JPH05213673A - Production of silicon carbide-based sintered compact having high heat conductivity - Google Patents

Production of silicon carbide-based sintered compact having high heat conductivity

Info

Publication number
JPH05213673A
JPH05213673A JP4016761A JP1676192A JPH05213673A JP H05213673 A JPH05213673 A JP H05213673A JP 4016761 A JP4016761 A JP 4016761A JP 1676192 A JP1676192 A JP 1676192A JP H05213673 A JPH05213673 A JP H05213673A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
carbon
heat treatment
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4016761A
Other languages
Japanese (ja)
Inventor
Saburo Nagano
三郎 永野
Masahito Nakanishi
政仁 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4016761A priority Critical patent/JPH05213673A/en
Publication of JPH05213673A publication Critical patent/JPH05213673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a silicon carbide-based sintered compact having high mechanical characteristics and high heat conductivity by adding a carbon-contg. compd. and a boron-contg. compd. as sintering aids and carrying out sintering and heat treatment in a nitrogen atmosphere under a high pressure. CONSTITUTION:A carbon-contg. compd. such as carbon black and a boroncontg. compd. such as B4C as sintering aids are added to silicon carbide powder having 0.1-2mum average particle diameter as a base by 1-4wt.% (expressed in terms of carbon) and 0.2-0.4wt.% (expressed in terms of boron), respectivity. They are mixed with a mixing means such as a ball mill, a binder is added and the mixture is molded into a desired shape by press molding or other method and sintered at 1,950-2,000 deg.C in vacuum or in an inert atmosphere to obtain a silicon carbide-based sintered compact having >=88% relative density and low heat conductivity. This sintered compact is heat-treated at 1,800-2,100 deg.C in a nitrogen atmosphere under a high pressure of 1,500-2,000atm so that the weight is increased by 0.01-5% and a sintered compact having >=100 W/mXk heat conductivity is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い機械的強度を有し
つつ、高熱伝導性に優れ、高熱伝導性基板、ヒートシン
ク、熱交換器等に適用される炭化珪素質焼結体の製法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide-based sintered body having high mechanical strength and excellent high thermal conductivity, which is applied to high thermal conductive substrates, heat sinks, heat exchangers and the like. ..

【0002】[0002]

【従来技術】従来から、炭化珪素質焼結体は機械的特性
に優れ、特に高温において強度劣化の小さい材料として
注目され、各種の分野への応用が進められている。
2. Description of the Related Art Conventionally, a silicon carbide-based sintered body has been attracting attention as a material having excellent mechanical properties and having little strength deterioration particularly at high temperatures, and its application to various fields has been promoted.

【0003】このような炭化珪素質焼結体は、一般に炭
化珪素粉末に対して炭素および硼素を焼結助剤として添
加し、これを成形後、Ar等の不活性雰囲気中で無加圧
で2000〜2200℃で焼成することにより得られて
いる。
In such a silicon carbide sintered body, carbon and boron are generally added to silicon carbide powder as a sintering aid, and after this is molded, it is pressureless in an inert atmosphere such as Ar. It is obtained by firing at 2000 to 2200 ° C.

【0004】このようにして得られる炭化珪素質焼結体
の熱伝導率は、せいぜい70〜80W/m・k程度であ
る。
The thermal conductivity of the silicon carbide based sintered body thus obtained is at most about 70 to 80 W / m · k.

【0005】これに対して、炭化珪素質焼結体を高熱伝
導化する技術として、最近、炭化珪素に対して焼結助剤
としてBeOを添加しホットプレス焼成することが行わ
れ、これによれば、270W/m・kレベルの高い熱伝
導率が得られ、各種の基板やヒートシンク材料として採
用されている。
On the other hand, as a technique for increasing the thermal conductivity of a silicon carbide sintered body, recently, BeO has been added to silicon carbide as a sintering aid and hot press firing has been carried out. For example, it has a high thermal conductivity of 270 W / m · k level and is used as a material for various substrates and heat sinks.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、この
BeO添加系の炭化珪素質焼結体は、BeO自体が毒性
を有することから製造時の取扱いに充分注意する必要が
あり、しかも製法がホットプレス法であるために焼結体
の形状が制限され生産性において問題があった。
However, this BeO-added silicon carbide-based sintered body must be handled with care during manufacture because BeO itself has toxicity, and the manufacturing method is hot pressing. Since the method is a method, the shape of the sintered body is limited and there is a problem in productivity.

【0007】[0007]

【問題点を解決するための手段】本発明者等は、上記の
問題点に対して、BeOを用いることなく、炭化珪素質
焼結体の熱伝導率を高める方法について検討した結果、
炭素および硼素を焼結助剤として添加した常法により焼
結した焼結体に対して、高圧窒素雰囲気中で熱処理を行
うことにより、高い機械的強度を維持したままこれまで
の炭化珪素質焼結体に比較して大幅に熱伝導率を向上で
きることを知見した。
With respect to the above problems, the present inventors have studied a method for increasing the thermal conductivity of a silicon carbide based sintered material without using BeO, and as a result,
Heat treatment is performed in a high-pressure nitrogen atmosphere on a sintered body that has been sintered by a conventional method in which carbon and boron are added as sintering aids to maintain the high mechanical strength of the conventional silicon carbide-based sintered material. It was found that the thermal conductivity can be significantly improved as compared with the bonded body.

【0008】即ち、本発明の炭化珪素質焼結体の製法に
よれば、炭化珪素を主成分とし、焼結助剤として炭素お
よび硼素含有化合物を添加した成形体を真空中、又は不
活性雰囲気中で焼成し、相対密度88%以上の焼結体を
作成した後、該焼結体を高圧窒素雰囲気中で1800〜
2100℃で、熱処理前の焼結体に対する重量増加が
0.01〜5%の範囲となるように熱処理することを特
徴とするものである。
That is, according to the method for producing a silicon carbide-based sintered body of the present invention, a molded body containing silicon carbide as a main component and carbon and a boron-containing compound as a sintering aid is added in a vacuum or in an inert atmosphere. After firing in a high-pressure nitrogen atmosphere, a sintered body having a relative density of 88% or more is prepared.
The heat treatment is performed at 2100 ° C. so that the weight increase with respect to the sintered body before heat treatment is in the range of 0.01 to 5%.

【0009】以下、本発明を詳述する。本発明の製法に
よれば、まず出発原料として炭化珪素粉末、および焼結
助剤として炭素および硼素を含有する各種の化合物を用
意する。炭化珪素粉末としてはα型、β型のいずれか、
あるいはこれらを混合して使用することができ、平均粒
径は0.1〜2μmが適当である。また、焼結助剤とし
ては、炭素成分として、カーボンブラック、グラファイ
ト等の他に熱分解により炭素を生成しうるフェノール樹
脂やコールタールピッチ等を用いることができる。ま
た、硼素成分としては、B4 Cや金属硼素等が挙げられ
る。これら焼結助剤は、最終的に炭素が1〜4重量%、
硼素が0.2〜0.4重量%となる量を添加することが
望ましい。
The present invention will be described in detail below. According to the manufacturing method of the present invention, first, various compounds containing silicon carbide powder as a starting material and carbon and boron as a sintering aid are prepared. As the silicon carbide powder, either α type or β type,
Alternatively, these may be mixed and used, and the average particle diameter is suitably 0.1 to 2 μm. Further, as the sintering aid, in addition to carbon black, graphite and the like as the carbon component, phenol resin or coal tar pitch which can generate carbon by thermal decomposition can be used. In addition, examples of the boron component include B 4 C and metallic boron. These sintering aids finally contain 1 to 4% by weight of carbon,
It is desirable to add boron in an amount of 0.2 to 0.4% by weight.

【0010】次に、これらの原料粉末を所定の割合で秤
量し、ボールミル等の混合手段により充分に混合した
後、この粉末にバインダーを添加し、周知の成形方法、
例えば、プレス成形、押出成形、鋳込み成形、冷間静水
圧成形等により所望の形状に成形する。なお、焼結助剤
としてフェノール樹脂等を添加した場合には、200〜
800℃で成形体を非酸化性雰囲気中で仮焼処理して熱
分解することにより炭素を生成することができる。
Next, these raw material powders are weighed at a predetermined ratio and thoroughly mixed by a mixing means such as a ball mill, and then a binder is added to this powder, and a known molding method,
For example, it is formed into a desired shape by press molding, extrusion molding, cast molding, cold isostatic molding, or the like. When a phenol resin or the like is added as a sintering aid, it is
Carbon can be generated by calcining the molded body at 800 ° C. in a non-oxidizing atmosphere and thermally decomposing it.

