JPH0653328A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0653328A
JPH0653328A JP4201468A JP20146892A JPH0653328A JP H0653328 A JPH0653328 A JP H0653328A JP 4201468 A JP4201468 A JP 4201468A JP 20146892 A JP20146892 A JP 20146892A JP H0653328 A JPH0653328 A JP H0653328A
Authority
JP
Japan
Prior art keywords
layer
interlayer insulating
wiring
contact opening
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4201468A
Other languages
Japanese (ja)
Inventor
Yutaka Okamoto
裕 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4201468A priority Critical patent/JPH0653328A/en
Publication of JPH0653328A publication Critical patent/JPH0653328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the contact resistance of contacts, formed collectively, between wiring layers in a contact hole in a semiconductor device of multilayer interconnection. CONSTITUTION:The title semiconductor device is obtained by depositing a plurality of polycrystalline silicon wiring layers 37, 38, 39 and 42 with layer insulating films 32, 33, 34 and 35 in-between, respectively and a plurality of specified wiring layers 39, 38 and 37, exposed at the inside face of a contact hole 40, are interconnected with one another through a connecting wiring 42A. In the semiconductor device the layer instulating films 33, 34 and 35, exposed at the inside face of the contact hole 40, are recessed from the ends of the wiring layers 38 and 39. Further, the connecting wiring 42A is deposited so as to cover the side, upper and lower faces of the projected portions of the wiring layers 38 and 39 and thereby increase the surface area of contact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層の配線層を有し、
その所要の複数の配線層がコンタクト開口部にて相互接
続されてなる半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention has a multilayer wiring layer,
The present invention relates to a semiconductor device in which a plurality of required wiring layers are interconnected by contact openings, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、高集積化に伴って多層配線構造の
半導体装置が開発されている。このような半導体装置で
は、多層に形成された配線層のうち所要の複数の配線層
が一部のコンタクト開口部で相互接続される。
2. Description of the Related Art In recent years, semiconductor devices having a multi-layer wiring structure have been developed along with the high integration. In such a semiconductor device, a plurality of required wiring layers among the wiring layers formed in multiple layers are interconnected at some contact openings.

【0003】従来、多層配線の相互接続を簡素化するた
めに、各層ごとにコンタクト開口部を形成して隣り合う
層間の配線層を接続する方法に代えて、多層配線層を形
成した後、1括してコンタクト開口部を形成し、コンタ
クト開口部の内面に接続用導体膜を被着形成してコンタ
クト開口部の内面に臨む各層の配線層間を相互接続する
方法が提案されている。
Conventionally, in order to simplify interconnection of multi-layer wiring, instead of forming a contact opening portion for each layer and connecting wiring layers between adjacent layers, after forming the multi-layer wiring layer, 1 A method has been proposed in which contact openings are collectively formed and a conductive film for connection is formed on the inner surface of the contact opening to interconnect the wiring layers of the layers facing the inner surface of the contact opening.

【0004】図6〜図8は、かかる接続方法を、CMO
S型SRAM、即ち高集積化に有利な薄膜トランジスタ
を負荷P−MOSトランジスタに用いたCMOS型SR
AMに適用した例である。
FIGS. 6 to 8 show such a connection method as CMO.
S type SRAM, that is, CMOS type SR using a thin film transistor advantageous for high integration as a load P-MOS transistor
This is an example applied to AM.

【0005】先ず、図6Aに示すように、第1導電型の
半導体領域にドライバトランジスタのソース、ドレイン
となる第2導電型の拡散層2及び3、アクセストランジ
スタのソース・ドレインとなる拡散層(図示せず)、選
択酸化による素子分離のためのSiO2 層4等が形成さ
れ、この半導体領域1上にSiO2 等からなるゲート絶
縁膜5を介してドライバトランジスタ、アクセストラン
ジスタのゲート電極となる1層目の多結晶シリコン例え
ばポリサイド配線層6が形成される。
First, as shown in FIG. 6A, in the semiconductor region of the first conductivity type, the diffusion layers 2 and 3 of the second conductivity type serving as the source and drain of the driver transistor and the diffusion layers serving as the source / drain of the access transistor ( (Not shown), a SiO 2 layer 4 or the like for element isolation by selective oxidation is formed, and becomes a gate electrode of a driver transistor or an access transistor via a gate insulating film 5 made of SiO 2 or the like on this semiconductor region 1. A first layer of polycrystalline silicon, for example, a polycide wiring layer 6 is formed.

