については、実施例1と同様にして、炭化ケイ素焼結体を作製し、窒素含有量および比抵抗を測定した。
これらの測定結果を表1に示す。
なお、比較例3においては、焼結体中の窒素含有量は、炭化ケイ素原料に含まれていた不純物に由来する。
[Comparative Example 3]
Instead of boron nitride, 0.15% by weight of boron carbide was added. Otherwise, a silicon carbide sintered body was produced in the same manner as in Example 1, and the nitrogen content and specific resistance were measured.
These measurement results are shown in Table 1.
In Comparative Example 3, the nitrogen content in the sintered body is derived from impurities contained in the silicon carbide raw material.

Figure 2006240960
Figure 2006240960

Claims (2)

常圧焼結法により得られる炭化ケイ素焼結体であって、窒素含有量が0.4wt%以上0.5wt%以下であり、前記窒素の一部が炭化ケイ素結晶に固溶しており、残部が炭化ケイ素結晶粒界に窒化ホウ素結晶として存在し、かつ、比抵抗が0.1GΩ・cm以上であることを特徴とする高比抵抗炭化ケイ素焼結体。   A silicon carbide sintered body obtained by a normal pressure sintering method, wherein the nitrogen content is 0.4 wt% or more and 0.5 wt% or less, and a part of the nitrogen is dissolved in silicon carbide crystals, A high specific resistance silicon carbide sintered body characterized in that the remainder is present as boron nitride crystals in the silicon carbide crystal grain boundary and the specific resistance is 0.1 GΩ · cm or more. 前記窒化ホウ素結晶は、径が4μm以下であり、数密度が120個/mm2以下であることを特徴とする請求項1記載の高比抵抗炭化ケイ素焼結体。 2. The high resistivity silicon carbide sintered body according to claim 1, wherein the boron nitride crystal has a diameter of 4 μm or less and a number density of 120 / mm 2 or less.
JP2005062454A 2005-03-07 2005-03-07 High resistivity silicon carbide sintered body Expired - Fee Related JP5132034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062454A JP5132034B2 (en) 2005-03-07 2005-03-07 High resistivity silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062454A JP5132034B2 (en) 2005-03-07 2005-03-07 High resistivity silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JP2006240960A true JP2006240960A (en) 2006-09-14
JP5132034B2 JP5132034B2 (en) 2013-01-30

Family

ID=37047737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062454A Expired - Fee Related JP5132034B2 (en) 2005-03-07 2005-03-07 High resistivity silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP5132034B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605408A (en) * 2009-06-29 2009-12-16 山东金鸿集团有限公司 A kind of method that changes resistivity of silicon-carbon rod heating body and products thereof
JP2012072044A (en) * 2010-08-31 2012-04-12 Mino Ceramic Co Ltd Boron carbide-containing ceramic bonded body, and method for producing the bonded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205665A (en) * 1985-03-08 1986-09-11 ティーディーケイ株式会社 Electrically insulating substrate and manufacture
JPS62197353A (en) * 1986-02-24 1987-09-01 信越化学工業株式会社 Manufacture of silicon carbide sintered body
JPS63123867A (en) * 1986-11-10 1988-05-27 三井東圧化学株式会社 Manufacture of silicon carbide formed body for sintering
JP2001261441A (en) * 2000-03-15 2001-09-26 Tokai Konetsu Kogyo Co Ltd Production process of electrically conductive silicon carbide sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205665A (en) * 1985-03-08 1986-09-11 ティーディーケイ株式会社 Electrically insulating substrate and manufacture
JPS62197353A (en) * 1986-02-24 1987-09-01 信越化学工業株式会社 Manufacture of silicon carbide sintered body
JPS63123867A (en) * 1986-11-10 1988-05-27 三井東圧化学株式会社 Manufacture of silicon carbide formed body for sintering
JP2001261441A (en) * 2000-03-15 2001-09-26 Tokai Konetsu Kogyo Co Ltd Production process of electrically conductive silicon carbide sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605408A (en) * 2009-06-29 2009-12-16 山东金鸿集团有限公司 A kind of method that changes resistivity of silicon-carbon rod heating body and products thereof
JP2012072044A (en) * 2010-08-31 2012-04-12 Mino Ceramic Co Ltd Boron carbide-containing ceramic bonded body, and method for producing the bonded body

Also Published As

Publication number Publication date
JP5132034B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP6942929B2 (en) Slurry composition for tape casting for manufacturing silicon nitride sintered body
JP2006273584A (en) Aluminum nitride sintered compact, member for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered compact
TW201833061A (en) Silicon carbide member for plasma treatment apparatus, and method of manufacturing same
US7915189B2 (en) Yttrium oxide material, member for semiconductor-manufacturing apparatus, and method for producing yttrium oxide material
WO2018194052A1 (en) Sintered body, board, circuit board, and method for manufacturing sintered body
EP3279923B1 (en) Silicon carbide member for plasma treatment devices, and method for manufacturing same
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
JP5132034B2 (en) High resistivity silicon carbide sintered body
KR101681184B1 (en) Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same
JP4897263B2 (en) Black low resistance ceramics and semiconductor manufacturing equipment components
JP4429742B2 (en) Sintered body and manufacturing method thereof
KR101195009B1 (en) Manufacturing method of aluminum nitride ceramics
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JP4860335B2 (en) Conductive corrosion-resistant member and manufacturing method thereof
JP2009302518A (en) Electrostatic chuck
JP2021172556A (en) Aluminum nitride sintered compact and manufacturing method thereof
JP2008288428A (en) Electrostatic chuck
JP2005119925A (en) High-resistivity silicon carbide sintered compact
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
KR102624914B1 (en) Electrostatic chuck, electrostatic chuck heater and semiconductor holding device comprising the same
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JP2008074678A (en) Aluminum nitride slurry, and aluminum nitride granule, aluminum nitride formed body and aluminum nitride sintered compact obtained from the same
JP5265859B2 (en) Aluminum nitride sintered body
JP6787207B2 (en) SiC sintered body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees