JPH06502247A - 試験サンプルの特性または組成あるいはその両方を推定する方法 - Google Patents
試験サンプルの特性または組成あるいはその両方を推定する方法Info
- Publication number
- JPH06502247A JPH06502247A JP3518377A JP51837791A JPH06502247A JP H06502247 A JPH06502247 A JP H06502247A JP 3518377 A JP3518377 A JP 3518377A JP 51837791 A JP51837791 A JP 51837791A JP H06502247 A JPH06502247 A JP H06502247A
- Authority
- JP
- Japan
- Prior art keywords
- spectrum
- sample
- data
- calibration
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 176
- 239000000203 mixture Substances 0.000 title claims description 88
- 238000012360 testing method Methods 0.000 title claims description 83
- 238000001228 spectrum Methods 0.000 claims description 243
- 238000005259 measurement Methods 0.000 claims description 93
- 230000003595 spectral effect Effects 0.000 claims description 71
- 230000008569 process Effects 0.000 claims description 60
- 239000013598 vector Substances 0.000 claims description 45
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 12
- 239000001569 carbon dioxide Substances 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 5
- 238000013213 extrapolation Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 claims 1
- 239000011159 matrix material Substances 0.000 description 112
- 238000012937 correction Methods 0.000 description 58
- 238000004458 analytical method Methods 0.000 description 48
- 238000010521 absorption reaction Methods 0.000 description 20
- 230000009102 absorption Effects 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 18
- 238000000354 decomposition reaction Methods 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 230000000875 corresponding effect Effects 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 16
- 238000012628 principal component regression Methods 0.000 description 13
- 238000000862 absorption spectrum Methods 0.000 description 12
- 238000000513 principal component analysis Methods 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 10
- 238000000528 statistical test Methods 0.000 description 10
- 230000002596 correlated effect Effects 0.000 description 9
- 238000010183 spectrum analysis Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000000605 extraction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000007705 chemical test Methods 0.000 description 6
- 238000012821 model calculation Methods 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 238000003745 diagnosis Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000011112 process operation Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 238000013480 data collection Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000004847 absorption spectroscopy Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002329 infrared spectrum Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 235000006810 Caesalpinia ciliata Nutrition 0.000 description 1
- 241000059739 Caesalpinia ciliata Species 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- LFVLUOAHQIVABZ-UHFFFAOYSA-N Iodofenphos Chemical compound COP(=S)(OC)OC1=CC(Cl)=C(I)C=C1Cl LFVLUOAHQIVABZ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 206010042618 Surgical procedure repeated Diseases 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000009838 combustion analysis Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- RJMUSRYZPJIFPJ-UHFFFAOYSA-N niclosamide Chemical compound OC1=CC=C(Cl)C=C1C(=O)NC1=CC=C([N+]([O-])=O)C=C1Cl RJMUSRYZPJIFPJ-UHFFFAOYSA-N 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000004867 photoacoustic spectroscopy Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
- G01R35/005—Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/22—Fuels; Explosives
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。
Description
試験サンプルの特性または組成あるいはその両方を推定する方法発明の分野
本発明は、サンプルの未知の特性または組成データ(“パラメータ”としても引
用される)あるいはその両方を推定する方法に関する。特性と組成データの例と
して、化学組成測定(例えば、ベンゼン、トルエン、キシレンのような個々の化
学成分の濃度、または、例えば、パラフィンのようなりラスの化合物の濃度のよ
うに)、物理的特性測定(強度、屈折率、硬度、粘性、引火点、流動点、蒸気圧
のように)、性能特性測定(オクタン価、セタン価、燃焼性のように)、および
知覚(臭い/臭気、色)がある。
発明の背景
物質ノ赤外線(12500−400ctn−’ )スペクトルには、構成分子の
分子振動に起因する吸収特性かある。吸収は、基本成分(4000−400cm
−’の中間赤外線領域で発生する単一量子転移)と結合バンドおよびオーバート
ーン(12500−4000cm−’の中間および近赤外線領域で発生する多重
量子転移)との両方から生じる。これらの吸収の位置(周波数または波長)は試
料に存在する分子構造のタイプに関する情報を含んでいて、なおかつ、吸収の強
度は存在する分子タイプの量に関する情報を含んでいる。成分または特性の何れ
かを識別し定量化する目的のためにスペクトルの情報を使用するためには、推定
される成分または特性と吸光との間の関係を設定するために、較正か実施される
ことか必要である。個々の構成要素の吸収の間でかなりの重複が発生するような
複合混合物の場合、そのような較正は、多変量データ解析方法を用いて行われな
ければならない。
複合混合物の場合、各々構成要素は、異なる振動運動に対応する複数の吸収特性
を一般的に示す。これらの吸収の強度は、構成要素の濃度か変わるにつれて、全
て互いに直線状に変わる。該特徴は、周波数(または波長)範囲で相関的に関係
づけられる強度をもつと言われている。この相関関係は、これらの吸収が、該相
関関係を示さないランダム・スペクトル測定ノイズから数学的に消去されること
を可能にする。相関的に関係づけられた吸光信号をスペクトル。
ノイズから分離する線形代数演算が、主要成分回帰(PCR)と部分最小自乗(
PLS)のようなテクニックの基本を形成する。技術上周知のことであるように
、PCRは、回帰分析の前に行われる、基本的な主要成分組成分析(PCA)の
分析演算手順である。引例は、多重線形回帰(MLR)、PCR,PLSを紹介
するために、分析化学、Vol、59、No、 171987年9月1日号の1
007〜1017頁の“多変量較正と分析の紹介”に向けられている。
PCRとPLSは、要素的および化学的組成、なおかつ、それらの中間または近
赤外線スペクトルに基づく固体と液体の成る程度の物理的または熱力学的特性を
推定するために用いられてきた。これらの方法は、(1)代表的なサンプルのセ
ットの中間または近赤外線スペクトルの収集、(2)主要成分または潜在変数(
例えば前述の相関関係が示された吸光信号)を抽出するスペクトル・データの演
算処理、(3)多変量モデルを構築するための組成または特性あるいはその両方
のデータに対するこれらのスペクトル変数の回帰、を包合する。新しいサンプル
の分析は、そこで、それらのスペクトルの収集、スペクトル変数に換算したスペ
クトルの分解、組成/特性を解明する回帰式の適用を包合する。
サンプルの成分を試験に供することか、予測モデルを構築するために用いられる
較正サンプルに包合されており、そこで、モデルから入手可能な予測の固有精度
の限界範囲内で、試験サンプルの特性または組成あるいはその両方のデータの正
確な推定か、その測定されたスペクトルから入手される。しかし、試験サンプル
の成分の1つまたは複数か、モデルか基づいている較正サンプルに含まれていな
い場合、特性または組成あるいはその両方のデータの予測は、予測モデルが較正
データの一部かその試験サンプルにふされしくない試験サンプルに“最適状態の
′較正データを生成するので、不正確になる。本発明は、この問題を解明して克
服しようとするものである。
発明の要約
本発明の方法は、試験サンプルの特性または組成あるいはその両方のデータを推
定するためにある。特に実際の重要なアプリケーションは、分離された相または
エマルジョン形態であるかどうかにかかわらず、炭化水素試験サンプルの分析で
あるかまたは炭化水素/水混合物の炭化水素成分を確認するためのものである。
発明の方法は数多くのステップを包合している。第1に、スペクトル測定か試験
サンプルに対して実施される。次に、試験サンプルの特性または組成あるいはそ
の両方のデータは、較正サンプル・スペクトルと、これらの較正サンプルの既知
の特性または組成あるいはその両方のデータの相関関係を表す予測モデルに基づ
いて、その測定されたスペクトルから推定されることかできる。本方法の場合、
測定されたスペクトルがモデルの較正サンプル・スペクトルの範囲に入っている
かどうかについて、予測モデルに対して測定されたスペクトルのチェックに基づ
いて決定される。チェックの結果か否定的の場合、応答か、それに伴って生成さ
れる。
二のようにして、チェックの結果か肯定的になる(すなわち、測定されたスペク
トルが予測モデルに含まれているサンプルに依って含まれる化学組成を示してい
る)場合に、分析を実施する人は、対応する特性または組成あるいはその両方の
予測が正確になると思われる(もちろん、予測モデルの固有精度の限界内で)こ
とに満足することかできる。しかし、それでも、試験の全てをバスする各試験サ
ンプルに対して行われる予測の信頼性レベルを高めるために、試験中のサンプル
のチェックの有効性を最適化するように更なる試験か行われる。発明を実施する
この好ましい方式は、次に更に詳細にわたって説明される。同様に、チェックの
結果が否定的になる場合に、分析者は、対応する予測はいずれも信頼性のない結
果を与える可能性があることを知る。
チェックの否定的な結果に対する応答は、数多くの形態のなかの1つをとること
ができる。例えば、警告または警報をオペレーターに与えることか単純になると
思われる。特性または組成あるいはその両方のデータの予測は、警告または警報
が生成される時でも行われることかできるが、警告または警報は、予測が信頼性