【0011】次に、上記のようにして得られた成形体を
焼成して相対密度が88%以上の焼結体を作成する。具
体的には、成形体を真空中、あるいはAr等の不活性雰
囲気中で1950〜2000℃の温度で焼成する。この
時の焼成手段としては、無加圧焼成法、ホットプレス法
等が挙げられる。
Next, the molded body obtained as described above is fired to form a sintered body having a relative density of 88% or more. Specifically, the molded body is fired at a temperature of 1950 to 2000 ° C. in vacuum or in an inert atmosphere such as Ar. Examples of the firing means at this time include a pressureless firing method and a hot pressing method.

【0012】このようにして得られた炭化珪素質焼結体
は、その熱伝導率は約70〜80W/m・k程度であ
る。
The silicon carbide-based sintered body thus obtained has a thermal conductivity of about 70 to 80 W / m · k.

【0013】本発明によれば、この低熱伝導率の炭化珪
素質焼結体を高圧窒素雰囲気中で1800〜2100℃
の温度で熱処理することが大きな特徴である。この熱処
理により焼結体の少なくとも表面部の炭化珪素結晶粒内
に窒素原子を導入する。この時の窒素圧力が低すぎると
熱伝導率の向上効果が顕著でないために、具体的には1
500〜2000気圧に制御される。また、この時の温
度が1800℃より低いと緻密化が進行せず、2100
℃より高いと炭化珪素結晶が異常粒成長し、強度が低下
したり、窒化が進行しすぎて熱伝導率の向上効果が低下
する。
According to the present invention, this silicon carbide sintered body having a low thermal conductivity is heated to 1800 to 2100 ° C. in a high pressure nitrogen atmosphere.
A major feature is that the heat treatment is performed at the temperature of. By this heat treatment, nitrogen atoms are introduced into the silicon carbide crystal grains of at least the surface portion of the sintered body. If the nitrogen pressure at this time is too low, the effect of improving the thermal conductivity is not remarkable.
The pressure is controlled to 500 to 2000 atm. Further, if the temperature at this time is lower than 1800 ° C., densification does not proceed and 2100
If the temperature is higher than ° C, the silicon carbide crystals will grow abnormally and the strength will be lowered, or the nitriding will proceed too much and the effect of improving the thermal conductivity will be lowered.

【0014】上記条件による熱処理によれば、炭化珪素
が窒素と反応し窒化珪素と炭素に変化する場合がある。
しかし、窒化珪素は、それ自体の熱伝導率が42〜50
W/m・kと低いために、窒化珪素の生成は焼結体全体
としての熱伝導率を下げてしまう場合がある。よって、
本発明によれば、熱処理前の焼結体の重量に対する熱処
理後の重量増加が0.01〜5%、特に0.03%〜
1.0%となるレベルで熱処理することが重要である。
即ち、重量増加が0.01%より低いと熱伝導率の向上
効果がなく、5%を越えると窒化珪素の生成が過剰とな
り、熱伝導率が低下するためである。
According to the heat treatment under the above conditions, silicon carbide may react with nitrogen and change into silicon nitride and carbon.
However, silicon nitride itself has a thermal conductivity of 42 to 50.
Since it is as low as W / m · k, the formation of silicon nitride may reduce the thermal conductivity of the entire sintered body. Therefore,
According to the present invention, the weight increase after the heat treatment with respect to the weight of the sintered body before the heat treatment is 0.01 to 5%, particularly 0.03% to
It is important to heat treat at a level of 1.0%.
That is, if the weight increase is less than 0.01%, there is no effect of improving the thermal conductivity, and if the weight increase exceeds 5%, the formation of silicon nitride becomes excessive and the thermal conductivity decreases.

