JP2010126427A - Method of manufacturing silicon carbide heating element end part and silicon carbide heating element end part - Google Patents

Method of manufacturing silicon carbide heating element end part and silicon carbide heating element end part Download PDF

Info

Publication number
JP2010126427A
JP2010126427A JP2008306411A JP2008306411A JP2010126427A JP 2010126427 A JP2010126427 A JP 2010126427A JP 2008306411 A JP2008306411 A JP 2008306411A JP 2008306411 A JP2008306411 A JP 2008306411A JP 2010126427 A JP2010126427 A JP 2010126427A
Authority
JP
Japan
Prior art keywords
silicon carbide
heating element
silicon
carbide heating
end part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008306411A
Other languages
Japanese (ja)
Other versions
JP5187579B2 (en
Inventor
Masataka Yamamoto
将隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP2008306411A priority Critical patent/JP5187579B2/en
Publication of JP2010126427A publication Critical patent/JP2010126427A/en
Application granted granted Critical
Publication of JP5187579B2 publication Critical patent/JP5187579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a silicon carbide heating element end part low in a resistance value, suppressing power loss of a silicon carbide heating element and saving energy and advantageous in the manufacturing cost. <P>SOLUTION: The method of manufacturing the end part of the silicon carbide heating element formed by joining a heating part to the end part is carried out by heating and reaction-sintering a compacted body of mixed powder of silicon carbide, carbon and silicon nitride in the presence of silicon under reduced pressure of 150-1,500 Pa at 1,450-1,700°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、炭化珪素発熱体端部の製造方法および該製造方法により得られた炭化珪素発熱体端部に関する。   The present invention relates to a method for manufacturing a silicon carbide heating element end and a silicon carbide heating element end obtained by the manufacturing method.

炭化珪素発熱体は、炭化珪素からなる発熱部と、炭化珪素と珪素との複合材からなる端部を、SiC、C、バインダーからなる接着剤を用いて高温で接合することにより構成されている(特許文献1参照)。端部を構成する複合材中の珪素は、該接合工程において溶融し、発熱部と端部の界面で発熱部と反応して良好な接合面を形成する。   The silicon carbide heating element is configured by joining a heating part made of silicon carbide and an end part made of a composite material of silicon carbide and silicon at a high temperature using an adhesive made of SiC, C, and a binder. (See Patent Document 1). Silicon in the composite material constituting the end portion melts in the bonding step, and reacts with the heat generating portion at the interface between the heat generating portion and the end portion to form a good bonding surface.

このような炭化珪素発熱体において、発熱部の抵抗値に比べ端部の抵抗値が高いと電力損出が大きくなり、省エネルギーの点で問題であるため、端部については、抵抗値を下げる処理が行われる。抵抗値を下げる方法として、炭化珪素成形体を窒素ガス雰囲気中で加熱、焼成して、緻密化と同時に窒素を固溶(ドープ)させ、導電性を付与する方法が知られており(特許文献1参照)、炭化珪素成形体を真空中または不活性雰囲気中で加熱する一次焼成を行った後、加圧窒素ガス雰囲気中で再加熱する二次焼成を行うことにより抵抗値を下げる方法も知られている(特許文献2参照)   In such a silicon carbide heating element, if the resistance value of the end portion is higher than the resistance value of the heat generating portion, power loss increases, which is a problem in terms of energy saving. Is done. As a method for lowering the resistance value, a method is known in which a silicon carbide molded body is heated and fired in a nitrogen gas atmosphere, and at the same time densified and nitrogen is dissolved (dope) to impart conductivity (Patent Document). 1), and a method of lowering the resistance value by performing secondary firing in which the silicon carbide molded body is heated in vacuum or in an inert atmosphere and then reheated in a pressurized nitrogen gas atmosphere. (See Patent Document 2)