【0006】次に、図6Bに示すように、例えばSiO
2 等による層間絶縁膜8を介して薄膜トランジスタのボ
トムゲート電極となる2層目の多結晶シリコン配線層9
が形成される。次で、図7Cに示すように、例えばSi
2 等の層間絶縁膜(ゲート絶縁膜を含む)10を介し
て薄膜トランジスタの活性層、Vccラインとなる3層
目の多結晶シリコン配線層11が形成される。
Next, as shown in FIG. 6B, for example, SiO 2
The second- layer polycrystalline silicon wiring layer 9 to be the bottom gate electrode of the thin film transistor via the interlayer insulating film 8 made of 2 etc.
Is formed. Next, as shown in FIG. 7C, for example, Si
A third-layer polycrystalline silicon wiring layer 11 to be an active layer of a thin film transistor and a Vcc line is formed via an interlayer insulating film (including a gate insulating film) 10 such as O 2 .

【0007】次に、図7Dに示すように、例えばSiO
2 等よりなる上層の層間絶縁膜(ゲート絶縁膜を含む)
12を形成した後、この層間絶縁膜12から拡散層3に
接続された1層目のポリサイド配線層6に達するように
コンタクト開口部13が形成される。
Next, as shown in FIG. 7D, for example, SiO
Upper layer insulation film (including gate insulation film) consisting of 2 etc.
After forming 12, the contact opening 13 is formed so as to reach from the interlayer insulating film 12 to the first polycide wiring layer 6 connected to the diffusion layer 3.

【0008】次に、図8Eに示すように、薄膜トランジ
スタのトップゲート電極となる4層目の多結晶シリコン
配線層14が形成されると共に、之より一体に延長する
接続用配線14Aがコンタクト開口部13の内面に沿っ
て被着形成され、コンタクト開口部13の内面に臨む1
層目のポリサイド配線層6、2層目の多結晶シリコン配
線層9及び3層目の多結晶シリコン配線層11が相互接
続される。ここで、2層目及び3層目の多結晶シリコン
配線層9及び11は膜厚に対応する側面だけで接続用配
線14Aと接続される。
Next, as shown in FIG. 8E, a fourth-layer polycrystalline silicon wiring layer 14 serving as a top gate electrode of the thin film transistor is formed, and a connecting wiring 14A extending integrally is formed in the contact opening portion. 1 is formed along the inner surface of 13 and faces the inner surface of the contact opening 13.
The polycide wiring layer 6 of the second layer, the polycrystalline silicon wiring layer 9 of the second layer, and the polycrystalline silicon wiring layer 11 of the third layer are interconnected. Here, the second-layer and third-layer polycrystalline silicon wiring layers 9 and 11 are connected to the connection wiring 14A only on the side surface corresponding to the film thickness.

【0009】次いで、図8Fに示すように、例えばSi
2 等による層間絶縁膜15を介して接地ラインとなる
5層目の多結晶シリコン配線層16が形成される。17
は層間絶縁膜である。
Then, as shown in FIG. 8F, for example, Si
A fifth-layer polycrystalline silicon wiring layer 16 serving as a ground line is formed via an interlayer insulating film 15 of O 2 or the like. 17
Is an interlayer insulating film.

【0010】[0010]

【発明が解決しようとする課題】ところで、多層配線構
造の半導体装置、例えば上述のCMOS型SRAMにお
いては、そのコンタクト開口部13内で4層目の多結晶
シリコン配線14から延長する接続用配線14Aを介し
て2層目及び3層目の多結晶シリコン配線層9及び11
の相互接続を行っているが、この場合、2層目及び3層
目の多結晶シリコン配線層9及び11はその膜厚に相当
する側面のみで接続用配線14Aと接続される。従っ
て、接続用配線14Aと2層目、3層目の多結晶シリコ
ン配線層9,11との接触表面積が小さく、コンタクト
抵抗が高くなるため、薄膜トランジスタのオン電流を抑
制してしまう懼れがあった。
By the way, in a semiconductor device having a multilayer wiring structure, for example, the above-mentioned CMOS SRAM, a connection wiring 14A extending from the fourth-layer polycrystalline silicon wiring 14 in the contact opening 13 thereof. The second and third polycrystalline silicon wiring layers 9 and 11
In this case, the second-layer and third-layer polycrystalline silicon wiring layers 9 and 11 are connected to the connection wiring 14A only on the side surface corresponding to the film thickness. Therefore, since the contact surface area between the connection wiring 14A and the second and third polycrystalline silicon wiring layers 9 and 11 is small and the contact resistance is high, the on-current of the thin film transistor may be suppressed. It was

【0011】本発明は、上述の点に鑑み、接触表面積を
増し、コンタクト抵抗を低減できるように多層配線(即
ち導体)層間の相互接続を可能にした半導体装置及びそ
の製造方法を提供するものである。
In view of the above points, the present invention provides a semiconductor device capable of interconnecting multiple layers of wirings (that is, conductors) so as to increase the contact surface area and reduce the contact resistance, and a manufacturing method thereof. is there.