【0015】また、過剰な窒化珪素の生成を抑制するた
めには、熱処理前の焼結体の密度がある程度高いことが
必要である。即ち、熱処理前の焼結体の密度が低く、多
孔質体であると熱処理時に窒素との接触面積が大きくな
るために窒化反応が進行しやすくなるためである。その
ために、熱処理前の焼結体の相対密度を88%以上に設
定した。しかし、熱処理前の焼結体の密度が高すぎる
と、熱処理による重量増が0.01%を下回ることがあ
る。そのために、熱処理前の相対密度は96%以下に設
定することが望ましい。
Further, in order to suppress the generation of excessive silicon nitride, it is necessary that the density of the sintered body before the heat treatment be high to some extent. That is, if the density of the sintered body before the heat treatment is low, and if it is a porous body, the contact area with nitrogen becomes large during the heat treatment, so that the nitriding reaction easily proceeds. Therefore, the relative density of the sintered body before heat treatment was set to 88% or more. However, if the density of the sintered body before the heat treatment is too high, the weight increase due to the heat treatment may be less than 0.01%. Therefore, the relative density before heat treatment is preferably set to 96% or less.

【0016】[0016]

【作用】本発明によれば、焼結助剤として炭素および硼
素を用いて固相焼結した炭化珪素質焼結体に高圧窒素中
で熱処理することにより、優れた機械的特性を損なうこ
となく焼結体の熱伝導率を高めることができる。
According to the present invention, a silicon carbide-based sintered body obtained by solid-phase sintering using carbon and boron as a sintering aid is heat-treated in high-pressure nitrogen, so that excellent mechanical properties are not impaired. The thermal conductivity of the sintered body can be increased.

【0017】炭化珪素質焼結体の炭化珪素結晶粒内に
は、通常、多くの積層欠陥が存在することが知られてい
る。特に、焼結助剤として硼素を用いた場合には、硼素
原子が炭化珪素結晶中に拡散し、炭素の位置に入ること
により電価的な欠陥を生ぜしめることが予測される。本
発明により、上記の所定の条件で熱処理すると炭化珪素
結晶中に窒素が固溶することにより、結晶の欠陥が減少
し、これにより熱伝導率が向上すると考えられる。ま
た、窒化により多少の窒化珪素が生成しても粒界を実質
的に含まずに炭化珪素結晶と結合しているためにフォノ
ンの伝達の障壁がないことから高熱伝導率化が達成され
ると推測される。
It is known that many stacking faults are usually present in the silicon carbide crystal grains of the silicon carbide based sintered body. In particular, when boron is used as the sintering aid, it is expected that the boron atoms diffuse into the silicon carbide crystal and enter the position of carbon, thereby causing an electric defect. According to the present invention, it is considered that when heat treatment is performed under the above-mentioned predetermined conditions, nitrogen is dissolved in the silicon carbide crystal as a solid solution to reduce crystal defects, thereby improving the thermal conductivity. Further, even if some silicon nitride is generated by nitriding, since it does not substantially include grain boundaries and is bonded to the silicon carbide crystal, there is no barrier for phonon transmission, so that high thermal conductivity is achieved. Guessed.

【0018】本発明によれば、これまでBeO等の毒性
の物質を全く用いることなく、従来70〜80W/m・
k程度の熱伝導率から、100W/m・k以上、特に後
述する実施例によれば、190W/m・kの熱伝導率を
有する炭化珪素質焼結体を得ることができる。
According to the present invention, the conventional 70-80 W / m.multidot.
From the thermal conductivity of about k, it is possible to obtain a silicon carbide based sintered body having a thermal conductivity of 100 W / m · k or more, particularly 190 W / m · k according to the examples described later.

【0019】また、製法上、ホットプレス法を用いる必
要がないことから、あらゆる製品形状に適用することが
できる。
Since it is not necessary to use the hot pressing method in the manufacturing method, it can be applied to any product shape.

【0020】以下、本発明を次の例で説明する。The present invention will be described below with reference to the following examples.

