JPH06669B2 - サンドイッチ構造を有する高硬度焼結体複合材料 - Google Patents

サンドイッチ構造を有する高硬度焼結体複合材料

Info

Publication number
JPH06669B2
JPH06669B2 JP60245925A JP24592585A JPH06669B2 JP H06669 B2 JPH06669 B2 JP H06669B2 JP 60245925 A JP60245925 A JP 60245925A JP 24592585 A JP24592585 A JP 24592585A JP H06669 B2 JPH06669 B2 JP H06669B2
Authority
JP
Japan
Prior art keywords
composite material
hardness sintered
pcd
sintered body
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60245925A
Other languages
English (en)
Other versions
JPS61270271A (ja
Inventor
昭夫 原
明彦 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPS61270271A publication Critical patent/JPS61270271A/ja
Publication of JPH06669B2 publication Critical patent/JPH06669B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • B24D3/10Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for porous or cellular structure, e.g. for use with diamonds as abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Drilling Tools (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はサンドイッチ構造を有する高硬度焼結体複合材
料に関するものである。
本発明は、ダイヤモンドを主成分とする高硬度焼結体
(以下、PCDと略記する)の両側に超硬合金からなる
サブストレート(以下、両側のサブストレートを単にサ
ブストレートという)を配置した特に穴明け工具の刃先
チップ素材として有用なサンドイッチ構造を有する高硬
度焼結体複合材料に関するものである。
従来の技術 PCDは、ダイヤモンド粒子のみを出発原料として焼結
によって製造することもできるが、工業的に歩留良く製
造することは現時点では不可能であるので、通常はダイ
ヤモンド粉末に隣接して配置した超硬合金層から超硬合
金中の鉄族金属を高圧高温処理中にダイヤモンド粉末中
に含浸させるか、予めダイヤモンド粉末に鉄族金属を含
有させておくか、あるいは鉄族金属の薄板をダイヤモン
ド粉末と隣接して配置し、高圧高温処理中に鉄属金属を
溶解させてタイヤモンド粉末の焼結中にダイヤモンド粉
末に含浸させている。
PCDは長寿命工具として特に難加工材加工用工具に必
要不可欠な素材として近年急速に普及してきた。しか
し、製造条件が厳しいためPCDの形状は著しく制限さ
れ、普及が伸びない分野がある。特に、穴明け工具の場
合には、シャンクにPCDの刃先チップを嵌め込み、蝋
付けして付刃ドリルを製作するが、PCDは蝋付けが難
しいためPCDに超硬合金等のサブストレートを接着
し、このサブストレートの表面をシャンクに蝋付けして
いる。しかし、PCD片の片側表面にのみに超硬合金等
のサブストレートを接着させた片面蝋付け型のものは蝋
付面積が大きく取れないため保持強度が十分でない。そ
こで、PCD片の両側表面に超硬合金等のサブストレー
トを接着して両面で蝋付けできるようにすることが望ま
れている。
一方、付刃ドリルでは、片面のみにサブストレートを接
着したチップを用いると刃先を工具の回転中心に対して
対称に位置決めする必要があるが、両面に同一の厚さの
サブストレートを接着した構造の複合材料を用いれば、
複雑な位置決めの必要がなくなり、PCD片の保持強度
も高くなる。
そこで先ず考えられたのはPCD片の両側を超硬合金で
サンドイッチ状に挟んだ構造のチップである。例えば、
特開昭57-66805号公報には、ダイヤモンドまたは高密度
窒化硼素を2枚の板状サーメット焼結体層で接着挾持し
た3層の積層焼結体が開示されている。本発明者達もこ
のようなサンドイッチ構造の焼結体複合材料の試作を先
ず行ったが、サンドイッチ構造の焼結体複合材料は亀裂
の発生が多く、工業的に安定して生産することは不可能
であった。
サンドイッチ構造の高硬度焼結体複合材料を製造する
は、超硬合金または金属のサブストレートの間にダイヤ
モンド粉末と結合材との混合粉末または結合材片を含む
ダイヤモンド粉末を配置し、超高圧高温度下で焼結して
PCDを形成すると同時にPCDとサブストレートを接
合する必要がある。この焼結処理終了後には超高圧を解
除して冷却するが、この時にPCDとサブストレートと
の熱膨張係数の差に起因して両者の間に熱応力が発生す
る。PCDとサブストレートとの熱膨張係数の差が大き
いと両者の間に発生する熱応力もそれに比例して大きく
なり、ついには亀裂が発生する。
片側のみにサブストレートを一体に接合した2層構造の
複合材料では、PCDとサブストレートとの間の熱応力
が材料全体の変形によって吸収されるため、PCD自体
の致命的な亀裂の発生には至らないが、両側にサブスト
レートを一体に接合した3層構造の複合材料の場合に
は、一般にサブストレートの熱膨張係数が大きいため、
PCDの両側面に引張方向の熱応力が働き、PCD自体
に亀裂が生じることになる。
このように、両面に超硬合金等のサブストレートを備え
たサンドイッチ構造の焼結体複合材料は製造が困難であ
るため、PCDを用いた穴明け工具は市場には存在しな
かった。
発明が解決しようとする課題 本発明の目的は従来法の上記欠点が無く、工業的に安定
して製造できる、付刃ドリルの切れ刃チップ等で使用さ
れる両面がサブストレートによって接着挟持されたサン
ドイッチ構造のPCD焼結体複合材料を提供することに
ある。
課題を解決するための手段 本発明は、5〜15体積%の鉄族金属を含有し、残部がダ
イヤモンド粒子であるダイヤモンドを主成分とする高硬
度焼結体の層と、この高硬度焼結体の層の両側表面に一
体に接合された熱膨張係数が3.0〜6.0×10-6/℃で、厚
さが10μm以上且つ500μm以下である焼結中に上記高
硬度焼結体の鉄族金属を実質的に透過させない中間層
と、この中間層の外側表面にそれぞれ一体に接合された
5〜2重量%のCoおよび/またはNiを含み、残部がWC
および/またはMoCである超硬合金からなる熱膨張係数
が4.6×10-6/℃以下であるサブストレートとを焼結に
よって一体化して得られるサンドイッチ構造を有する高
硬度焼結体複合材料であって、中間層が下記の群: (a) 3b、4a、5a、6a族の元素の窒化物、炭化物、炭窒化
物、硼化物、酸化物およびそれらの相互固溶体、および (b)体積パーセントで80〜20%の高圧相窒化硼素を主成
分とし、残部が4a、5a、6a族の元素の窒化物、炭化物、炭
窒化物、硼化物およびそれらの相互固溶体 の中から選択された少なくとも一種からなることを特徴
とする高硬度焼結体複合材料を提供する。
作 用 PCDを超硬合金でサンドイッチ状に挟んだ構造では、
サブストレートの超硬合金の熱膨張係数を低くするため
に、サブストレートの超硬合金の鉄属金属含有量を低く
することが必要であるが、超硬合金より高い含有量とな
るようにダイヤモンド粉末に鉄属金属を供給するのは困
難である。すなわち、PCDを歩留りよく製造するには
予めダイヤモンド粉末に十分な量の鉄属金属を含有せし
めたものを出発原料とすべきであるが、単に鉄属金属を
多量に含有したダイヤモンド粉末と超硬合金を直接接合
したのでは、超高圧高温の焼結処理中にダイヤモンド粉
末に含有せしめた鉄属金属が超硬合金の方に浸透する結
果、PCDを挟んだサブストレートを構成する超硬合金
の鉄属金属含有量が多くなり、その結果、超硬合金の熱
膨張係数が大きくなり、PCD層の亀裂の原因となる。
他方、ダイヤモンド粉末中の鉄属金属量を低くし、しか
も、鉄属金属含有量の低い超硬合金を隣接配置して焼結
しても工業的に歩留良くPCDを得ることができない。
本発明はこの矛盾を解決するものである。
本発明の高硬度焼結体複合材料は、第1図に示すよう
に、PCD1の両側に中間層3、3′を介してサブスト
レート2、2′が焼結によって一体化された構造を有し
ている。
サブストレート2、2′となる超硬合金の熱膨張係数は
それに含有される硬質相と結合相との比率によってほぼ
決まり、結合相である鉄系金属の量の比率が少なくなれ
ばなるほど小さくなり、PCDの熱膨張係数に近づく。
第1表はWC−Co超硬合金でのCo含有量と超硬合金の熱
膨張係数との関係を示したものである。
一方、PCD1の熱膨張係数も鉄族金属の含有量で決ま
り、Co含有量の増加とともに増大する。第2表はCo含有
量とPCDの熱膨張係数との関係を示したものである。
さて、穴明け工具としての用途からの切削性能面からの
要求として、PCD層のCo含有量は15〜5体積%が望ま
しい。
PCD層のCo含有量が15〜5体積%である場合の熱膨張
係数値は第2表から3.9×10-6と3.7×10-6であることが
わかる。通常用いられるPCD1の熱膨張係数は上記の
値3.9〜3.7×10-6の上下に少し余裕のある4.0〜3.5×10
-6/℃である。
一方、既に述べたように、PCD1に加わる引張応力の
大きさはPCD1とサブストレート2、2′との熱膨張
差によって決まる。本発明者達は、その差が約0.6×10
-6以下であればPCD層への亀裂の発生が少なく、サン
ドイッチ構造の高硬度焼結体を高い歩留で生産すること
ができるということを実験的に確認した。
通常用いられるPCD1の熱膨張係数値の最大値は上記
の通り4.0×10-6/℃程度であるので、サブストレート
2、2′の熱膨張係数は下記の値以下であればよい: 4.0×10-6+0.6×10-6=4.6×10-6 この場合に対応するCo含有量は第1表から5重量%であ
り、従って、サブストレート2、2′中のCo含有量は5
重量%以下にする必要がある。
一方、工具として用いられる超硬合金ではCo含有量は2
重量%以上である必要がある。すなわちCoはWCを結合
する役目をしているので、その量が2重量%未満になる
とWCの結合強度が低下して脆くなり、実用的な強度を
保てなくなる。従って、サブストレート2、2′のCo含
有量の下限は2重量%である。
CoとNiおよびWCとMoCがそれぞれ互いに同様な挙動を
することは知られている。
結論として、本発明のサブストレート2、2′は5〜2
重量%のCoおよび/またはNiを含み、残部がWCおよび
/またはMoCである超硬合金であり、その熱膨張係数は
4.6×10-6以下である。
既に述べたように、通常用いられるPCD1の熱膨張係
数は3.5〜4.0×10-6/℃で、サブストレート2、2′の
熱膨張係数はできる限りこの値に近いのが好ましい。本
発明のサブストレート2、2′として好ましく用いられ
るCoを含有するWC−Co超硬合金の熱膨張係数は第1表
に示すようにこの値に近い。
同様な理由で、中間層3、3′の熱膨張係数もPCD1
およびサブストレート2、2′の熱膨張係数に近いのが
望ましい。実際には、中間層3、3′の熱膨張係数はそ
の上下の材料の熱膨張係数の1.5倍が限度であり、その
上限はPCD1の熱膨張係数の上限で決まり、4.0×10
-6×1.5=6×10-6である。また、その下限はサブスト
レート2、2′の熱膨張係数の下限で決まるが、中間層
材料の性質から余り熱膨張係数の低いものは得られない
ので、実際には3.0×10-6程度が限度である。本発明で
は中間層3、3′の熱膨張係数は3.0〜6.0×10-6/℃で
あることが必要である。この範囲から大きく離れると、
PCD1と中間層3、3′との間、中間層3、3′とサ
ブストレート2、2′との間の残留応力が界面の接合強
度または中間層3、3′の材料の破壊強度より大きくな
ってサンドイッチ構造か破壊する。第3表は代表的な中
間層材料の熱膨張係数を示している。
本発明構造では、第1図に示すように、PCD層1とP
CDを挟むサブストレート2、2′との間にPCD層1
中の鉄族金属がサブストレート2、2′の方へ浸透する
のを防止する目的で中間層3、3′が配置してある。す
なわち、鉄族金属の液体と中間層3、3′との接触角が
零あるいは零に近いと、焼結中にダイヤモンド粉末中1
に含まれた鉄属金属が中間層3、3′と反応し、あるい
は中間層3、3′を通過してサブストレートに達してサ
ブストレート2、2′中の鉄族金属の含有量を増加さ
せ、その結果、その熱膨張係数が大きくなってPCD1
とサブストレート2、2′間の残留応力が大きくなり、
サンドイッチ構造が破壊する。従って、焼結中にPCD
層1からサブストレートの材料2、2′への鉄族金属の
移動を効果的に防止し、しかも、PCD1およびサブス
トレート2、2′の鉄族金属含有量が所望の値すなわち
両者の熱膨張係数が近似した値となるようにするには、
中間層3、3′を鉄族金属の溶融体との接触角が20°以
上となる材料で作るのが好ましい。このような中間層を
用いれば鉄族金属の溶融体は中間層を実質的に通過しな
い。
本発明では、中間層3、3′として3b、4a、4b、5a、6a族元
素の窒化物、炭化物、炭窒化物、硼化物、酸化物、例え
ば、AlN、ZrN、ZrB、HfC、Si3、SiC、Ta
N、VB、V、Cr3Cおよびこれらの相互固溶
体、例えばZrO2・SiO2か、体積%で80〜20%、好ましく
は80〜50%の高圧相窒化硼素を含み、残部が4a、5a、6a族
の元素の窒化物、炭化物、炭窒化物、硼化物およびこれ
らの相互固溶体を用いる。後者の例としは、体積%で80
〜50%の高圧相窒化硼素を含み、残部がTiN、TiCおよ
びこれらの固溶体およびAl、Siの金属粉末中から選択さ
れる1種以上の粉末からなる混合粉末を焼結したものが
ある。高圧相型窒化硼素は立方晶窒化硼素、ウルツ鉱型
窒化硼素のいずれでもよい。
中間層3、3′の厚さは10μm以上かつ500μm以下に
する。10μm以下では、PCD1からサブストレート
2、2′への鉄属金属の浸透を防止するのに不十分であ
る。また、本発明で中間層3、3′をPCD1とサブス
トレート2、2′との間に介在させる目的はサブストレ
ート2、2′の熱膨張係数を可能な限りPCD1に近似
させ、しかも焼結中に鉄族金属がPCD1からサブスト
レート2、2′へ移動するのを阻止することであるの
で、500μm以上の厚さは不必要であり、逆に、中間層
3、3′を厚くすると、PCD1とサブストレート2、
2′との間の熱応力の影響が大きくなり、複合材料全体
の変形または亀裂の原因となる。換言すれば、中間層
3、3′が厚くなると、中間層3、3′自体のもPCD
1およびサブストレート2、2′とほぼ同選択の幅が狭
くなる。また、中間層3、3′の厚さが500μm以上に
なるとサンドイッチ構造の高硬度焼結体複合材料を他の
機械加工部品に鑞付する際に鑞材との濡れ性が悪い中間
層3、3′が露出する危険性がある。
以下実施例により本発明の効果を説明する。
実施例1 鉄属金属を含有したダイヤモンド粉末1と、その両側に
配置した中間層材料3、3′と、さらにその両側に配置
したサブストレート材料2、2′とからなる第2図に示
す積層構造物をカプセルに充填し、超高圧高温装置を用
いて55000気圧、1400℃で焼結した。
得られた高硬度焼結体複合材料の組成および観察した亀
裂発生状況は第4表に示してある。なお、比較のために
中間層のないものと、本発明の組成以外のものを作製し
た。その結果は第4表にまとめて示してある。
試作したサンドイッチ状の高硬度複合材料の中で本発明
の中間層を有するものは、PCD層とサブストレート層
との間に配置した中間層のCoの分布状態をX線マイクロ
アナライザー(XMA)で調べた。その結果、中間層の
CoはPCD層に存在するCo量よりはるかに少なく、Coが
実質的に中間層を通じてPCD層よりサブストレート層
へ移動していないことが確認できた。
実施例2 第3図に示すように、下側から順に60%CBN+TiN粉
末(中間層3′を構成する)を塗布た直径30mm、厚み3
mmの4%Co−WC合金(サブストレート2′を構成す
る)と、5〜10μ粒度のダイヤモンド粉末2g(PCD
1を構成する)と、直径30mm、厚さの200μのCo板4
(PCD1の結合材となる)と、60%CBN+TiN粉末
塗布面(中間層3を構成する)がCo板4と接するように
配置した直径30mm、厚み3mmの4%Co−WC合金(サブ
ストレート2を構成する)とを積層し、これら全体を高
融点金属で作られた保護カプセルに充填し、超高圧高温
装置中で1400℃、55000気圧に15分間保持した後に取り
出した。
得られた高硬度焼結体複合材料を観察したが、いずれの
層にも亀裂はなかった。
更に、得られた高硬度焼結体複合材料を切断してその断
面を光学顕微鏡にて観察したが、結合材及び触媒の目的
で配置した200μのCo板4は溶解してダイヤモンド粒間
をすきまなく埋めており、中間層3、3′として塗布し
た60%CBN+TiN層へのCoの溶浸はほとんど認められ
なかった。
実施例3 実施例1の操作を繰り返したが、第5表に示す材料に代
えた。なお、中間層用材料のCBNの平均粒度は約4μ
mにした。
観察された亀裂発生状況は第5表にまとめて記載した。
また、第5表のA〜Jのサンドイッチ焼結体を用いて第
4図に示すような穴径6mm用のツイストドリルを試作
し、これを穴明け加工機に装着した1500rpmで、20%Si
−Al合金の穴明けテストを行った。穴径が拡大してドリ
ル交換が必要となるヒット数はA、B、E〜Jの焼結体
を有するツイストドリルでは50000〜75000ヒツトであっ
たが、Dでは20000ヒット、Cでは5000ヒットでドリル
交換を必要とした。実施例3で得られた結果は第8図に
まとめて図示してある。
この第8図はサブストレート材料の鉄族元素の含有率が
亀裂発生率に対して臨界的な効果を示すことを示してお
り、本発明の範囲に含まれるものはE〜Hであり、それ
以外は本発明の範囲外である。
なお、C、Dは亀裂の発生状態から見ると優れている
が、ダイヤモンド層のCo含有量が本発明の範囲からが外
れ、切削性能が劣るため実用上使えない。このことは、
亀裂の発生を抑え、しかも、切削性能を維持することが
いかに困難であるかということを示している。
実施例4 PCD層1として5%Fe−45%Ni−50%Coの合金粉末を
10重量%混合した1〜20μ粒度のダイヤモンド粉末と、
その両側の中間層3、3′としての高圧相窒化硼素を主
成分とし、残部が第6表の成分よりなる混合粉末と、更
にその両側のサブストレート材質2、2′としての5重
量%Coを含むWC−Co合金よりなる積層構造体をカプセ
ルに充填し、超高圧高温装置で55000気圧かつ1400℃で
焼結した。得られた高硬度焼結体複合材料を検査したと
ころ、いずれの中間層でもPCD層での亀裂の発生はな
かった。
実施例5 内径30mmのカプセルに、予め、PCD層1としての10重
量%Co−WC超硬合金の微細粉末(1〜2μ粒径)を10
重量%を含み、残部が1〜10μの粒度のダイヤモンドで
ある混合粉末2.0gと、その両側に0.2mm厚さのCo板4
と、さらに中間層3、3′として60容量%CBN−40容
量%TiNの0.25gを配置し、さらにその両側にサブスト
レート層2、2′として4重量%Co−WC合金からなる
直径30mm、厚さ3mmの円板を配置し、これらをガードル
型高圧高温発生装置で55kb、1,500℃に15分保持した後に
取り出した。
亀裂のない全高6.5mm、外径30mmのサンドイッチ状焼結
体複合材料が得られた。
実施例6 1〜20μ粒度のダイヤモンド粉末3g(1)と、60容量%
CBNと残部がTiNからなる混合粉末(3、3′)をメ
チルアルコールに混合したものを直径30mm、厚さ3mmの
(MoW)Cを主成分とし、残部が3重量%Co+2重量%
Niからなる合金円板(2、2′)上に約0.2g塗布したも
のからなる第3図に示すような積層構造体をカプセルに
入れて、超高圧高温装置で約55kb、1400℃に加圧・加熱
後取り出した。亀裂のないサンドイッチ構造の高硬度複
合焼結体が得られた。
実施例7 実施例1の操作を繰り返したが、ダイヤモンド原料に添
加するPCD層1の結合材となるCo粉末をFe粉末または
Ni粉末に代え、サブストレート材質および中間層の材質
を第7表のものに代えた。亀裂の発生状況は第7表にま
とめて示してある。
本発明であるB、Dは亀裂の発生が少なく、本発明の範
囲外であるA、Cは亀裂の発生が多い。
実施例8 実施例6の操作を繰り返したが、サブストレートをMoC
を主成分とした合金に代えた。サブストレート材料の組
成および亀裂の発生状況は第8表に示してある。
本発明であるCは亀裂の発生が無く、本発明の範囲外で
あるA、Bは亀裂の発生が多い。
本発明の亀裂のない高品質の高硬度焼結体複合材料は工
具支持体との接着面積が大きいので、難加工材加工用工
具、特にツイストドリル等の穴明け工具の高硬度刃先材
料として好適に用いられる。
第4図は、本発明の高硬度焼結複合材料5を将棋の駒の
形に成形したものをツイストドリルの先端部に取付けた
状態を示している。
第5図(a)は第4図に示したツイストドリルの先端部分
の拡大側面図であり、第5図(b)はドリル刃先端より見
た拡大平面図である。