炭化珪素発熱体の端部についても、珪素を含有する炭化珪素成形体を反応焼結させた後、窒素ガス雰囲気中で、例えば1800℃以上の温度に加熱し、窒素を固溶させることにより抵抗値を下げる処理が行われているが、このような余分な工程は、製造コストの上昇、生産性低下の要因となるため、改善が望まれている。
特許第3932405号公報 特開2001−110553号公報 特公昭61−56187号公報
The end portion of the silicon carbide heating element is also resistant by reacting and sintering a silicon carbide molded body containing silicon, and then heating to a temperature of, for example, 1800 ° C. or higher in a nitrogen gas atmosphere to dissolve nitrogen in a solid solution. Although the process of lowering the value has been performed, such an extra step causes an increase in manufacturing cost and a decrease in productivity, and hence improvement is desired.
Japanese Patent No. 3932405 JP 2001-110553 A Japanese Examined Patent Publication No. 61-56187

本発明は、上記の要望に答えるためになされたものであり、その目的は、抵抗値が低く、炭化珪素発熱体の電力損出を少なくすることができて、省エネルギーを可能とし、製造コストの面でも有利な炭化珪素発熱体端部の製造方法、および炭化珪素発熱体端部を提供することにある。   The present invention has been made to answer the above-mentioned demands, and its purpose is to have a low resistance value, reduce the power loss of the silicon carbide heating element, enable energy saving, and reduce the manufacturing cost. Another object of the present invention is to provide a method for manufacturing an end portion of a silicon carbide heating element that is also advantageous in terms of surface, and an end portion of a silicon carbide heating element.

上記の目的を達成するための請求項1による炭化珪素発熱体端部の製造方法は、発熱部と端部を接合してなる炭化珪素発熱体の端部を製造する方法において、炭化珪素、炭素および窒化珪素の混合粉末の成形体を、珪素の存在下で、且つ圧力が150〜1500Paの減圧下で、1450〜1700℃の温度に加熱して反応焼結することを特徴とする。   A method for manufacturing an end portion of a silicon carbide heating element according to claim 1 for achieving the above object is the method of manufacturing an end portion of a silicon carbide heating element formed by joining the heating portion and the end portion. And a sintered compact of the mixed powder of silicon nitride is heated to a temperature of 1450 to 1700 ° C. in the presence of silicon and at a reduced pressure of 150 to 1500 Pa, and is reactively sintered.

請求項2による炭化珪素発熱体端部の製造方法は、請求項1において、前記混合粉末中の窒化珪素の含有量が1〜25重量%であることを特徴とする。   The method for manufacturing the end portion of the silicon carbide heating element according to claim 2 is characterized in that, in claim 1, the content of silicon nitride in the mixed powder is 1 to 25% by weight.

請求項3による炭化珪素発熱体端部は、請求項1または2記載の方法で得られた炭化珪素発熱体端部であり、比抵抗値が0.003Ωcm未満であることを特徴とする。   The end portion of the silicon carbide heating element according to claim 3 is the end portion of the silicon carbide heating element obtained by the method according to claim 1 or 2, and has a specific resistance value of less than 0.003 Ωcm.

本発明によれば、抵抗値が低く、炭化珪素発熱体の電力損出を少なくすることができて、省エネルギーを可能とし、製造コストの面でも有利な炭化珪素発熱体端部の製造方法、および炭化珪素発熱体端部が提供される。   According to the present invention, a method for manufacturing a silicon carbide heating element end that has a low resistance value, can reduce power loss of the silicon carbide heating element, enables energy saving, and is advantageous in terms of manufacturing cost, and A silicon carbide heating element end is provided.

本発明による炭化珪素発熱体端部の製造は、炭化珪素粉末、炭素粉末および窒化珪素粉末を配合した混合粉末にバインダーを加えて成形し、乾燥して、500℃程度の温度で仮焼し、得られた仮焼体を、珪素粉末で包被するなど、珪素の存在下で、且つ圧力が150〜1500Paの減圧下で、1450〜1700℃の温度に加熱して反応焼結することにより行われる。   The manufacture of the silicon carbide heating element end according to the present invention is performed by adding a binder to a mixed powder containing silicon carbide powder, carbon powder and silicon nitride powder, drying, calcining at a temperature of about 500 ° C, The obtained calcined body is encased in silicon powder and heated in a reaction sintering by heating to a temperature of 1450-1700 ° C. in the presence of silicon and under a reduced pressure of 150-1500 Pa. Is called.

