JPS63392B2 - - Google Patents

Info

Publication number
JPS63392B2
JPS63392B2 JP58155910A JP15591083A JPS63392B2 JP S63392 B2 JPS63392 B2 JP S63392B2 JP 58155910 A JP58155910 A JP 58155910A JP 15591083 A JP15591083 A JP 15591083A JP S63392 B2 JPS63392 B2 JP S63392B2
Authority
JP
Japan
Prior art keywords
silicon carbide
less
weight
sintered body
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58155910A
Other languages
Japanese (ja)
Other versions
JPS6046974A (en
Inventor
Morinobu Endo
Minoru Takamizawa
Tatsuhiko Motomya
Nobuaki Urasato
Jinichiro Suzuki
Takashi Tode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP58155910A priority Critical patent/JPS6046974A/en
Priority to EP83112256A priority patent/EP0143122A3/en
Publication of JPS6046974A publication Critical patent/JPS6046974A/en
Publication of JPS63392B2 publication Critical patent/JPS63392B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化けい素焼結体、特にはメチルハイ
ドロジエンシラン化合物の気相熱分解反応によつ
て作られる炭化けい素の超微粒状多結晶粒子の焼
結体に関するものである。 炭化けい素は化学的、物理的にきわめて安定な
性質をもち、特に高温における耐酸化性、耐蝕
性、熱伝導性、強度にすぐれ、熱膨張係数も低い
ということから、これはガスタービン翼、自動車
部品、腐蝕性液体(気体)用部材、耐火材、高温
反応用部材、各種電子部材として有用とされてい
る。 しかして、この炭化けい素は焼結体として実用
化されており、この焼結体は炭化けい素と炭素と
の混合成型体に溶融けい素を反応させる反応焼結
法、けい素化合物を高温で熱分解させる蒸着法、
さらには、炭化けい素微粉末にアルミニウムなど
の金属およびその酸化物または炭素とほう素など
の焼結助剤を添加して常圧または加圧下に焼結す
る方法によつて製造されているが、この反応焼結
法による場合は、けい素と反応させる前の仮焼体
で成形するので種々の形状のものが得られるけれ
ども、成形体中に遊離のけい素を含むものなので
高温強度、耐アルカリ性がわるいという欠点があ
るし、蒸着法によるものには成形体の内部までは
蒸着されないために強度が劣るという不利があ
り、さらに焼結助剤を使用する方法で得られた焼
結体にはこゝに使用する金属や金属酸化物の融点
以上では強度が低下してしまい、硼素と炭素を添
加する場合には高密度の焼結体が得られるが、こ
のほう素はそれを0.15重量%以上添加しなければ
ならないので粒界にほう素が存在するようにな
り、高純度を必要とする半導体関係などの用途に
は使用できないという不利があつた。 本発明はこのような不利を解決した炭化けい素
焼結体に関するものであり、これは結晶子が50Å
以下からなる集合体で、平均粒径が0.1〜1μであ
る均一な球状形状をもつ炭化けい素の超微粒子状
多結晶粒子を不活性雰囲気下に1750〜2500℃で焼
結してなることを特徴とするものである。 これを説明すると、本発明者らは炭化けい素焼
結体の製造方法について種々検討した結果、この
主原料となる超微粉末炭化けい素は結晶子が50Å
以下からなる集合体で平均粒径が0.1〜1μである
超微粒子状多結晶子とすればよいということを確
認して本発明を完成させた。 本発明の焼結体を得るために使用される炭化け
い素超微粒子は上記した物性をもつものとされる
が、これは例えば一般式(CH3aSibHc(こゝにb
=1〜3、2b+1≧a、a≧b、2b+1≧c≧
1、a+c=2b+2)で示されるメチルハイド
ロジエンシラン類を還元性雰囲気下に750〜1600
℃で気相熱分解することによつて得ることがで
き、これによればその原料シランがけい素−水素
結合は含むがけい素−塩素結合を含んでいないの
で、これは比較的低温で急速に熱分解することが
できるが、この熱分解時に塩化水素が発生せず、
したがつてこの熱分解生成物である炭化けい素粉
末がこれらの活性ガスと接触しないので表面活性
の大きい、ほぼ球状の均一な粒径をもつ超微粒子
が得られる。なお、この方法で得られる炭化けい
素粒子はその結晶子が50Å以下からなる集合体
で、平均粒径が0.1〜1μの多結晶体であり、超微
粒子体であるということからこれを微細化するた
めの粉砕工程が不要であり、したがつて高純度の
ものとして得られるという有利性をもつており、
本発明の焼結体はこの超微粒子状の炭化けい素粉
末を成形し、常圧または加圧下に焼結することに
よつて得られるので、これは高純度を要求される
部材として有用とされる。 この成形はセラミツク業界で公知の方法で行え
ばよく、これは例えばダイプレス法で行なえばよ