のないものになる可能性かあることを分析者に示す。好ましくは、チェックの結
果が否定的にある(すなわち、測定されたスペクトルがモデルの較正サンプル・
スペクトルの範囲に入らない)ような試験サンプルはいずれも、物理的に隔離さ
れる。そこで、それは、その特性または組成あるいはその両方の独自の分析のた
めに実験室に送られることかできる(初期モデルのために特性または組成あるい
はその両方のデータを生成する際に用いられる標準的な分析テクニックに依って
決定される)。好都合に、このように別々に決定されたデータが、対応する測定
されたスペクトル・データと共に、モデル・データベースに入力されることを可
能にするように、モデルが適応されているので、モデルは、モデルの予測容量を
拡大するために、この追加データで更新される。このようにして、モデルは、高
信頼性の予測を実施できないような試験サンプルを識別することから“学習“す
るので、初期サンプルの化学試験片を含有する類似のサンプルか試験される(そ
して、それが含有している任意の他の化学試験片かそのモデルの他の較正サンプ
ルのものに対応していると想定する)次の時に、その類似サンプルの特性または
組成あるいはその両方のデータの高信頼性の予測が行われることとなる。
較正サンプルのスペクトルとそれらの既知の特性または組成あるいはその両方の
データの間の相511!55r係を決定するために、予測モデルの種々の形態が
可能である。従って、予測モデルは、較正サンプル・スペクトルの主要成分分析
または部分最小自乗分析に基づくことができる。任意の固在ベクトルに基礎をお
いた、前述の予測モデルにおいては、試験サンプルの測定されたスペクトルかそ
のモデルに較正サンプル・スペクトルの範囲に入っているかどうかか、次に示す
ようにして決定されることができる。試験サンプルの模擬化されたスペクトルは
、モデル固存スペクトルの各々との測定された試験スペクトルのドツト(スカラ
ー)積から測定された試験スペクトルの係数を誘導し、且つ、対応する係数に依
って倍増されるモデル開存スペクトルを互いに加えることに依って、決定される
。そこで、測定されたスペクトルがモデルの較正サンプル・スペクトルの範囲に
入っているかどうかについての推定として、このようにしてめられた模擬化され
たスペクトルと測定されたスペクトルとの間で比較か行われる。この比較は、発
明を実施する好ましい方式に基づけば、模擬化されたスペクトルと測定されたス
ペクトル間の違いとして残留スペクトルを決定し、離散周波数の残留スペクトル
の大きさの平方を合計してユークリッド基準(Euclidean norm)
を計算し、このEuclidean normの大きさを評価することに依って
、行われることかできる。予め選ばれたスレノンヨルド距離を基準にしてめられ
た大きい値は、試験サンプルの要求されたデータ予測が正確に行われないことを
示しているが、そのスレッショルドより低いEuclideannormは正確
な予測が行われることかできることを示している。
前述の発明を実施する好ましい方式は、統計的前動性チェックを予測モデルに対
して採用している。しかし、統計的チェックの代替として、ルールに基いたチェ
ックが行われることができる。ルールに基いたチェックの例は、パターン認識技
術またはコンピュータで計算されるスペクトル・ライブラリーのスペクトルとの
比較あるいはその両方である。
較正サンプル・スペクトルは、測定プロセスそのものに起因する、例えばベース
ライン変動またはサンプル外の妨害あるいはその両方に起因する(水蒸気または
二酸化炭素に起因するような)スペクトル・データを含むことができる。この測
定プロセス・スペクトル・データは、測定プロセス・データをモデル化する1つ
または複数のスペクトルに較正サンプル・スペクトルを直交化(orthogo
nal 1ze)させることに依って、予測モデルを形成する前に、較正サンプ
ル・スペクトルから除去されることができる。これは、ヘッディング“条件付き
主要スペクトル分析(CPSA)”のもとて以下にここで更に詳細にわたって説
明される。
試験サンプルが前述の可動性チェックをパスしていても、更なるチェックか希望
される場合があるかも知れない。例えば、可動性チェックにパスしているが、特
性または組成あるいはその両方のデータ予測か、予測モデルを構築するために用
いられる較正サンプルに依ってカバーされるデータの範囲からの外挿になる場合
があるがも知れない。そこで、Mahalanobis距離の長さが分析者に依
って選択された適切に予め設定された値より短い場合、Maha 1anob
i S距離は、測定されたスペクトルとこの更なる試験から“認められた”試験
サンプルに対して決定されることが望まれる請求められたMahalanobi
s距離か適切に予め設定された値を越えている場合、否定的なチェックに対して
前述されたと同様な応答か始動される。