【0012】[0012]

【課題を解決するための手段】本発明は、層間絶縁膜3
2,33,34,35を介して積層された多層の導体層
37,38,39,42を有し、コンタクト開口部40
の内面に臨む所要の複数の導体層37,38,39が接
続用導体膜42Aにより相互接続されてなる半導体装置
において、コンタクト開口部40の内面に臨む層間絶縁
膜33,34及び35を導体層38,39より後退し、
この後退した空間41を含んで所要の複数の導体層3
7,38,39を相互接続する接続用導体膜42Aを被
着形成して構成する。
According to the present invention, an interlayer insulating film 3 is provided.
2, 33, 34, and 35, which have multilayer conductor layers 37, 38, 39, 42 that are laminated via the contact opening portion 40.
In the semiconductor device in which a plurality of required conductor layers 37, 38, 39 facing the inner surface of the contact layer 40 are interconnected by the connecting conductor film 42A, the interlayer insulating films 33, 34, 35 facing the inner surface of the contact opening 40 are formed as conductor layers. Retreat from 38, 39,
A plurality of required conductor layers 3 including the recessed space 41
A connecting conductor film 42A for interconnecting 7, 38 and 39 is adhered and formed.

【0013】また、本発明に係る半導体装置の製造方法
は、層間絶縁膜32,33,34,35を介して多層の
導体層37,38,39,42を形成する工程と、層間
絶縁膜35,34,33及び導体層38,39を通して
コンタクト開口部40を形成する工程と、コンタクト開
口部40の内面に臨む層間絶縁膜33,34,35をエ
ッチングして後退させる工程と、コンタクト開口部40
の内面に後退した空間41を含んで接続用導体膜42A
を被着形成して所要の複数の導体層37,38,39間
を接続する工程を有する。
Further, in the method of manufacturing a semiconductor device according to the present invention, the step of forming the multi-layered conductor layers 37, 38, 39, 42 via the interlayer insulating films 32, 33, 34, 35, and the interlayer insulating film 35. , 34, 33 and the conductor layers 38, 39 to form the contact opening 40, a step of etching back the interlayer insulating films 33, 34, 35 exposed to the inner surface of the contact opening 40, and the contact opening 40.
Connection conductor film 42A including the space 41 receding on the inner surface of the
And depositing and connecting the required plurality of conductor layers 37, 38, 39.

【0014】[0014]

【作用】本発明に係る半導体装置においては、コンタク
ト開口部40の内面に臨む層間絶縁膜33,34,35
を導体層38,39より後退させることにより、複数層
の各導体層38,39の端部はコンタクト開口部40内
で突出した状態になる。そして、この後退によって形成
された空間41を含んで接続用導体膜42Aを被着形成
することにより、接続用導体膜42Aは各コンタクト開
口部40の内面より突出した導体層38,39に対し
て、その側面だけでなく、上面及び下面でも接触し、接
触表面積が増加する。従って、コンタクト部におけるコ
ンタクト抵抗が低減する。
In the semiconductor device according to the present invention, the interlayer insulating films 33, 34, 35 facing the inner surface of the contact opening 40 are formed.
Is retracted from the conductor layers 38 and 39, the end portions of the conductor layers 38 and 39 of the plurality of layers are in a state of protruding in the contact opening 40. Then, by forming the connecting conductor film 42A by including the space 41 formed by this receding, the connecting conductor film 42A is formed on the conductor layers 38, 39 protruding from the inner surface of each contact opening 40. , Not only the side surface but also the upper surface and the lower surface are contacted, and the contact surface area is increased. Therefore, the contact resistance in the contact portion is reduced.

【0015】本発明に係る製造方法においては、多層の
導体層37,38、39を形成した後、1括してコンタ
クト開口部40を形成することにより、コンタクト部の
形成工程が簡素化され、且つコンタクト部の占有面積が
小さくなる。しかも、コンタクト開口部40の形成後、
エッチングによりコンタクト開口部40の内面に臨む層
間絶縁層35,34,33のみを後退させることによ
り、コンタクト開口部40の内面に臨む各導体層38,
39を一部突出させることができる。しかる後、後退で
形成された空間41を含んで接続用導体膜42Aを被着
形成することにより、接続用導体膜42Aとの接触表面
積を増した状態で各導体層37,38,39間の相互接
続ができる。
In the manufacturing method according to the present invention, after forming the multi-layered conductor layers 37, 38 and 39, the contact openings 40 are collectively formed to simplify the step of forming the contact portions. Moreover, the occupied area of the contact portion is reduced. Moreover, after the contact opening 40 is formed,
By etching back only the interlayer insulating layers 35, 34, 33 exposed to the inner surface of the contact opening 40, each conductor layer 38 exposed to the inner surface of the contact opening 40,
It is possible to partially project 39. Thereafter, by forming the connecting conductor film 42A by including the space 41 formed by the receding, the contact surface area between the connecting conductor film 42A and the connecting conductor film 42A is increased. Can be interconnected.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明に係る多層配線を有する半導
体装置、特にそのコンタクト部分の基本的構成を示す。
本例においては、半導体基板31上に層間絶縁膜32,
33,34を介して例えば多結晶シリコン等からなる3
層の導体層即ち配線層37,38,39を形成し、所定
部分に上層の層間絶縁膜35から1層目の配線層37に
至るコンタクト開口部40を形成する。このコンタクト
開口部40は異方性エッチングにて形成する。従ってコ
ンタクト開口部40は垂直段差を有するように形成され
る。
FIG. 1 shows a basic structure of a semiconductor device having multi-layer wiring according to the present invention, particularly a contact portion thereof.
In this example, the interlayer insulating film 32,
3 made of, for example, polycrystalline silicon or the like via 33, 34
The conductor layers, that is, the wiring layers 37, 38, 39 are formed, and the contact openings 40 extending from the upper interlayer insulating film 35 to the first wiring layer 37 are formed in predetermined portions. This contact opening 40 is formed by anisotropic etching. Therefore, the contact opening 40 is formed to have a vertical step.

【0018】そして、コンタクト開口部40の内面にお
いて、各層間絶縁膜33,34及び35のみを配線層3
8,39の露出した端面、所謂側面より後退させる。こ
の層間絶縁膜38,39の後退は、例えば等方性エッチ
ングで層間絶縁膜33,34及び35のみを選択的にエ
ッチング除去することによりなし得る。
Then, on the inner surface of the contact opening 40, only the interlayer insulating films 33, 34 and 35 are formed on the wiring layer 3.
The exposed end faces of 8, 39 are retracted from the so-called side faces. The receding of the interlayer insulating films 38, 39 can be achieved by selectively removing only the interlayer insulating films 33, 34, 35 by isotropic etching, for example.

【0019】次いで、コンタクト開口部40の内面に、
その層間絶縁膜33,34及び35の後退によって形成
された空間41内をも沿うように4層目の導体層即ち例
えば多結晶シリコンによる配線層42と一体に之より延
長する接続用配線42Aを被着形成して、各配線層3
7,38,39を相互接続して構成する。
Then, on the inner surface of the contact opening 40,
A connection wiring 42A is integrally formed with the fourth conductor layer, that is, the wiring layer 42 made of, for example, polycrystalline silicon, so as to extend along the space 41 formed by the receding of the interlayer insulating films 33, 34 and 35. Adhering and forming each wiring layer 3
7, 38, 39 are connected to each other.

【0020】かかる構成によれば、コンタクト開口部4
0内では接続用配線42Aが層間絶縁膜33,34及び
35の後退によって一部突出した状態の各配線層38,
39の側面、上面及び下面の3面にわたって接触するこ
とにより、前述した従来の配線層の側面のみの接触に比
して接触表面積を増加することができる。このためコン
タクト部でのコンタクト抵抗を低減することができる。
According to this structure, the contact opening 4
In FIG. 0, each wiring layer 38 in which the connection wiring 42A partially protrudes due to the receding of the interlayer insulating films 33, 34 and 35,
By making contact with the side surface, the upper surface, and the lower surface of 39, the contact surface area can be increased as compared with the case where only the side surface of the conventional wiring layer is contacted. Therefore, the contact resistance at the contact portion can be reduced.

【0021】また、コンタクト開口部40は多層の配線
層37,38,39を形成した後、1括して形成するの
で、製造工程が簡略化されると同時に、コンタクト開口
部40の占有面積が小さくなり、半導体装置の高密度化
が可能になる。
Further, since the contact opening 40 is formed in a lump after the multi-layered wiring layers 37, 38, 39 are formed, the manufacturing process is simplified and the area occupied by the contact opening 40 is reduced. The size of the semiconductor device can be reduced and the density of the semiconductor device can be increased.

【0022】図3〜図5は、上記本発明を前述のCMO
S型SRAMに適用した例を、その製法と共に示す。な
お、同図において、図6〜図8と対応する部分には同一
符号を付す。先ず、図3Aに示すように、第1導電型の
半導体領域1にドライバトランジスタのソース、ドレイ
ンとなる第2導電型の拡散層2及び3、アクセストラン
ジスタのソース、ドレインとなる拡散層(図示せず)、
選択酸化による素子分離のためのSiO2 層4等を形成
する。この半導体領域1上にSiO2 等からなるゲート
絶縁膜5を介してドライバトランジスタ、アクセストラ
ンジスタのゲート電極となる1層目の多結晶シリコン例
えばポリサイド配線層6を形成する。
3 to 5 show the above-mentioned CMO of the present invention.
An example applied to an S-type SRAM will be shown together with its manufacturing method. In the figure, the parts corresponding to those in FIGS. 6 to 8 are designated by the same reference numerals. First, as shown in FIG. 3A, in the first conductive type semiconductor region 1, the second conductive type diffusion layers 2 and 3 serving as the source and drain of the driver transistor, and the diffusion layers serving as the source and drain of the access transistor (not shown). No),
An SiO 2 layer 4 for element isolation by selective oxidation is formed. On this semiconductor region 1, a first layer of polycrystalline silicon, for example, a polycide wiring layer 6 which will be the gate electrodes of the driver transistor and the access transistor is formed via a gate insulating film 5 made of SiO 2 or the like.

【0023】次に、図3Bに示すように、例えばSiO
2 等による層間絶縁膜8を介して薄膜トランジスタのボ
トムゲート電極となる2層目の多結晶シリコン配線層9
を形成する。
Next, as shown in FIG. 3B, for example, SiO 2
The second- layer polycrystalline silicon wiring layer 9 to be the bottom gate electrode of the thin film transistor via the interlayer insulating film 8 made of 2 etc.
To form.

【0024】次に、図3Cに示すように、例えばSiO
2 等の層間絶縁膜(ゲート絶縁膜を含む)10を介して
薄膜トランジスタの活性層、Vccラインとなる3層目
の多結晶シリコン配線層11を形成する。上記図3A〜
図3Cまでの工程は前述の図6A〜図7Cまでの工程と
同様である。
Next, as shown in FIG. 3C, for example, SiO 2
An interlayer insulating film (including a gate insulating film) 10 such as 2 is formed, and an active layer of a thin film transistor, and a third-layer polycrystalline silicon wiring layer 11 to be a Vcc line are formed. FIG. 3A-
The steps up to FIG. 3C are the same as the steps up to FIG. 6A to FIG. 7C described above.

【0025】次に、図4Dに示すように、例えばSiO
2 等からなる層間絶縁膜(ゲート絶縁膜を含む)12を
形成した後、レジストマスク25を介して例えばRIE
(反応性イオンエッチング)等の異方性エッチングによ
り層間絶縁膜12から3層目及び2層目の多結晶シリコ
ン配線層11及び9を貫通して1層目のポリサイド配線
層6に達する垂直段差のコンタクト開口部40を形成す
る。
Next, as shown in FIG. 4D, for example, SiO 2
After forming an interlayer insulating film (including a gate insulating film) 12 made of 2 or the like, for example, RIE is performed through a resist mask 25.
Vertical steps reaching the first polycide wiring layer 6 from the interlayer insulating film 12 through the third and second polycrystalline silicon wiring layers 11 and 9 by anisotropic etching such as (reactive ion etching). The contact opening 40 is formed.

【0026】次に、図4Eに示すように、同じレジスト
マスク25を用いて例えばウェットエッチング、プラズ
マエッチング等による所謂等方性エッチングを行って、
コンタクト開口部40の内側面に臨む層間絶縁膜8,1
0及び12を選択的に除去する。これによって、層間絶
縁膜8,10及び12は、コンタクト開口部40に臨む
多結晶シリコン配線層9,11の端面(所謂側面)より
も内方に後退して空間41が形成される。即ち、換言す
れば多結晶シリコン配線層9,11のコンタクト開口部
40側の端部が一部層間絶縁膜8,10及び12よりも
突出した状態となる。
Next, as shown in FIG. 4E, using the same resist mask 25, so-called isotropic etching such as wet etching or plasma etching is performed.
Interlayer insulating films 8 and 1 facing the inner surface of the contact opening 40
Selectively remove 0 and 12. As a result, the interlayer insulating films 8, 10 and 12 recede inwardly from the end faces (so-called side faces) of the polycrystalline silicon wiring layers 9 and 11 facing the contact openings 40 to form a space 41. That is, in other words, the end portions of the polycrystalline silicon wiring layers 9 and 11 on the contact opening 40 side are partially projected from the interlayer insulating films 8, 10 and 12.