次に、第5図(a)および(b)を参照して、本発明の高硬度
焼結体複合材料5をツイストドリルの先端部に取付けて
付刃ドリルに加工する方法を説明する。
先ず、ドリル6の先端部に形成した刃溝に蝋材7を塗布
し、これに将棋の駒の形に切断した本発明の高硬度焼結
体複合材料5を圧入する。次に、第5図(b)に示すよう
に、サブストレートおよび中間層を面削してPCD1の
表面層を露出させ、すくい面をドリル回転中心に対して
対称に形成する。
第5図(a)および(b)に示した本発明のサンドイッチ構造
をした高硬度焼結体複合材料5を用いることによって、
すくい面をドリルの回転中心に対して対称に位置決めす
るのが容易になる。また、切削中の高負荷が第5図(b)
に示すようにサブストレート2、2′および中間層3、
3′を介してドリル本体に対称に作用するので、従来の
回転ドリルよりはるかに高速で切削することができる。
さらに、各すくい面が一体の高硬度焼結体複合材料5で
構成されるので、切削中の負荷の影響はさらに軽減され
る。
本発明の高硬度焼結体複合材料5はツイストドリルだけ
でなく、直刃ドリルの刃先にも用いることができるのは
勿論である。
本発明の高硬度焼結体複合材料は穴明け工具に限らず、
工具支持体との接合強度を高くすることが望まれるガラ
ス切り工具、線材圧延ロール等の素材としても好適に用
いられる。
第6図、第7図は、それぞれ、本発明の高硬度焼結体複
合材料をガラス切り工具及び線材圧延ロールに用いた例
を示している。
第6図は、ガラス切り工具の全体を本発明の高硬度焼結
体複合材料で構成したものを示し、第7図は線材用の孔
型ロールを孔型部分がPCDで構成されるようにしたも
のである。
本発明の高硬度焼結体複合材料は種々の用途を有し、そ
の工業的価値は大である。
【図面の簡単な説明】
第1図は本発明のサンドイッチ構造を有する高硬度焼結
体複合材料の断面図。 第2図〜第3図は本発明のサンドイッチ構造を有する高
硬度焼結体複合材料を製造するのに用いられるカプセル
内に充填される材料の構成を示す図。 第4図は本発明の高硬度焼結体複合材料をツイストドリ
ルに用いた例を示し、第4図(a)はその側面図、第4図
(b)は正面図。 第5図(a)は第4図のツイストドリルの先端部分の拡大
側面図、第5図(b)はドリル刃先端より見た拡大平面
図。 第6図は本発明の高硬度焼結体複合材料を用いたガラス
切り工具を示し、第6図(a)はその側面図、第6図(b)は
正面図。 第7図は本発明の高硬度焼結体複合材料を用いた線材圧
延ロールを示し、第7図(a)はその側面図、第7図(b)は
正面図。 第8図は実施例3で得られた結果を図示したもので、サ
ブストレートのCo含有率(%)に対する亀裂発生率
(%)をダイヤモンド焼結体の組成毎に図示したもの。 (参照番号) 1 PCD、 2、2′ サブストレート 3、3′中間層、 4 Co板 5 高硬度焼結体複合材料、 6 ドリル、 7 蝋材
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 29/16

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】5〜15体積%の鉄族金属を含有し、残部
    がダイヤモンド粒子であるダイヤモンドを主成分とする
    高硬度焼結体の層と、 この高硬度焼結体の層の両側表面に一体に接合された熱
    膨張係数が3.0〜6.0×10-6/℃で、厚さが10μm以上且
    つ500μm以下である焼結中に上記高硬度焼結体の鉄族
    金属を実質的に透過させない中間層と、 この中間層の外側表面にそれぞれ一体に接合された5〜
    2重量%のCoおよび/またはNiを含み、残部がWCおよ
    び/またはMoCである超硬合金からなる熱膨張係数が4.
    6×10-6/℃以下であるサブストレートとを焼結によっ
    て一体化して得られるサンドイッチ構造を有する高硬度
    焼結体複合材料であって、 上記中間層が下記の群: (a)3b、4a、4b、5a、6a族の元素の窒化物、炭化物、炭窒化
    物、硼化物、酸化物およびそれらの相互固溶体、および (b)体積パーセントで80〜20%の高圧相窒化硼素を主成
    分とし、残部が4a、5a、6a族の元素の窒化物、炭化物、炭
    窒化物、硼化物およびそれらの相互固溶体 の中から選択された少なくとも一種からなることを特徴
    とする高硬度焼結体複合材料。
  2. 【請求項2】上記中間層が、体積パーセントで80〜50%
    の高圧相窒化硼素を含む特許請求の範囲第1項に記載の
    サンドイッチ構造を有する高硬度焼結体複合材料。
  3. 【請求項3】上記中間層が、体積パーセントで80〜50%
    の高圧相窒化硼素を主成分とし、残部がTiN、TiCおよ
    びそれらの固溶体およびAl、Siの1種以上からなる混合
    粉末を焼結したものである特許請求の範囲第2項に記載
    のサンドイッチ構造を有する高硬度焼結体複合材料。
JP60245925A 1984-11-01 1985-11-01 サンドイッチ構造を有する高硬度焼結体複合材料 Expired - Lifetime JPH06669B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP59-228998 1984-11-01
JP22899884 1984-11-01

Publications (2)