い。この成形は添加剤を使用せずに行なうことが
できるが、これには必要に応じステアリン酸塩単
独またはこれをベンゼンなどの溶媒に溶解した潤
滑剤などを使用してもよい。また、これをチユー
ブ、ルツボなどの複雑な成形品とするためにはラ
バープレスなどを用いて成形すればよいが、より
精密な成形品を得るためには生の賦形体をその焼
結前に研削するか、あるいはスライスなどの機械
加工を施すことがよい。なお、この成形はスリツ
プキヤスト法で行なつてもよいが、この場合には
炭化けい素粉末にポリエチレングリコール、低分
子量セルロース誘導体、パラフインなどの可塑剤
とポリビニルブチラールなどの結合剤を添加し、
水中に分散させてから焼石こう型内に流し込めば
よく、成形可能なペーストは押出成形、射出成
形、ロール成形で行なつてもよい。 また、このようにして得られた成形体はついで
焼結することによつて焼結体とされるが、この焼
結は常圧またはガス加圧、プレス加圧などの加圧
下のいずれで行なつてもよい。しかし、この加熱
温度についてはこれを1750℃以下とすると焼結不
足となるし、高密度品を得るという目的において
はできるだけ高温とすることがよいが、これを
2300℃以上とすると粒子の成長によつて強度が低
下することがあり、また経済的にも不利となるの
で、これは、1750〜2300℃とすることがよい。ま
た、焼結はこれらを不活性雰囲気下とする必要が
あるが、これはアルゴン、窒素、ヘリウムガスの
存在下とすればよい。なお、この焼結工程に先立
つて前記した成形品についての切削加工を実施す
る場合には、これを必要に応じ仮焼してもよい
が、この温度は1500℃以上とすることがよく、こ
の温度はその機械加工に必要とされる強度に応じ
て定めればよい。 他方、本発明の焼結体はこれを上記した炭化け
い素の超微粒子だけで製造すると高価なものとな
るので、これは市販の平均粒径が5μ以下の炭化
けい素粒子を添加してもよく、これによれば価格
面からの工業的な有利性が与えられる。しかし、
この種の市販の炭化けい素の焼結に当つては前記
したような焼結助剤の添加が必要とされ、これに
ついては例えば0.15〜5重量%のほう素とこの原
料粉体中に含まれる遊離の酸素を除去するための
0.1〜5重量%の炭素の添加が必要とされるので
あるが、本発明による場合には上記した炭化けい
素の超微粒子100〜50重量部に対する市販の炭化
けい素添加量を50重量部とした場合でもこゝに添
加すべきほう素量、炭素量をそれぞれ0.15重量%
以下、0.1重量%以下とすることができ、これは
市販炭化けい素の減量と共にその添加量を減じる
ことができるので、この硼素、炭素の共存による
不利を最小限にすることができるという有利性も
与えられる。なお、この場合に添加するほう素は
金属ほう素、ほう素化合物のいずれでもよく、ま
たこの炭素もカーボン粉末あるいは熱分解により
炭素を与える有機系高分子化合物のいずれであつ
てもよいが、その効果的な分散ということからこ
れは後者のものとすることがよく、また、金属あ
るいは金属酸化物を助剤として使用する場合も通
常使用する量より少量の添加で焼結体となるの
で、これら助剤の使用による前記した不都合が改
良される。 この市販の炭化けい素を併用する場合の成形、
焼結は上記した方法と同じでよいが、この焼結温
度についてはその表面活性の違いによつて焼結開
始温度が高くなるということから1800〜2500とす
ることがよい。 これを要するに、本発明は炭化けい素として特
にその結晶子が50Å以下の集合体で粒径が0.1〜
1μの超微粒子状多結晶粒子を使用し、これを焼
結してなるものであるが、これによれば密度が
2.4g/c.c.(理論密度の75%)以上のものが容易
に得られるので、これは強度が必要とされるガス
タービン翼、自動車用部品として使用できるほ
か、これはまた特に強度を必要としない放熱用
IC基板、各種反応管などに利用することができ
る。 つぎに本発明の実施例をあげる。 実施例 1〜9 内径52mm、長さ1000mmのアルミナ製炉心管を備
えた縦型管状電気炉を1350℃に加熱し、こゝにテ
トラメチルジシラン〔(CH34Si2H2〕2容量%を
含む水素300c.c./分を窒素100c.c./分と共に導入し
て気相熱分解させたところ、第1図(電子顕微鏡
の明視野像)、第2図(第1図の明視野像に対応
するβ−SiC(111)回折による電子顕微鏡の暗視
野像)に示した炭化けい素の超微粒子が得られ、
この粒子は電子顕微鏡写真からその結晶子が40Å
以下であり、その粒径が0.1〜0.3μの集合体で、
37.3m2/gの比表面積をもつものであつた。 つぎにこの炭化けい素超微粒子15gをこれに何
らの焼結助剤を添加することなしに直径40mmφの
ホツトプレス用カーボン型に入れて減圧脱気し、
ついでこの系内をアルゴンガス雰囲気下としてか
ら、100Kg/cm2の加圧下に2300℃で30分間加熱し
て焼結させ、冷却後取り出して、得られた焼結体
の密度を測定したところ、これは3.00g/c.c.(理
論密度の93%)で、このものの比抵抗は103Ωcm
であつた。また、この焼結体の電子顕微鏡写真は
第3図に示したとおりであり、これによれば粒の
成長もなく、きれいに焼結していることが理解さ
れる。 なお、上記の炭化けい素超微粉(u−SiC)を
使用し、第1表に示したような条件下で焼結した
ところ、第1表に併記したとおりの結果が得ら
れ、これらはいずれも高密度に焼結された。 また、比較のため市販のβ型炭化けい素〔イビ
デン(株)製、比表面積16m2/g〕およびα型炭化け
い素〔昭和電工(株)製、比表面積11m2/g〕につい
て、上記第1表に示した条件で焼結したが、この
場合には高密度の焼結体を得ることができなかつ