別の統計的チェックは、試験サンプルか予測モデルの較正サンプルの数が散在す
る領域に位置しているかどうかを、確認することである。このチェックは、各々
試験サンプル/較正サンプルのベアに対して誘導されるEuclidean n
ormを計算し、なおかっ、超えた場合に、サンプルかこの更なる統計的チェッ
クをパスできなかったことを示すスレッショルド値と計算されたEuclide
an normを比較することに依って、行われることかできる。どちらかのケ
ースで、否定的チェックの場合について前述されたと類似の応答が始動される。
ここに開示される方法は、炭化水素試験サンプルの特性または組成あるいはその
両方のデータのオンライン推定に特に適している。
丁度いい具合に且つ都合よく、前述のステップの全て或いはほとんとか、オペレ
ーターとの対話を最小限にしか必要としない或いは全く必要としない、1つまた
は複数のコンピュータのコンピュータ・システムに依って実施される。
予測は主要成分組成分析に基づくことができて、なおかっ、測定プロセス・デー
タそのものに起因する較正サンプル・スペクトルのスペクトル・データが直交化
手順に依って除去されることができることも、注目された。主要成分組成分析と
前記の直交化手順の組み合わせは、条件付き主要スペクトル分析としてここで引
用され、“CPSA”と短縮して引用される。本発明は、予測モデルが未知の特
性または組成あるいはその両方のデータの推定を与えるために入手されることが
できる任意の数値分析テクニック(PCR,PLS 、またはMLRのような)
を採用することかできる。選択された数値分析テクニックかCPSAであること
が望まれる。CPSAは、本件と同じ日、すなわち1990年10月15日に提
出された、James M、 Brownの今の膿受入同時係属U、 S、特許
出願597,910で詳細にわたって説明されていて、なおかつ、ケース・リフ
ァレンスC−2527で、その内容がリファレンスに依ってここに明確に包合さ
れている。このJames M、 Brownの特許出願の関連開示か次に説明
される。
別の特色において、本発明は、炭化水素試験サンプルの特性または組成あるいは
その両方のデータを推定する装置を提供する。本装置は、試験サンプルのスペク
トル測定を実施するスペクトルメータ手段と、コンピュータ手段も具備している
。コンピュータ手段は3つの主な目的のために機能する。第1に、試験サンプル
の特性または組成あるいはその両方のデータを、較正サンプル・スペクトルとこ
れらの較正サンプルの既知の特性または組成あるいはその両方のデータの相関関
係を設定する予測モデルに基づいて、その測定されたそのスペクトルから推定す
るためにある。第2に、予測モデルに対して測定されたスペクトルのチェック(
前述のように)に基づいて、測定されたスペクトルかモデルの較正サンプル・ス
ペクトルの範囲に入っているかどうかについて決定するためにある。コンピュー
タ手段の第3の機能は、チェックの結果が否定的になる場合に応答(その特質は
本発明の方法を引用して詳細にわたって前述のように説明されている)を生成す
るためにある。
コンピュータ手段は、一般的に構成されており、較正サンプル・スペクトル・デ
ータの全て且つそのデータベースの較正サンプルの既知の特性または組成あるい
はその両方のデータの全てに基づいて、予測モデルを決定する。コンピュータ手
段は、そこでの記憶のためにそのデータベースに入力される更なる該データに応
答するように更に構成されることもでき、そこでは、予測モデルは更なる該デー
タに基づいて更新される。入力された特性または組成あるいはその両方のデータ
は、実験室分析のような別の方法に依って誘導される。
本発明の方法と装置の好ましい実施態様である、条件付き主要スペクトル分析(
Constrained Pr1ncipal 5pectra Analys
is、CPSA)が、ここで詳細にわたって説明される。
条件付き主要スペクトル分析(CPSA)CPSAでは、較正サンプルの数(n
)のスペクトル・データは、測定プロセスそのものから(むしろサンプル成分よ
りも)生じるデータの影響に対して補正される。n個の較正サンプルのスペクト
ル・データは、較正データの(次元fxnの)マトリクスXを生成するためにf
の離散周波数において定量化される。本方法の第1のステップは、離散周波数f
でmのデジタル化された補正スペクトルからなる次元fxmの補正マトリクスU
、を生成することを含んでいて、補正スペクトルは測定プロセスそのものから生
じるデータをシミュレーションする。他のステップは、そのスペクトルがU、の
スペクトルの全てと直交する補正されたスペクトル・マトリクスXeを生成する
ためにU、に関してXと直交することを含んでいる。この直交化のために、マト
リクスXcのスペクトルは、測定プロセスそのものから生じるスペクトルから統
計的に独立している。(通常のケースのように)サンプルがn個のサンプルとそ