Publication Number Publication Date
JPS61270271A JPS61270271A (ja) 1986-11-29
JPH06669B2 true JPH06669B2 (ja) 1994-01-05

Family

ID=16885154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60245925A Expired - Lifetime JPH06669B2 (ja) 1984-11-01 1985-11-01 サンドイッチ構造を有する高硬度焼結体複合材料

Country Status (5)

Country Link
US (1) US4861673A (ja)
EP (1) EP0180243B1 (ja)
JP (1) JPH06669B2 (ja)
KR (1) KR920010861B1 (ja)
DE (1) DE3583724D1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802895A (en) * 1986-07-14 1989-02-07 Burnand Richard P Composite diamond abrasive compact
JP2505803B2 (ja) * 1987-04-15 1996-06-12 住友電気工業株式会社 エンドミル
US4764434A (en) * 1987-06-26 1988-08-16 Sandvik Aktiebolag Diamond tools for rock drilling and machining
FR2633854B1 (fr) * 1988-07-07 1991-10-31 Combustible Nucleaire Element de coupe composite contenant du nitrure de bore cubique et procede de fabrication d'un tel element
US5009673A (en) * 1988-11-30 1991-04-23 The General Electric Company Method for making polycrystalline sandwich compacts
AU624521B2 (en) * 1989-07-07 1992-06-11 De Beers Industrial Diamond Division (Proprietary) Limited Manufacture of an abrasive body
US5273557A (en) * 1990-09-04 1993-12-28 General Electric Company Twist drills having thermally stable diamond or CBN compacts tips
JPH04143204A (ja) * 1990-10-03 1992-05-18 Mitsubishi Materials Corp 工具用高硬度複合焼結体
AU651210B2 (en) * 1991-06-04 1994-07-14 De Beers Industrial Diamond Division (Proprietary) Limited Composite diamond abrasive compact
JP4045014B2 (ja) * 1998-04-28 2008-02-13 住友電工ハードメタル株式会社 多結晶ダイヤモンド工具
DK1292414T3 (da) * 2000-06-13 2006-01-30 Element Six Pty Ltd Sammensatte diamantmasser
US20060046081A1 (en) * 2004-08-26 2006-03-02 Edward Williams Laminated wear-resistant assemblies
US20070274794A1 (en) * 2006-05-26 2007-11-29 Cirino Thomas J Oblique angle serration location and drive interface
US7717654B2 (en) * 2006-05-26 2010-05-18 Cirino Thomas J Drill tip with serrated and dowel pinned shank interface
US8028771B2 (en) 2007-02-06 2011-10-04 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US7942219B2 (en) 2007-03-21 2011-05-17 Smith International, Inc. Polycrystalline diamond constructions having improved thermal stability
US9297211B2 (en) 2007-12-17 2016-03-29 Smith International, Inc. Polycrystalline diamond construction with controlled gradient metal content