た。 (註) 下記第1表中 BN…昭和電工社製、窒化ほう素 B4C…レアメタリツク社製、炭化ほう素 B…レアメタリツク社製、ほう素 C…群栄化学社製、フエノール樹脂(炭化収率55
%) をそれぞれ表す。
The present invention relates to a sintered body of silicon carbide, particularly a sintered body of ultrafine polycrystalline particles of silicon carbide produced by a gas phase thermal decomposition reaction of a methylhydrogensilane compound. Silicon carbide has extremely stable properties both chemically and physically, and has excellent oxidation resistance, corrosion resistance, thermal conductivity, and strength, especially at high temperatures, and has a low coefficient of thermal expansion, making it suitable for use in gas turbine blades, It is said to be useful as automobile parts, components for corrosive liquids (gases), fireproof materials, components for high-temperature reactions, and various electronic components. However, this silicon carbide has been put to practical use as a sintered body, and this sintered body is produced using a reaction sintering method in which molten silicon reacts with a molded mixture of silicon carbide and carbon, and a silicon compound is heated at high temperature. Vapor deposition method that thermally decomposes
Furthermore, it is manufactured by adding metals such as aluminum and their oxides, or sintering aids such as carbon and boron to fine silicon carbide powder, and sintering the mixture under normal pressure or pressure. In the case of this reaction sintering method, various shapes can be obtained because the calcined body is molded before reacting with silicon, but since the molded body contains free silicon, high-temperature strength and durability cannot be obtained. The disadvantage is that the alkalinity is poor, and the vapor deposition method has the disadvantage that the strength is inferior because the vapor does not reach the inside of the compact, and the sintered compact obtained by the method using a sintering aid has the disadvantage that If the strength exceeds the melting point of the metal or metal oxide used in the material, the strength will decrease, and if boron and carbon are added, a high-density sintered body can be obtained, but this boron reduces it by 0.15% by weight. % or more, boron is present at the grain boundaries, which has the disadvantage that it cannot be used for semiconductor-related applications that require high purity. The present invention relates to a silicon carbide sintered body that solves these disadvantages, and it has crystallites of 50 Å.