れらの測定されたスペクトルの既知の特性または組成あるいはその両方のデータ
の相関関係を設定する予測モデルを構築するために用いられる較正サンプルなの
で、モデルがその測定されたスペクトルから検討中のサンプルの未知の特性また
は組成あるいはその両方のデータを推定するために用いられることかできる場合
、推定された特性または組成あるいはその両方のデータは測定プロセスそのもの
に依って影響されない。
特に、例えばスペクトルメーターの雰囲気の水蒸気または二酸化炭素蒸気に起因
するベースライン変動もスペクトルも、いかなるエラーをも推定に導入しない。
スペクトルか吸収スペクトルになることがてきて、なおかつ、次に説明される好
ましい実施態様が全て吸収スペクトルの測定を含んでいることも注目される。し
かし、これは、ここで開示される方法は反射スペクトルと散乱スペクトル(ラマ
ン散乱のような)のような他のタイプのスペクトルに適用されることができるの
で、代表的なものと考慮され、なおかつ、付記される請求項に依って定義される
発明の範囲を制限しない。ここに与えられている説明はNIR(近赤外線)とM
IR(中間赤外線)に関しているが、それにもかかわらず、方法は、例えば、紫
外線、可視性分光学、核磁気共鳴(NMR)分光学を含めた他のスペクトル測定
波長範囲に適していることが理解される。
一般的に、測定プロセスそのものから生じるデータは2つの影響ニ起因スる。第
1に、スペクトルのベースライン変動に起因する。
ベースライン変動は、測定中の光源温度変動、セル・ウィンドウからの反射、散
乱または吸光、および検出器の温度(従って感度)の変動のように、数多くの原
因から生じる。これらのベースライン変動は、幅広い(広い周波数範囲にわたっ
て相関関係のある)スペクトル特徴を一般的に示す。第2のタイプの測定プロセ
ス信号は、測定プロセスに現れるサンプル外の化学合成物に起因し、これはより
鋭いラインの特徴をスペクトルに与える。当面のアプリケーションの場合、この
タイプの補正は、スペクトルメータの雰囲気の水蒸気または二酸化炭素あるいは
その両方に起因する吸収を一般的に含んでいる。光ファイバーの水酸基に起因す
る吸収もこの形態で処理されると思われる。サンプルに存在する汚染物質の補正
も行われることができるが、一般的に汚染物質の濃度がサンプル成分の濃度を大
幅に薄めない低い濃度であり、なおかつ、汚染物質とサンプル成分間の有意な相
互作用が存在しないケースだけである。これらの補正はサンプルの成分に起因し
ない信号のためであることを認識することか重要である。この申請書に於いて、
“サンプノビは、特性または成分濃度あるいはその両方の測定かモデル開発のデ
ータを与えるために実施される材料を意味している。“汚染物質“は、特性/成
分測定の後、しかしスペクトル測定の前または途中に、サンプルに物理的に加え
られる任意の材料を意味する。
本補正方法はベースライン変動の影響に対してだけ補正するために適用されるこ
とかできて、そのケースに於いて、これらの変動は、好ましくは、mは多項式の
次数であり且つU、の列はlegendre多項式のような好都合の直交多項式
となる次元fxmのマトリクスU、を形成するところの直交、周波数(または波
長)従属多項式のセットに従って、モデル化されることかできる。代わりに、そ
の補正方法は、(例えば、水蒸気または二酸化炭素あるいはその両方の雰囲気に
於ける存在に起因する)サンプル外化学合成物の影響に対してだけ適用されるこ
とができる。このケースに於いて、U、の列を形成するスペクトルは、該化学合
成物に依って生成されるスペクトル干渉を代表する好都合な直交ベクトルになる
。しかし、ベースライン変動とサンプル外化学合成物の両方は、各々、次元fx
pのU、とX8の2つの補正マトリクスを形成するために、説明された方式でモ
デル化される。これらのマトリクスは、そこで、シングル・マトリクスU、に結
合され、その列は、並行して構成されているU、とX、の列になる。
発明を実施する好ましい方式では、補正マトリクスU、に関して直交されるスペ
クトル・データのマトリクスXのほかに、U、のスペクトルまたは列は全て相互
に直交する。相互に直交するスペクトルまたは列を有するマトリクスU、の積は
、ベースライン変動のコンピュータ生成シミュレーションであり且つマトリクス
U、を形成する、直交周波数(または波長)従属多項式のセットに依ってベース
ライン変動を最初にモデル化して達成されることができて、なおかつ次に、少な
くとも1つ、および通常は複数の、計器上で収集される実際のスペクトルである
サンプル外化学合成物(例えば二酸化炭素と水蒸気)のスペクトルか、マトリク
スX、を形成するために送られる。次に、X、の列は新しいマトリクスX、′を
形成するためにU、に関して直交される。これは、ベースラインの影響をサンプ
ル外化学合成物補正から除去する。そこでX、′の列は新しいマトリクスU、を