【0021】[0021]

【実施例】平均粒径が0.4μmのα型炭化珪素粉末1
00重量部に対してB4 Cを0.4重量部添加し充分に
混合した後、炭化率40%のフェノール樹脂を用いて炭
素換算量が2重量部となるように添加した。
[Example] α-type silicon carbide powder 1 having an average particle size of 0.4 μm
After 0.4 part by weight of B 4 C was added to 100 parts by weight and mixed well, a phenol resin having a carbonization rate of 40% was added so that the carbon equivalent amount was 2 parts by weight.

【0022】この混合粉末を用いて、成形圧力1000
kg/cm2 で外径60mm、厚み10mmの形状に金
型成形し、生密度2.1g/ccの生成形体を得た。次
に、この成形体を1850〜2000℃で仮焼処理した
後、アルゴン雰囲気中、表1に示す条件下で焼成した。
そして、この焼結体を表1に示す窒素圧、処理温度にて
熱処理を行い、試料を得た。
Using this mixed powder, a molding pressure of 1000
Molded into a shape having an outer diameter of 60 mm and a thickness of 10 mm at kg / cm 2 to obtain a green molded body having a green density of 2.1 g / cc. Next, this molded body was calcined at 1850 to 2000 ° C. and then calcined under an argon atmosphere under the conditions shown in Table 1.
Then, this sintered body was heat-treated at the nitrogen pressure and the treatment temperature shown in Table 1 to obtain a sample.

【0023】上記工程において、熱処理前の焼結体の密
度および熱処理後の焼結体の密度をアルキメデス法によ
り測定し、その重量増加を算出した。また、熱処理後の
焼結体の熱伝導率を厚さ1.5mmの試料に対して室温
にてレーザーフラッシュ法により測定した。さらに、焼
結体より抗折試験片を切り出し、室温および1400℃
における抗折強度をJISR1601に従い4点曲げ法
で測定した。測定結果を表1に示した。
In the above steps, the density of the sintered body before the heat treatment and the density of the sintered body after the heat treatment were measured by the Archimedes method, and the weight increase thereof was calculated. Further, the thermal conductivity of the sintered body after the heat treatment was measured by a laser flash method at room temperature for a sample having a thickness of 1.5 mm. Further, a bending test piece was cut out from the sintered body and kept at room temperature and 1400 ° C.
The flexural strength in Table 1 was measured by the 4-point bending method according to JIS R1601. The measurement results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1によれば、熱処理を施さない従来の高
密度の炭化珪素質焼結体(試料No.1)は熱伝導率は6
7W/m・kと低い。また、熱処理をする場合に、焼結
体の密度が高すぎる場合(試料No.2)では、重量増が
0.01%より低く熱伝導率の顕著な向上効果はなかっ
た。また、熱処理前の焼結体の密度が相対密度で88%
を下回る試料No.8、9、10では、熱処理による窒化
が進行し重量増が大きくなり、この場合も熱伝導率は従
来とさほど変わらない。
According to Table 1, the thermal conductivity of the conventional high-density silicon carbide-based sintered body (Sample No. 1) not subjected to heat treatment is 6
It is as low as 7W / mk. Further, when heat treatment was performed and the density of the sintered body was too high (Sample No. 2), the weight increase was less than 0.01%, and there was no significant improvement effect on the thermal conductivity. The density of the sintered body before heat treatment is 88% in relative density.
In Samples Nos. 8, 9 and 10 below which the heat treatment was performed, the nitridation due to the heat treatment progressed and the weight increase became large, and in this case as well, the thermal conductivity was not so different from the conventional one.

【0026】これに対して、本発明に基づき、熱処理前
の焼結体が適正な範囲で、且つ重量増が所定の範囲にな
るように熱処理条件を制御して作成した焼結体は、いず
れも通常の炭化珪素質焼結体に比較して機械的特性の劣
化がなく、100W/m・k以上の高い熱伝導率を有す
る焼結体を得ることができた。
On the other hand, according to the present invention, a sintered body prepared by controlling the heat treatment conditions so that the sintered body before the heat treatment is in an appropriate range and the weight increase is in a predetermined range is It was possible to obtain a sintered body having a high thermal conductivity of 100 W / m · k or more without deterioration of mechanical properties as compared with a normal silicon carbide sintered body.