It is an aggregate consisting of the following, which is made by sintering ultrafine polycrystalline silicon carbide particles with a uniform spherical shape with an average particle size of 0.1 to 1μ at 1750 to 2500℃ in an inert atmosphere. This is a characteristic feature. To explain this, the present inventors have conducted various studies on the manufacturing method of silicon carbide sintered bodies, and have found that the main raw material, ultrafine powdered silicon carbide, has a crystallite size of 50 Å.
The present invention was completed by confirming that an ultrafine polycrystallite having an average particle size of 0.1 to 1 μm is sufficient as an aggregate consisting of the following. The ultrafine silicon carbide particles used to obtain the sintered body of the present invention are said to have the above - mentioned physical properties .
=1~3, 2b+1≧a, a≧b, 2b+1≧c≧
1. Methylhydrodiene silanes represented by a+c=2b+2) were heated to 750 to 1600 in a reducing atmosphere.
It can be obtained by gas-phase pyrolysis at ℃, and since the raw silane contains silicon-hydrogen bonds but no silicon-chlorine bonds, it is rapidly decomposed at relatively low temperatures. However, hydrogen chloride is not generated during this thermal decomposition,
Therefore, since the silicon carbide powder, which is a thermal decomposition product, does not come into contact with these active gases, ultrafine particles having a substantially spherical and uniform particle size with high surface activity can be obtained. The silicon carbide particles obtained by this method are polycrystalline bodies with crystallites of 50 Å or less, and the average particle size is 0.1 to 1 μm, and since they are ultrafine particles, they can be refined. It has the advantage of not requiring a pulverization process to process the product, and therefore can be obtained as a highly pure product.
The sintered body of the present invention is obtained by molding this ultrafine silicon carbide powder and sintering it under normal pressure or pressure, so it is useful as a member that requires high purity. Ru. This molding may be performed by a method known in the ceramic industry, such as a die press method. This molding can be carried out without using any additives, but if necessary, stearate alone or a lubricant prepared by dissolving stearate in a solvent such as benzene may be used. In addition, in order to make complex molded products such as tubes and crucibles, it is possible to mold them using a rubber press, but in order to obtain more precise molded products, it is necessary to It is preferable to perform mechanical processing such as grinding or slicing. Note that this molding may be performed by a slip cast method, but in this case, a plasticizer such as polyethylene glycol, a low molecular weight cellulose derivative, or paraffin, and a binder such as polyvinyl butyral are added to the silicon carbide powder.
The paste may be dispersed in water and poured into calcined plaster molds, and the moldable paste may be extruded, injection molded or roll formed. Furthermore, the compact obtained in this way is then sintered to form a sintered body, but this sintering can be performed under normal pressure, gas pressure, press pressure, or other pressure. It's okay to get old. However, if the heating temperature is lower than 1750°C, sintering will be insufficient.For the purpose of obtaining high-density products, it is better to set the heating temperature as high as possible;
If the temperature is 2300°C or higher, the strength may decrease due to particle growth, and it is also economically disadvantageous, so it is preferable to set the temperature to 1750 to 2300°C. Furthermore, sintering requires these to be under an inert atmosphere, but this may be done in the presence of argon, nitrogen, or helium gas. In addition, when cutting the molded product described above prior to this sintering step, it may be calcined if necessary, but this temperature is preferably 1500°C or higher; The temperature may be determined depending on the strength required for the machining. On the other hand, the sintered body of the present invention would be expensive if manufactured only from the above-mentioned ultrafine silicon carbide particles, so even if commercially available silicon carbide particles with an average particle size of 5 μm or less were added. This often provides industrial advantages in terms of price. but,
When sintering this type of commercially available silicon carbide, it is necessary to add a sintering aid as described above, for example, 0.15 to 5% by weight of boron and the amount of boron contained in this raw material powder. to remove free oxygen
It is necessary to add 0.1 to 5% by weight of carbon, but in the case of the present invention, the amount of commercially available silicon carbide added to 100 to 50 parts by weight of the above-mentioned ultrafine silicon carbide particles is 50 parts by weight. Even in this case, the amount of boron and carbon that should be added is 0.15% by weight each.