反応焼結により、炭化珪素と珪素との複合焼結体が得られ、反応焼結時に窒化珪素から分解した窒素が該複合焼結体中に固溶(ドープ)し、比抵抗値が0.003Ωcm未満の低抵抗の炭化珪素発熱体端部が得られる。窒化珪素を添加しない場合は、複合焼結体の比抵抗値は0.003Ωcm以上の値となる。   By the reactive sintering, a composite sintered body of silicon carbide and silicon is obtained. Nitrogen decomposed from silicon nitride during the reactive sintering is dissolved (doped) in the composite sintered body, and the specific resistance value is 0. An end portion of a silicon carbide heating element having a low resistance of less than 003 Ωcm is obtained. When silicon nitride is not added, the specific resistance value of the composite sintered body is 0.003 Ωcm or more.

窒化珪素を添加しない場合、複合焼結体の比抵抗値を0.003Ωcm未満にするためには、処理条件を1気圧の窒素ガス雰囲気中で1800℃以上の温度にて処理する必要がある。処理炉の温度が高くなることにより、炉材の消耗が早くなる、処理炉の使用電力が大きくなり、処理時間が長くなる、処理物からシリコン吹き出しが多くなり後工程での加工時間が長くなるなどの問題が発生して製造コストが高くなる。   In the case where silicon nitride is not added, in order to make the specific resistance value of the composite sintered body less than 0.003 Ωcm, it is necessary to perform the treatment at a temperature of 1800 ° C. or higher in a nitrogen gas atmosphere of 1 atm. As the temperature of the processing furnace rises, the consumption of the furnace material is accelerated, the power consumed by the processing furnace is increased, the processing time is increased, the amount of silicon blown out from the processed material is increased, and the processing time in the subsequent process is increased. Such a problem occurs and the manufacturing cost increases.

混合粉末中の窒化珪素の含有量は1〜25重量%とするのが好ましく、1重量%未満では抵抗値を低下させる効果が十分でなく、25重量%を超える添加は、窒化珪素の原料単価が高く、コスト面で不利となることから望ましくない。   The content of silicon nitride in the mixed powder is preferably 1 to 25% by weight, and if it is less than 1% by weight, the effect of lowering the resistance value is not sufficient. Is undesirable because it is expensive and disadvantageous in terms of cost.

反応焼結時の圧力は150〜1500Pa、加熱温度は1450〜1700℃とすることが望ましい。圧力が150Pa未満では、珪素の蒸発が激しくなって、反応焼結に必要な珪素が不足する。1500Paを超えると、反応焼結が進み難くなる現象が生じる。加熱温度が1450℃未満では反応焼結が進み難く、1700℃を超えると、余剰珪素が溶けて焼結体に付着し、これを除去する手間が掛かりコスト高となる。   The pressure during reaction sintering is preferably 150 to 1500 Pa, and the heating temperature is preferably 1450 to 1700 ° C. When the pressure is less than 150 Pa, the evaporation of silicon becomes intense, and the silicon necessary for the reactive sintering becomes insufficient. If the pressure exceeds 1500 Pa, a phenomenon that reaction sintering becomes difficult to proceed occurs. If the heating temperature is less than 1450 ° C., reaction sintering is difficult to proceed, and if it exceeds 1700 ° C., excess silicon melts and adheres to the sintered body, and it takes time and effort to remove it, resulting in high costs.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例
炭化珪素(SiC)、炭素(C)、窒化珪素(Si)の粉末を表1に示す割合で配合し、混合粉末とした。但し、窒化珪素の添加量は、炭化珪素と炭素の合計量に対する割合とする。混合粉末にバインダー、水を加えて捏合し、炭化珪素発熱体の端部(外径:20mm、内径:10mm、長さ:300mm)に成形し、乾燥後、500℃の温度で仮焼し、仮焼体を珪素粉末で包被させて、圧力1300Paの減圧下、1650℃に加熱して反応焼結させSiC−Siからなる炭化珪素発熱体端部(試験材1〜5)を得た。
Example Powders of silicon carbide (SiC), carbon (C), and silicon nitride (Si 3 N 4 ) were blended in the proportions shown in Table 1 to obtain mixed powders. However, the addition amount of silicon nitride is a ratio to the total amount of silicon carbide and carbon. Binder and water are added to and mixed with the mixed powder, molded into the end of the silicon carbide heating element (outer diameter: 20 mm, inner diameter: 10 mm, length: 300 mm), dried and calcined at a temperature of 500 ° C., The calcined body was covered with silicon powder, heated to 1650 ° C. under a reduced pressure of 1300 Pa, and subjected to reaction sintering to obtain silicon carbide heating element ends (test materials 1 to 5) made of SiC—Si.