【0027】[0027]

【発明の効果】以上詳述した通り、本発明によれば、炭
化珪素質焼結体の高温における優れた機械的特性を維持
しつつ、しかも、BeO等の毒性物質を用いることな
く、熱伝導率を高めることができる。また、この製法に
よれば、ホットプレス法を用いることがないためにあら
ゆる製品形状に適用することができる。
As described in detail above, according to the present invention, the thermal conductivity of the silicon carbide based sintered material can be maintained while maintaining the excellent mechanical properties at high temperature without using a toxic substance such as BeO. The rate can be increased. Further, according to this manufacturing method, since the hot pressing method is not used, it can be applied to any product shape.

【0028】これにより、炭化珪素質焼結体の半導体部
品用の放熱基板、ヒートシンク用材料や、熱交換器用構
造材料等への用途を拡大することができる。
As a result, the application of the silicon carbide sintered body to a heat dissipation substrate for semiconductor parts, a material for a heat sink, a structural material for a heat exchanger, etc. can be expanded.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭化珪素を主成分とし、焼結助剤として炭
素および硼素含有化合物を添加した成形体を真空中、又
は不活性雰囲気中で焼成し、相対密度88%以上の焼結
体を作成した後、該焼結体を高圧窒素雰囲気中で180
0〜2100℃で熱処理前の焼結体に対する重量増加が
0.01〜5%の範囲となるように熱処理することを特
徴とする高熱伝導性炭化珪素質焼結体の製法。
1. A sintered body having a relative density of 88% or more is obtained by firing a molded body containing silicon carbide as a main component and containing a compound containing carbon and boron as a sintering aid in a vacuum or in an inert atmosphere. After making the sintered body,
A method for producing a highly heat-conductive silicon carbide sintered body, which comprises performing heat treatment at 0 to 2100 ° C. so that a weight increase with respect to a sintered body before heat treatment is in a range of 0.01 to 5%.
JP4016761A 1992-01-31 1992-01-31 Production of silicon carbide-based sintered compact having high heat conductivity Pending JPH05213673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016761A JPH05213673A (en) 1992-01-31 1992-01-31 Production of silicon carbide-based sintered compact having high heat conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016761A JPH05213673A (en) 1992-01-31 1992-01-31 Production of silicon carbide-based sintered compact having high heat conductivity

Publications (1)

Publication Number Publication Date
JPH05213673A true JPH05213673A (en) 1993-08-24

Family

ID=11925217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016761A Pending JPH05213673A (en) 1992-01-31 1992-01-31 Production of silicon carbide-based sintered compact having high heat conductivity

Country Status (1)

Country Link
JP (1) JPH05213673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761178B2 (en) * 2010-03-29 2015-08-12 住友大阪セメント株式会社 Lanthanum hexaboride sintered body, target using the same, lanthanum hexaboride film, and method for producing the sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761178B2 (en) * 2010-03-29 2015-08-12 住友大阪セメント株式会社 Lanthanum hexaboride sintered body, target using the same, lanthanum hexaboride film, and method for producing the sintered body

Similar Documents

Publication Publication Date Title
US4701427A (en) Sintered silicon carbide ceramic body of high electrical resistivity
EP0780351B1 (en) Aluminum nitride sintered body and method for manufacturing the same
JPS6128627B2 (en)
US6143677A (en) Silicon nitride sinter having high thermal conductivity and process for preparing the same
JP4796716B2 (en) Process for producing reaction sintered silicon carbide heating element
JPH09268069A (en) Highly heat conductive material and its production
JPH05213673A (en) Production of silicon carbide-based sintered compact having high heat conductivity
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JP2001181053A (en) Silicon nitride sintered product and method for producing the same
JPS6212663A (en) Method of sintering b4c base fine body
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP2975490B2 (en) Method for producing high thermal conductivity β-type silicon carbide sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JPH06287066A (en) Silicon nitride sintered compact and its production
JPH05330917A (en) Production of highly heat conductive silicon carbide sintered compact
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPH0788255B2 (en) Silicon carbide sintered body and method for producing the same
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH0559074B2 (en)
JPH0559073B2 (en)
JPH0678195B2 (en) Aluminum nitride sintered body
JP3008415B2 (en) Sialon-boron nitride-based composite sintered body and method for producing the same
JPH0481542B2 (en)