Below, the amount can be set to 0.1% by weight or less, which is advantageous in that the amount added can be reduced along with the amount of commercially available silicon carbide, and the disadvantages caused by the coexistence of boron and carbon can be minimized. is also given. Note that the boron added in this case may be either metallic boron or a boron compound, and the carbon may be either carbon powder or an organic polymer compound that provides carbon through thermal decomposition. The latter is often used for effective dispersion.Also, when metals or metal oxides are used as auxiliaries, a sintered body can be obtained by adding a smaller amount than normally used, so these should be used. The above-mentioned disadvantages due to the use of auxiliary agents are improved. Molding when using this commercially available silicon carbide together,
Sintering may be carried out in the same manner as described above, but the sintering temperature is preferably 1800 to 2500, since the sintering start temperature becomes higher due to differences in surface activity. In summary, the present invention uses silicon carbide in particular in aggregates whose crystallites are 50 Å or less and whose particle size is 0.1 to 0.1.
It is made by using 1μ ultrafine polycrystalline particles and sintering them, but according to this, the density is
Since 2.4 g/cc (75% of theoretical density) or more can be easily obtained, it can be used as gas turbine blades and automobile parts that require strength, but also does not require particular strength. For heat radiation
It can be used for IC substrates, various reaction tubes, etc. Next, examples of the present invention will be given. Examples 1 to 9 A vertical tubular electric furnace equipped with an alumina core tube with an inner diameter of 52 mm and a length of 1000 mm was heated to 1350°C, and 2 volumes of tetramethyldisilane [(CH 3 ) 4 Si 2 H 2 ] was added thereto. When gas phase pyrolysis was carried out by introducing 300 c.c./min of hydrogen containing 100 c.c./min. The ultrafine particles of silicon carbide shown in the electron microscopy dark field image by β-SiC (111) diffraction corresponding to the bright field image were obtained.
An electron micrograph shows that the crystallite size of this particle is 40 Å.
It is an aggregate with a particle size of 0.1 to 0.3μ,
It had a specific surface area of 37.3 m 2 /g. Next, 15 g of the ultrafine silicon carbide particles were placed in a carbon mold for hot press with a diameter of 40 mm without adding any sintering aid, and degassed under reduced pressure.
Next, this system was placed under an argon gas atmosphere, and then heated at 2300°C for 30 minutes under a pressure of 100 kg/cm 2 to sinter it, and after cooling, it was taken out and the density of the obtained sintered body was measured. This is 3.00g/cc (93% of theoretical density) and the specific resistance of this is 10 3 Ωcm
It was hot. Further, an electron micrograph of this sintered body is shown in FIG. 3, and it can be seen that there was no grain growth and the sintered body was cleanly sintered. When the above ultrafine silicon carbide powder (u-SiC) was used and sintered under the conditions shown in Table 1, the results shown in Table 1 were obtained, and these results were was also sintered to a high density. In addition, for comparison, commercially available β-type silicon carbide [manufactured by Ibiden Co., Ltd., specific surface area 16 m 2 /g] and α-type silicon carbide [manufactured by Showa Denko KK, specific surface area 11 m 2 /g] were compared with the above. Although sintering was carried out under the conditions shown in Table 1, a high-density sintered body could not be obtained in this case. (Note) In Table 1 below, BN...manufactured by Showa Denko Co., Ltd., boron nitride B 4 C...manufactured by Rare Metallic Co., Ltd., boron carbide B...manufactured by Rare Metallic Co., Ltd., boron C...manufactured by Gunei Kagaku Co., Ltd., phenol resin ( Carbonization yield 55
%) respectively.