炭化珪素(SiC)粉末を、バインダー、水を加えて捏合し、炭化珪素発熱体の発熱部(外径:20mm、内径:10mm、長さ:300mm)に成形し、乾燥後、窒素ガス雰囲気中、2300℃の温度で焼結してSiC発熱部を得た。   Silicon carbide (SiC) powder is combined by adding a binder and water, and formed into a heating part (outer diameter: 20 mm, inner diameter: 10 mm, length: 300 mm) of a silicon carbide heating element, dried, and then in a nitrogen gas atmosphere Sintering was performed at a temperature of 2300 ° C. to obtain a SiC heating part.

得られた発熱部の両端に、上記SiC−Siからなる端部を、SiC、C、バインダーからなる接着剤を使用し、圧力1300Pa、1500℃の温度で3時間熱処理して溶接し、炭化珪素発熱体を作製した。端部(試験材1〜5)の比抵抗値を表1に示す。   The ends made of SiC-Si are welded to both ends of the obtained heat generating part using an adhesive made of SiC, C, and a binder at a pressure of 1300 Pa and a temperature of 1500 ° C. for 3 hours to weld silicon carbide. A heating element was produced. Table 1 shows specific resistance values of the end portions (test materials 1 to 5).

比較例
炭化珪素(SiC)と炭素(C)を表1に示す割合で配合し、混合粉末とした。窒化珪素(Si)の粉末は添加されていない。実施例と同様、混合粉末にバインダー、水を加えて捏合し、炭化珪素発熱体の端部(外径:20mm、内径:10mm、長さ:300mm)に成形し、乾燥後、500℃の温度で仮焼し、仮焼体を珪素粉末で包被させて、圧力1300Paの減圧下、1650℃に加熱して反応焼結させSiC−Siからなる炭化珪素発熱体端部(試験材6)を得た。
Comparative Example Silicon carbide (SiC) and carbon (C) were blended at a ratio shown in Table 1 to obtain a mixed powder. Silicon nitride (Si 3 N 4 ) powder is not added. As in the example, the mixed powder was mixed with a binder and water, molded into the end of the silicon carbide heating element (outer diameter: 20 mm, inner diameter: 10 mm, length: 300 mm), dried, and then at a temperature of 500 ° C. The calcined body is encapsulated with silicon powder, heated to 1650 ° C. under a reduced pressure of 1300 Pa, and subjected to reaction sintering to form a silicon carbide heating element end (test material 6) made of SiC-Si. Obtained.

実施例と同様の方法で、発熱部の両端に、端部をSiC、C、バインダーからなる接着剤を使用し、圧力1300Pa、1500℃の温度で3時間熱処理して溶接し、炭化珪素発熱体を作製した。端部(試験材6)の比抵抗値を表1に示す。   In the same manner as in the examples, the ends of the heat generating part were welded by using an adhesive composed of SiC, C and binder at the ends, heat-treated at a pressure of 1300 Pa and 1500 ° C. for 3 hours, and then heated. Was made. Table 1 shows specific resistance values of the end portions (test material 6).