【0027】次に、図5Fに示すように、薄膜トランジ
スタのトップゲート電極となる4層目の多結晶シリコン
配線層14を層間絶縁膜12上に形成すると同時に、之
より一体に延長する接続用配線14Aをコンタクト開口
部40の内面に沿って被着形成し、コンタクト開口部4
0の内面に臨む各多結晶シリコン配線層11,9及びポ
リサイド配線層6と相互に接続する。
Next, as shown in FIG. 5F, a fourth-layer polycrystalline silicon wiring layer 14 serving as a top gate electrode of the thin film transistor is formed on the interlayer insulating film 12 and, at the same time, it is integrally extended. 14A is deposited along the inner surface of the contact opening 40, and the contact opening 4 is formed.
The polycrystalline silicon wiring layers 11 and 9 and the polycide wiring layer 6 facing the inner surface of 0 are mutually connected.

【0028】この場合、多結晶シリコン配線層14はC
VD(化学気相成長)法で形成されるため、層間絶縁膜
8,10,12の後退による空間41内にも入り込み、
2層目及び3層目の多結晶シリコン配線層9及び11の
側面のみならず上面及び下面にも被着形成される。
In this case, the polycrystalline silicon wiring layer 14 is C
Since it is formed by the VD (Chemical Vapor Deposition) method, it also enters the space 41 due to the receding of the interlayer insulating films 8, 10, 12.
The polycrystalline silicon wiring layers 9 and 11 of the second and third layers are deposited and formed not only on the side surfaces but also on the upper and lower surfaces.

【0029】しかる後、図5Gに示すように、例えばS
iO2 等による層間絶縁膜15を介して接地ラインとな
る5層目の多結晶シリコン配線層16を形成する。17
は層間絶縁膜である。
Then, as shown in FIG. 5G, for example, S
A fifth-layer polycrystalline silicon wiring layer 16 to be a ground line is formed via an interlayer insulating film 15 of iO 2 or the like. 17
Is an interlayer insulating film.

【0030】かかるCMOS型SRAMによれば、コン
タクト開口部13における2層目及び3層目の多結晶シ
リコン配線層9及び11に対して夫々その側面、上面及
び下面で接続用配線14Aと接続されるので、接触表面
積が増加し、コンタクト抵抗を低減することができる。
その結果、薄膜トランジスタのオン電流を適正に得るこ
とができる。
According to such a CMOS type SRAM, the second and third polycrystalline silicon wiring layers 9 and 11 in the contact opening 13 are connected to the connection wiring 14A on the side surface, the upper surface and the lower surface, respectively. Therefore, the contact surface area is increased and the contact resistance can be reduced.
As a result, the on-current of the thin film transistor can be properly obtained.

【0031】図2は本発明の他の実施例を示す。本例
は、図2Aに示すように、半導体基板31上に層間絶縁
膜32,33,34を介して例えば多結晶シリコン等か
らなる3層の配線層37,38及び39を形成し、さら
に上層に層間絶縁膜35を形成した後、レジストマスク
25を介して、例えば等方法エッチングによる選択エッ
チングによりコンタクト開口部40を形成する。
FIG. 2 shows another embodiment of the present invention. In this example, as shown in FIG. 2A, three wiring layers 37, 38 and 39 made of, for example, polycrystalline silicon are formed on a semiconductor substrate 31 with interlayer insulating films 32, 33 and 34 interposed therebetween, and further upper layers are formed. After forming the inter-layer insulating film 35, the contact opening 40 is formed through the resist mask 25 by selective etching such as isotropic etching.

【0032】このとき、層間絶縁膜33,34,35が
導体層38,39よりわずかに早くエッチングされるよ
うになエッチング条件を選び、1回のエッチング工程で
配線層39,38及び層間絶縁膜35,34,33を共
に選択エッチングする。これにより、コンタクト開口部
40の内面では、層間絶縁膜33,34,35が配線層
38,39の側面より後退するようにエッチングされ、
且つ最終的には等方性エッチングであるためにコンタク
ト開口部40の上部に行くに従って開口幅が大きくな
る。
At this time, the etching conditions are selected so that the interlayer insulating films 33, 34 and 35 are etched slightly earlier than the conductor layers 38 and 39, and the wiring layers 39 and 38 and the interlayer insulating films are formed in one etching step. Both 35, 34 and 33 are selectively etched. As a result, on the inner surface of the contact opening 40, the interlayer insulating films 33, 34 and 35 are etched so as to recede from the side surfaces of the wiring layers 38 and 39,
And finally, since the etching is isotropic, the opening width becomes larger toward the upper part of the contact opening 40.

【0033】次いで、図2Bに示すように、コンタクト
開口部40の内面に沿って4層目の多結晶シリコンによ
る配線層42と一体に之より延長する接続用配線42A
を被着形成して内面に臨む各配線層37,38及び39
を相互接続する。
Then, as shown in FIG. 2B, a connecting wiring 42A is integrally extended along the inner surface of the contact opening 40 with the wiring layer 42 of the fourth-layer polycrystalline silicon.
Wiring layers 37, 38 and 39 which are formed by deposition to face the inner surface
Interconnect each other.

【0034】かかる構成においても、コンタクト開口部
40内では各配線層38,39が層間絶縁膜35,3
4,33より突出した状態にあるので、上述と同様に接
続用配線42Aと各配線層38,39とのコンタクト抵
抗を低減することができる。しかも、本例においては、
コンタクト開口部の開口幅が上部に行くに従って大きく
なるので、接続用配線42Aの開口部40におけるカバ
レージも良好となる。
Also in this structure, the wiring layers 38 and 39 are formed in the contact openings 40 by the interlayer insulating films 35 and 3.
Since the protrusions 4 and 33 are protruded, the contact resistance between the connection wiring 42A and the wiring layers 38 and 39 can be reduced as described above. Moreover, in this example,
Since the opening width of the contact opening portion becomes larger toward the upper portion, the coverage of the connection wiring 42A in the opening portion 40 also becomes good.

【0035】[0035]

【発明の効果】本発明によれば、多層導体層を有する半
導体装置において、そのコンタクト開口部内で接触表面
積を大きくして各層の導体層間の相互接続を行うことが
でき、接触抵抗の低減化を図ることができる。
According to the present invention, in a semiconductor device having a multi-layered conductor layer, the contact surface area can be increased within the contact opening to make interconnection between the conductor layers of each layer, thereby reducing the contact resistance. Can be planned.

【0036】また製法においては多層の導体層を形成し
た際に、1括してコンタクト開口部を形成することによ
り、工程の簡略化が図られると共に、コンタクト開口部
の占有面積を小さくすることができ、半導体装置の高密
度化を促進できる。
Further, in the manufacturing method, when the multiple conductor layers are formed, the contact openings are collectively formed to simplify the process and reduce the area occupied by the contact openings. Therefore, the density of semiconductor devices can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の一例を示す要部の断
面図である。
FIG. 1 is a sectional view of an essential part showing an example of a semiconductor device according to the present invention.

【図2】本発明に係る半導体装置の他の例を示す要部の
製造工程図である。
FIG. 2 is a manufacturing process diagram of a main part showing another example of the semiconductor device according to the invention.

【図3】本発明をCMOS型SRAMに適用した場合の
製造工程図(その1)である。
FIG. 3 is a manufacturing process diagram (1) in the case where the present invention is applied to a CMOS SRAM.

【図4】本発明をCMOS型SRAMに適用した場合の
製造工程図(その2)である。
FIG. 4 is a manufacturing process diagram (2) when the present invention is applied to a CMOS SRAM.

【図5】本発明をCMOS型SRAMに適用した場合の
製造工程図(その3)である。
FIG. 5 is a manufacturing process diagram (3) when the present invention is applied to a CMOS SRAM.

【図6】従来のCMOS型SRAMの製造工程図(その
1)である。
FIG. 6 is a manufacturing process diagram (1) of a conventional CMOS SRAM.

【図7】従来のCMOS型SRAMの製造工程図(その
2)である。
FIG. 7 is a manufacturing process diagram (2) of a conventional CMOS SRAM.

【図8】従来のCMOS型SRAMの製造工程図(その
3)である。
FIG. 8 is a manufacturing process diagram (3) of the conventional CMOS SRAM.