【表】 実施例 10 実施例1と同じ縦型電気炉を1050℃に加熱し、
こゝにテトラメチルジシラン10容量%を含む水素
ガスを400c.c./分で導入して気相熱分解させたと
ころ、結晶子の大きさが20Å以下で粒径が0.5〜
0.6μの球状形状の炭化けい素超微粉末が得られ、
これは比表面積が14.2m2/gのものであつた。 つぎに、これを実施例1と同様に100Kg/cm2
加圧下に1900℃で30分間加熱して焼結させたとこ
ろ、密度が2.96(対理論密度92%)の焼結体が得
られた。 実施例 11〜15 実施例1で得た炭化けい素の超微粒子5gに、
市販のβ型炭化けい素〔イビデン(株)製、比表面積
16m2/g〕5g、金属ほう素〔レアメタリツク(株)
製〕0.015g、フエノール樹脂〔群栄化学(株)製、
炭化収率55%〕0.019gおよびヘキサン70gを加
え、これらをポリエチレン製のボールミル中で24
時間混合したのち、溶媒を蒸発除去し、解砕し
た。 つぎに、これを金型中に入れて40×50×450mm
の棒状体に成型し、ラバープレスで1.5Kg/cm2
加圧処理をしたのち、窒素ガス雰囲気中で800℃
に1時間加熱してフエノール樹脂の炭化処理を行
なつたところ、これは1.57g/c.c.の密度をもつも
のとなつた。 ついで、この試料をカーボンダイス中に入れ、
アルゴンガス雰囲気に2000℃で1時間加熱焼結さ
せたところ、密度が2.63g/c.c.(対理論密度82
%)の焼結体が得られ、これは比抵抗が106Ωcm
であつた。 また、上記において炭化けい素超微粒子(A)とβ
型炭化けい素(B)の配合比を変えた場合、またこの
β型炭化けい素をα型炭化けい素(C)〔昭和電工(株)
製、比表面積11m2/g〕とした場合について、上
記と同じようにして焼結体を作つたところ、つぎ
の第2表に示したとおりの結果が得られた。
[Table] Example 10 The same vertical electric furnace as in Example 1 was heated to 1050℃,
When hydrogen gas containing 10% by volume of tetramethyldisilane was introduced at a rate of 400c.c./min to cause gas phase thermal decomposition, the crystallite size was less than 20Å and the particle size was 0.5~0.
Ultrafine silicon carbide powder with a spherical shape of 0.6μ was obtained.
This had a specific surface area of 14.2 m 2 /g. Next, this was heated and sintered at 1900°C for 30 minutes under a pressure of 100 kg/cm 2 as in Example 1, and a sintered body with a density of 2.96 (92% of theoretical density) was obtained. Ta. Examples 11 to 15 To 5 g of ultrafine silicon carbide particles obtained in Example 1,
Commercially available β-type silicon carbide [manufactured by IBIDEN Co., Ltd., specific surface area
16m 2 /g] 5g, metallic boron [Rare Metallic Co., Ltd.
[manufactured by Gunei Chemical Co., Ltd.] 0.015g, phenolic resin [manufactured by Gunei Chemical Co., Ltd.]
Carbonization yield: 55%] 0.019g and 70g of hexane were added, and these were heated in a polyethylene ball mill for 24 hours.
After mixing for a period of time, the solvent was evaporated off and the mixture was crushed. Next, put this into a mold and make it 40 x 50 x 450 mm.
After being molded into a rod-shaped body and pressurized at 1.5Kg/ cm2 using a rubber press, it was heated at 800℃ in a nitrogen gas atmosphere.
When the phenolic resin was carbonized by heating for 1 hour, it had a density of 1.57 g/cc. Next, put this sample into a carbon die,
When heated and sintered at 2000℃ for 1 hour in an argon gas atmosphere, the density was 2.63g/cc (relative to theoretical density 82
%), which has a specific resistance of 10 6 Ωcm
It was hot. In addition, in the above, silicon carbide ultrafine particles (A) and β
When the blending ratio of type silicon carbide (B) is changed, this β type silicon carbide can be changed to α type silicon carbide (C) [Showa Denko K.K.
When a sintered body was produced in the same manner as described above, the results shown in Table 2 below were obtained.