GB2483590B8 (en) * 2009-06-18 2014-07-23 Smith International Polycrystalline diamond cutting elements with engineered porosity and method for manufacturing such cutting elements
US20110171414A1 (en) * 2010-01-14 2011-07-14 National Oilwell DHT, L.P. Sacrificial Catalyst Polycrystalline Diamond Element
US20110176879A1 (en) * 2010-01-20 2011-07-21 Cornelis Roelof Jonker Superhard body, tool and method for making same
GB201002375D0 (en) 2010-02-12 2010-03-31 Element Six Production Pty Ltd A superhard tip, method for making same and tool comprising same
GB201015541D0 (en) 2010-09-17 2010-10-27 Element Six Ltd Twist drill assembly
US8522900B2 (en) * 2010-09-17 2013-09-03 Varel Europe S.A.S. High toughness thermally stable polycrystalline diamond
US8997900B2 (en) 2010-12-15 2015-04-07 National Oilwell DHT, L.P. In-situ boron doped PDC element
WO2013028821A1 (en) * 2011-08-23 2013-02-28 Smith International, Inc. Fine polycrystalline diamond compact with a grain growth inhibitor layer between diamond and substrate
JP6029004B2 (ja) * 2011-11-28 2016-11-24 三菱マテリアル株式会社 Pcdドリル
CN103128345B (zh) * 2011-11-28 2017-03-01 三菱综合材料株式会社 Pcd钻头
CN102889057A (zh) * 2012-10-09 2013-01-23 吉林大学 一种高效耐磨切削工具
EP3029113B1 (en) * 2014-12-05 2018-03-07 Ansaldo Energia Switzerland AG Abrasive coated substrate and method for manufacturing thereof
US10273758B2 (en) * 2016-07-07 2019-04-30 Baker Hughes Incorporated Cutting elements comprising a low-carbon steel material, related earth-boring tools, and related methods
CN107414085B (zh) * 2017-07-07 2019-07-16 泉州众志金刚石工具有限公司 一种金刚石刀头胎体材料和细粒度金刚石锯片
JP7021493B2 (ja) * 2017-09-29 2022-02-17 三菱マテリアル株式会社 複合焼結体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL129734C (ja) * 1960-07-22
US3816085A (en) * 1971-01-29 1974-06-11 Megadiamond Corp Diamond-nondiamond carbon polycrystalline composites
US3744982A (en) * 1971-05-20 1973-07-10 Gen Electric Method of making boron-alloyed diamond compacts and beryllium-alloyed cubic boron nitride compacts
US3745623A (en) * 1971-12-27 1973-07-17 Gen Electric Diamond tools for machining
US4129052A (en) * 1977-10-13 1978-12-12 Fort Wayne Wire Die, Inc. Wire drawing die and method of making the same
US4144739A (en) * 1977-10-13 1979-03-20 Fort Wayne Wire Die, Inc. Wire drawing die and method of making the same
AU529416B2 (en) * 1978-07-04 1983-06-09 Sumitomo Electric Industries, Ltd. Diamond compact for a wire drawing die
US4536442A (en) * 1979-08-23 1985-08-20 General Electric Company Process for making diamond and cubic boron nitride compacts