【符号の説明】[Explanation of symbols]

31 半導体基板 32,33,34,35 層間絶縁膜 37,38,39,42 配線層 40 コンタクト開口部 41 空間 42A 接続用配線。 31 semiconductor substrate 32, 33, 34, 35 interlayer insulating film 37, 38, 39, 42 wiring layer 40 contact opening 41 space 42A connection wiring.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 層間絶縁膜を介して積層された多層の導
電層を有し、コンタクト開口部の内面に臨む所要の複数
の上記導体層が接続用導体膜により相互接続されてなる
半導体装置において、 上記コンタクト開口部の内面に臨む上記層間絶縁膜が上
記導体層より後退し、該後退した空間を含んで上記所要
の複数の導体層を相互接続する上記接続用導体膜が被着
形成されて成る半導体装置。
1. A semiconductor device having a plurality of conductive layers laminated via an interlayer insulating film, wherein a plurality of required conductor layers facing an inner surface of a contact opening are interconnected by a connecting conductor film. The interlayer insulating film facing the inner surface of the contact opening recedes from the conductor layer, and the connecting conductor film interconnecting the required plurality of conductor layers including the recessed space is deposited and formed. Comprising semiconductor device.
【請求項2】 層間絶縁膜を介して多層の導体層を形成
する工程と、上記層間絶縁膜及び上記導体層を通してコ
ンタクト開口部を形成する工程と、上記コンタクト開口
部の内面に臨む上記層間絶縁膜をエッチングして後退さ
せる工程と、上記コンタクト開口部の内面に上記後退し
た空間を含んで接続用導体膜を被着形成して上記所要の
複数の導体層間を相互接続する工程を有することを特徴
とする半導体装置の製造方法。
2. A step of forming a multi-layer conductor layer via an interlayer insulating film, a step of forming a contact opening through the interlayer insulating film and the conductor layer, and the interlayer insulating facing the inner surface of the contact opening. Etching the film to make it recede, and depositing a connecting conductor film on the inner surface of the contact opening including the receding space to interconnect the required conductor layers. A method for manufacturing a characteristic semiconductor device.
JP4201468A 1992-07-28 1992-07-28 Semiconductor device Pending JPH0653328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4201468A JPH0653328A (en) 1992-07-28 1992-07-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4201468A JPH0653328A (en) 1992-07-28 1992-07-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0653328A true JPH0653328A (en) 1994-02-25

Family

ID=16441589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4201468A Pending JPH0653328A (en) 1992-07-28 1992-07-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0653328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943598A (en) * 1995-10-19 1999-08-24 Stmicroelectronics, Inc. Integrated circuit with planarized dielectric layer between successive polysilicon layers
JP2005203777A (en) * 2004-01-12 2005-07-28 Samsung Electronics Co Ltd Semiconductor integrated circuit for adopting laminated node-contact structure and laminated thin-film transistor, and manufacturing method thereof
JP2011253898A (en) * 2010-06-01 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943598A (en) * 1995-10-19 1999-08-24 Stmicroelectronics, Inc. Integrated circuit with planarized dielectric layer between successive polysilicon layers
JP2005203777A (en) * 2004-01-12 2005-07-28 Samsung Electronics Co Ltd Semiconductor integrated circuit for adopting laminated node-contact structure and laminated thin-film transistor, and manufacturing method thereof
JP2011253898A (en) * 2010-06-01 2011-12-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5780333A (en) Method of fabricating an analog semiconductor device having a salicide layer
JPH10223762A (en) Semiconductor device and its manufacture
JP3700460B2 (en) Semiconductor device and manufacturing method thereof
JPH08288473A (en) Semiconductor memory and its manufacture
JP3200974B2 (en) Method for manufacturing semiconductor memory device
JPH0653328A (en) Semiconductor device
JP3463961B2 (en) Semiconductor device
JP2809131B2 (en) Method for manufacturing semiconductor device
JPH1074838A (en) Multilayer interconnection semiconductor device and manufacture thereof
JP2616706B2 (en) Semiconductor device and manufacturing method thereof
JPH1070198A (en) Semiconductor device
JP2671466B2 (en) Semiconductor device and manufacturing method thereof
JPH11186386A (en) Semiconductor device and manufacture thereof
JPH067576B2 (en) Method of manufacturing semiconductor device having multilayer wiring structure
JPH09116123A (en) Ferroelectric nonvolatile semiconductor storage device
JPH10326896A (en) Semiconductor device and manufacture thereof
JP2000182989A (en) Semiconductor device
JP2956234B2 (en) Semiconductor memory device and manufacturing method thereof
JP2950620B2 (en) Semiconductor device
JPH0653441A (en) Cell structure and sram memory cell structure having thin film transistor and formation thereof
JP2001102541A (en) Semiconductor memory and manufacturing method therefor
JP3374837B2 (en) Manufacturing method of stacked capacitor type DRAM
KR100358164B1 (en) Method for forming ferroelectric memory device
JPH09172078A (en) Wiring structure of semiconductor device and its forming method
JPH0936222A (en) Semiconductor device and its manufacture