【表】 なお、比較のため上記の実施例10において、炭
化けい素超微粒子を使用せず、炭化けい素として
市販のβ型炭化けい素のみを使用して、同一の条
件で成形し、加圧加熱したところ、この場合に得
られたものはその密度が1.80g/c.c.であり、焼結
体とはならなかつた。 実施例 16 実施例1におけるテトラメチルジシランをジメ
チルシラン〔(CH32SiH2〕に代え、同様に処理
して得た結晶子が40Å以下の集合体で粒径が0.2
〜0.8μ、比表面積が43.9m2/gである炭化けい素
の超微粒子30gを、メチルセルロースMC−400
〔当社製、商品名)1gとグリセリン1gとを水
6gに溶解した溶液中に分散させて3本ロールで
混合し、シート状体として取り出した。 つぎにこのシートを50×2×50mmの形状に切断
してから窒素ガス中1200℃で1時間仮焼し、つい
でこの窒素ガス雰囲気中で1時間、2300℃で常圧
焼結を行なつたところ、密度が2.65g/c.c.(対理
論密度83%)のシートが得られた。
[Table] For comparison, in Example 10 above, silicon carbide ultrafine particles were not used, only commercially available β-type silicon carbide was used as silicon carbide, and the results were molded and processed under the same conditions. When heated under pressure, the density of the product obtained in this case was 1.80 g/cc, and it did not become a sintered body. Example 16 A similar treatment was performed except that tetramethyldisilane in Example 1 was replaced with dimethylsilane [(CH 3 ) 2 SiH 2 ], resulting in an aggregate of crystallites of 40 Å or less and a particle size of 0.2
30g of silicon carbide ultrafine particles with a particle size of ~0.8μ and a specific surface area of 43.9m 2 /g were added to methylcellulose MC-400.
[Manufactured by our company, trade name] 1 g and 1 g of glycerin were dispersed in a solution of 6 g of water, mixed with three rolls, and taken out as a sheet. Next, this sheet was cut into a shape of 50 x 2 x 50 mm, calcined in nitrogen gas at 1200°C for 1 hour, and then pressureless sintered at 2300°C for 1 hour in this nitrogen gas atmosphere. A sheet with a density of 2.65 g/cc (83% of theoretical density) was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の焼結体の原料とされ
る炭化けい素超微粒子の電子顕微鏡写真を示した
もので、第1図はその明視野像、第2図はそのβ
−SiC(111)回折による暗視野像であり、第3図
は本発明の焼結体の電子顕微鏡写真像を示したも
のである。
Figures 1 and 2 show electron micrographs of ultrafine silicon carbide particles, which are the raw material for the sintered body of the present invention, with Figure 1 being a bright field image and Figure 2 being a β
- This is a dark field image obtained by SiC (111) diffraction, and FIG. 3 shows an electron micrograph image of the sintered body of the present invention.

Claims (1)

【特許請求の範囲】 1 結晶子が50Å以下からなる集合体で、平均粒
径が0.1〜1μである球状形状をもつ炭化けい素の
超微粒子状多結晶粒子を不活性雰囲気下に1750〜
2500℃の温度で焼成してなることを特徴とする炭
化けい素焼結体。 2 炭化けい素超微粒状多結晶粒子が一般式
(CH3aSibHc(ここにb=1〜3、2b+1≧a、
a≧b、2b+1≧c≧1、a+c=2b+2)で
示されるメチルハイドロジエンシラン類を750〜
1600℃の温度で気相熱分解させて得られたもので
ある特許請求の範囲第1項記載の炭化けい素焼結
体。 3 結晶子が50Å以下からなる集合体で、平均粒
径が0.1〜1μである球状形状をもつ炭化けい素の
超微粒子状多結晶粒子100〜50重量部に、(a)平均
粒径5μ以下の炭化けい素微粉末0.5〜50重量部、
(b)0.15重量部以下の硼素または硼素量として0.15
重量部以下に相当する量の硼素化合物、(c)0.1重
量部以下の炭素または炭素量として0.1重量部以
下に相当する量の炭素化合物を添加したものを不
活性雰囲気下に1750〜2500℃の温度で焼成してな
ることを特徴とする炭化けい素焼結体。
[Scope of Claims] 1. Ultrafine polycrystalline particles of silicon carbide having a spherical shape with an aggregate of crystallites of 50 Å or less and an average particle size of 0.1 to 1 μ are grown in an inert atmosphere at a temperature of 1750 Å or less.