US4403015A (en) * 1979-10-06 1983-09-06 Sumitomo Electric Industries, Ltd. Compound sintered compact for use in a tool and the method for producing the same
JPS5766805A (en) * 1980-10-06 1982-04-23 Nippon Oil & Fats Co Ltd Cutting tool of high hardness
US4353963A (en) * 1980-12-17 1982-10-12 General Electric Company Process for cementing diamond to silicon-silicon carbide composite and article produced thereby
JPS5879881A (ja) * 1981-11-09 1983-05-13 住友電気工業株式会社 ビツト用複合ダイヤモンド焼結体
CA1216158A (en) * 1981-11-09 1987-01-06 Akio Hara Composite compact component and a process for the production of the same
JPS5884188A (ja) * 1981-11-09 1983-05-20 住友電気工業株式会社 複合焼結体工具およびその製造方法
GB2123039B (en) * 1982-03-23 1985-10-23 Atomic Energy Authority Uk Coatings for cutting implements

Also Published As

Publication number Publication date
JPS61270271A (ja) 1986-11-29
EP0180243B1 (en) 1991-08-07
US4861673A (en) 1989-08-29
DE3583724D1 (de) 1991-09-12
KR920010861B1 (ko) 1992-12-19
KR860003871A (ko) 1986-06-13
EP0180243A3 (en) 1987-10-14
EP0180243A2 (en) 1986-05-07

Similar Documents

Publication Publication Date Title
JPH06669B2 (ja) サンドイッチ構造を有する高硬度焼結体複合材料
EP0418078B1 (en) Composite abrasive compacts
US7435377B2 (en) Weldable ultrahard materials and associated methods of manufacture
US8763730B2 (en) Diamond bonded construction with improved braze joint
EP0104063B1 (en) Abrasive bodies comprising boron nitride
EP0297071A1 (en) Temperature resistant abrasive polycrystalline diamond bodies
EP0168953A1 (en) Stick of composite materials and process for preparation thereof
US20180202234A1 (en) Attachment of polycrystalline diamond tables to a substrate to form a pcd cutter using reactive/exothermic process
JP2008127616A (ja) 積層超硬チップ及びその製造方法
EP0328583B1 (en) Improved coated pcd elements and products and methods
US10363624B2 (en) Active metal braze joint with stress relieving layer
JPS5916942A (ja) 工具用複合ダイヤモンド焼結体
JPS6049589B2 (ja) 工具用複合焼結体及びその製造方法
JPS629808A (ja) 複合切削チツプ
JPH0798964B2 (ja) 立方晶窒化ホウ素超硬合金複合焼結体
JPS5884187A (ja) 複合焼結体工具およびその製造方法
JPH0516004A (ja) 切削工具およびその製造方法
JPS63295482A (ja) 高硬度複合焼結体
JPS61266364A (ja) サンドイツチ構造を有する高硬度焼結体複合材料
JPS5939778A (ja) 複合焼結体工具およびその製造方法
JPS61293705A (ja) 複合切削チツプ
JP2000129387A (ja) 立方晶窒化硼素含有ロウ付け用複合材料およびその製造方法
JPS6359381B2 (ja)
JPH06297205A (ja) 高硬度焼結体被覆複合材料
TH46458A (th) เครื่องมือที่ใช้เพชรชนิดหลายผลึก