Figure 2010126427
Figure 2010126427

表1に示すように、本発明に従う試験材1〜5はいずれも、比抵抗値が0.0021〜0.0026Ωcmと低く、端部での電力損失が少ない炭化珪素発熱体とすることができるものと認められる。   As shown in Table 1, any of the test materials 1 to 5 according to the present invention can have a specific resistance value as low as 0.0021 to 0.0026 Ωcm and a silicon carbide heating element with little power loss at the end. It is accepted.

これに対して、窒化珪素を添加しなかった試験材6においては、比抵抗値が0.0034Ωcmと大きくなった。試験材6を、発熱部と接合する前に、1気圧の窒素ガス雰囲気中で、2000℃の温度に3時間加熱した後、発熱部の両端に接合したところ、窒素が固溶され、端部の比抵抗値は0.0025Ωcmに低下した。   On the other hand, in the test material 6 to which no silicon nitride was added, the specific resistance value was as large as 0.0034 Ωcm. Before the test material 6 was joined to the heat generating part, it was heated in a nitrogen gas atmosphere of 1 atm to 2000 ° C. for 3 hours and then joined to both ends of the heat generating part. The specific resistance value decreased to 0.0025 Ωcm.

Claims (3)

発熱部と端部を接合してなる炭化珪素発熱体の端部を製造する方法において、炭化珪素、炭素および窒化珪素の混合粉末の成形体を、珪素の存在下で、且つ圧力が150〜1500Paの減圧下で、1450〜1700℃の温度に加熱して反応焼結することを特徴とする炭化珪素発熱体端部の製造方法。 In a method of manufacturing an end portion of a silicon carbide heating element formed by joining a heating portion and an end portion, a molded body of a mixed powder of silicon carbide, carbon, and silicon nitride is formed in the presence of silicon and at a pressure of 150 to 1500 Pa. The manufacturing method of the edge part of a silicon carbide heating element characterized by carrying out the reaction sintering by heating to the temperature of 1450-1700 degreeC under pressure reduction of this. 前記混合粉末中の窒化珪素の含有量が1〜25重量%であることを特徴とする請求項1記載の炭化珪素発熱体端部の製造方法。 2. The method for manufacturing an end portion of a silicon carbide heating element according to claim 1, wherein the content of silicon nitride in the mixed powder is 1 to 25% by weight. 請求項1または2記載の方法で得られた比抵抗値が0.003Ωcm未満であることを特徴とする炭化珪素発熱体端部。 An end portion of a silicon carbide heating element, wherein the specific resistance value obtained by the method according to claim 1 or 2 is less than 0.003 Ωcm.
JP2008306411A 2008-12-01 2008-12-01 Method for manufacturing end portion of silicon carbide heating element Active JP5187579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008306411A JP5187579B2 (en) 2008-12-01 2008-12-01 Method for manufacturing end portion of silicon carbide heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008306411A JP5187579B2 (en) 2008-12-01 2008-12-01 Method for manufacturing end portion of silicon carbide heating element

Publications (2)

Publication Number Publication Date
JP2010126427A true JP2010126427A (en) 2010-06-10
JP5187579B2 JP5187579B2 (en) 2013-04-24

Family

ID=42327059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306411A Active JP5187579B2 (en) 2008-12-01 2008-12-01 Method for manufacturing end portion of silicon carbide heating element

Country Status (1)

Country Link
JP (1) JP5187579B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602371A (en) * 2015-01-28 2015-05-06 周献 Composite silicon carbide electrical heating element and production method thereof
CN105155251A (en) * 2015-09-05 2015-12-16 苏州宏久航空防热材料科技有限公司 Preparation method for silicon carbide fiber with porous alumina coating
CN105175013A (en) * 2015-09-05 2015-12-23 苏州宏久航空防热材料科技有限公司 Preparation method of aluminum oxide coating adopting silicon carbide fibers as matrix