A silicon carbide sintered body characterized by being fired at a temperature of 2500℃. 2 Silicon carbide ultrafine polycrystalline particles have the general formula (CH 3 ) a Si b H c (where b=1 to 3, 2b+1≧a,
a≧b, 2b+1≧c≧1, a+c=2b+2) from 750 to
The silicon carbide sintered body according to claim 1, which is obtained by vapor phase pyrolysis at a temperature of 1600°C. 3 To 100 to 50 parts by weight of ultrafine polycrystalline particles of silicon carbide, which are aggregates consisting of crystallites of 50 Å or less and have a spherical shape with an average particle size of 0.1 to 1 μ, add (a) an average particle size of 5 μ or less; 0.5 to 50 parts by weight of silicon carbide fine powder,
(b) less than 0.15 parts by weight of boron or 0.15 as the amount of boron
A boron compound in an amount equivalent to 0.1 part by weight or less, (c) 0.1 part by weight or less of carbon, or a carbon compound in an amount equivalent to 0.1 part by weight or less as carbon content is added in an inert atmosphere at 1750 to 2500°C. A silicon carbide sintered body characterized by being formed by firing at a high temperature.
JP58155910A 1983-08-26 1983-08-26 Silicon carbide sintered body Granted JPS6046974A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58155910A JPS6046974A (en) 1983-08-26 1983-08-26 Silicon carbide sintered body
EP83112256A EP0143122A3 (en) 1983-08-26 1983-12-06 An ultrafine powder of silcon carbide, a method for the preparation thereof and a sintered body therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58155910A JPS6046974A (en) 1983-08-26 1983-08-26 Silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS6046974A JPS6046974A (en) 1985-03-14
JPS63392B2 true JPS63392B2 (en) 1988-01-06

Family

ID=15616181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58155910A Granted JPS6046974A (en) 1983-08-26 1983-08-26 Silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS6046974A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046912A (en) * 1983-08-26 1985-03-14 Shin Etsu Chem Co Ltd Production of ultrafine granule of silicon carbide
JPS61251572A (en) * 1985-04-30 1986-11-08 株式会社日立製作所 Silicon carbide sintered body and manufacture
JPS62472U (en) * 1985-06-19 1987-01-06
JPS62260772A (en) * 1986-05-06 1987-11-13 科学技術庁無機材質研究所長 High purity silicon carbide sintered body and manufacture
JPS638263A (en) * 1986-06-26 1988-01-14 新技術事業団 Manufacture of sic superfine sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170877A (en) * 1975-06-30 1982-10-21 Gen Electric Substantially homogeneous submicron particle mixture for silicon carbide sintered body manufacture
JPS57183369A (en) * 1981-05-08 1982-11-11 Sumitomo Electric Industries Manufacture of non-oxide ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170877A (en) * 1975-06-30 1982-10-21 Gen Electric Substantially homogeneous submicron particle mixture for silicon carbide sintered body manufacture
JPS57183369A (en) * 1981-05-08 1982-11-11 Sumitomo Electric Industries Manufacture of non-oxide ceramics

Also Published As

Publication number Publication date
JPS6046974A (en) 1985-03-14

Similar Documents

Publication Publication Date Title
US4004934A (en) Sintered dense silicon carbide
US4571331A (en) Ultrafine powder of silicon carbide, a method for the preparation thereof and a sintered body therefrom
US4560668A (en) Substantially pore-free shaped articles of polycrystalline silicon carbide, and a process for their manufacture by isostatic hot-pressing
JPS6228109B2 (en)
GB2082165A (en) Silicon carbide ceramic
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
CA1092615A (en) High density hot pressed thermal shock resistant silicon carbide
JPS6128627B2 (en)
JPH0251863B2 (en)
US5064589A (en) Method for producing high density hexagonal boron nitride sintered article
JPS63392B2 (en)
JPH0228539B2 (en)
JPS638069B2 (en)
EP0064264B1 (en) Silicon carbide powder mixture and process for producing sintered bodies therefrom
JPS632913B2 (en)
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPS6212663A (en) Method of sintering b4c base fine body
JPS6253473B2 (en)
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JP2531871B2 (en) Method for manufacturing high-density boron nitride pressureless sintered body
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPH0224786B2 (en)
JPH0224785B2 (en)
JPS6126514B2 (en)
JPH05254945A (en) Production of reaction-sintered ceramic