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692733A (en) * 1992-09-14 1994-04-05 Tokai Carbon Co Ltd Production of silicon carbide heating element
JPH08217568A (en) * 1995-02-08 1996-08-27 Denki Kagaku Kogyo Kk Production of porous electrically conductive silicon carbide sintered body
JPH10297976A (en) * 1997-04-24 1998-11-10 Tokai Konetsu Kogyo Co Ltd Joining of silicon carbide heat generator
JP2001110553A (en) * 1999-10-14 2001-04-20 Tokai Konetsu Kogyo Co Ltd DENSE SiC HEATER AND MANUFACTURING PROCEDURE FOR IT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692733A (en) * 1992-09-14 1994-04-05 Tokai Carbon Co Ltd Production of silicon carbide heating element
JPH08217568A (en) * 1995-02-08 1996-08-27 Denki Kagaku Kogyo Kk Production of porous electrically conductive silicon carbide sintered body
JPH10297976A (en) * 1997-04-24 1998-11-10 Tokai Konetsu Kogyo Co Ltd Joining of silicon carbide heat generator
JP2001110553A (en) * 1999-10-14 2001-04-20 Tokai Konetsu Kogyo Co Ltd DENSE SiC HEATER AND MANUFACTURING PROCEDURE FOR IT

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602371A (en) * 2015-01-28 2015-05-06 周献 Composite silicon carbide electrical heating element and production method thereof
CN104602371B (en) * 2015-01-28 2016-06-08 周献 Complex silicon carbide heating and production method thereof
CN105155251A (en) * 2015-09-05 2015-12-16 苏州宏久航空防热材料科技有限公司 Preparation method for silicon carbide fiber with porous alumina coating
CN105175013A (en) * 2015-09-05 2015-12-23 苏州宏久航空防热材料科技有限公司 Preparation method of aluminum oxide coating adopting silicon carbide fibers as matrix

Also Published As

Publication number Publication date
JP5187579B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP6697363B2 (en) Semiconductor manufacturing equipment member, manufacturing method thereof, and heater with shaft
US8877099B2 (en) Ti3SiC2 based material, electrode, spark plug and manufacturing method thereof
JP2007197229A (en) High-thermal conductive silicon nitride substrate and method of manufacturing the same
JP2009215154A (en) Yttrium oxide material, member for semiconductor manufacturing apparatus, and manufacturing process of yttrium oxide material
JP5046221B2 (en) Manufacturing method of highly reliable silicon nitride ceramics with high reliability
CN107311634A (en) A kind of nitride bonded sandwich setter plate and preparation method thereof
JP5187579B2 (en) Method for manufacturing end portion of silicon carbide heating element
JP2008247716A (en) Reaction sintering silicon nitride-based sintered body and its producing process
JP3764315B2 (en) Tungsten material and manufacturing method thereof
JP4429742B2 (en) Sintered body and manufacturing method thereof
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
JP5540318B2 (en) Low temperature sintering method for silicon carbide powder
JP2006199541A (en) Aluminum nitride powder and method for producing the same
JP2011136876A (en) Method for manufacturing metal boride sintered compact, lanthanum boride sintered compact, and target using the lanthanum boride sintered compact
JP2008074643A (en) Method for burning aluminum nitride
JP2013535398A (en) Method for producing sintered silicon carbide using balls
CN108546091A (en) A kind of preparation method of surface coated magnesia crucible
JP2012041214A (en) Method for producing silicon carbide sintered compact, and silicon carbide sintered compact
JP5950408B2 (en) Silicon carbide ceramics
JP2010173877A (en) Silicon nitride sintered compact
JP2012176863A (en) Silicon nitride-based sintered compact
US20120211485A1 (en) Heat insulation material for microwave heating and method for manufacturing the same
JP3492648B2 (en) TiN-Al2O3-based sintered body
JP2003192446A (en) Silicon nitride composite material and production method therefor
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250