形成するために互いに直交され、最終的にU、とU。
は補正マトリクスU、を形成するために結合され、その列は並行して構成される
U、とU、の列になる。最初にX8の列がベクトルの新しいマトリクスを形成す
るために直交され、次にマトリクスU。
を形成する(相互に直交する)多項式かこれらのベクトルに関して直交され且つ
補正マトリクスU、を形成するためにそれらと結合されるようにして、ステップ
の順序を変更することができる。しかし、これは、それは、最初の位置で直交す
る、多項式を生成する長所を解消することになるので、それほど好ましくない、
なおかつ、それは、サンプル外化学合成物に起因するスペクトル変動とベースラ
イン変動も混合し、計器性能の診断機能として、それらを役立たないものにして
しまう。
実際の状態では、マトリクスXのサンプル・スペクトル・データは、測定プロセ
スそのものに起因するスペクトル・データだけでなく、ノイズに起因するデータ
も含んでいる。従って、マトリクスX(次元fxn)か補正マトリクスU、(次
元fxm)に関して直交されると、最終的に補正されるスペクトル・マトリクス
X、は依然としてノイズ・データを含んでいることになる。これは次に示す方式
で除去されることができる。まず、単一値分解かXc=UΣV′の形態でマトリ
クスXc上で実施される、ここで、Uは次元fx口のマトリクスであり且つ主要
成分スペクトルを列として含んでいて、Σは次元nxnの対角線マトリクスであ
り且つ単一値を含んでいて、■は次元nxnのマトリクスであり、成分要素スコ
アを含んでいて、V“はVの転置マトリクスである。一般的に、初期のn個のサ
ンプルのスペクトル測定のノイズに対応する主要成分は、要望されたスペクトル
・データに起因するものに関して大きさか小さい単一値をもつことになるので、
実際のサンプル成分に起因する主要成分と区別されることができる。そこで、方
法の次のステップは、各々、次元fxk、 kxk。
nxkの新しいマトリクスU′、Σ′、V′を形成するために、ノイズに対応す
るn個の主要成分を経由してに+IをU、Σ、■から除去することに関係する。
これらのマトリクスか互いに乗算される時に、始めに補正されたスペクトル・マ
トリクスXeに対応する、最終的なマトリクスは、ノイズに起因するスペクトル
・データがなくなる。
主要成分の数(k)の選択をモデルに保持するために、文献に提案されていた種
々の統計的試験が用いられると思われるが、次に示すステップが最良の結果を与
えると考えられた。一般的に、スペクトル・ノイズ・レベルは計器の経験から知
られている。固有スペクトルの目視検査(単一値分解から生じるマトリクスUの
列)から、訓練を受けた分光者は、固有スペクトルの信号レベルがノイズ・レベ
ルに相応する時を一般的に認識できる。固有スペクトルの目視検査に依って、項
のおよその数kか、保持するために選ばれることができる。モデルは、そこで、
例えば、それらのに−2,に−1,k。
k+I、に+2項で構築されることができて、なおかっ、標準誤差とPRESS
(平方の予測見逃し誤差合計、Predictive Re5idual Er
rorSum of 5quares)値が検査される。モデルの所望の精度を
得るために必要とされる項の最も小さい数または最小PRESS値を与える項の
数か次に選択される。この選択は、分光者に依って行われ、なおかつ、自動化さ
れない。平方の予測見逃し誤差合計は、較正に用いられなかったけれども、特性
または組成あるいはその両方の濃度の真の値か知られている、サンプルの試験セ
ットの特性または成分あるいはその両方の値の推定のために予測モデルを適用す
ることに依ってめられる。推定された値と真の値の違いが、平行され、なおかつ
、試験セットのサンプルの全てに対して合計される(平方の合計の商の平方根と
試験サンプルの数は、PRESS値をサンプルごとの基準で表すために時々計算
される)。PRESS値は、1つまたは複数の較正サンプルが較正中にデータ・
マトリクスから取り除かれる相互確認手順を用いて計算され、且つ、最終モデル
で分析されることかできて、なおかつ、手順は各々サンプルが1回取り除かれる
まで繰り返される。
バックグラウンド変動をモデル化するために用いられる多項式は、単純に1つの
タイプの補正スペクトルである。多項式とサンプル外化学合成物をモデル化する
他の“補正スペクトル”との違いが2倍にされる。まず、多項式は、バックグラ
ウンドのコンピュータ生成シミュレーションに好都合になり(これは不可欠なも
のでなく且つそれらは代わりに単純な数学的表現またはバックグラウンド変動の
実際のスペクトルにもなると考えられるが)且つ直交するためにコンピュータに
依って生成されることができる。多項式は、それらがコンピュータの計算時間を
節約するので、補正方法の実際の実施に用いられるLegendre多項式にな
る場合がある。Legendre多項式を生成する周知の再帰アルゴリズムがあ
る(例えば、G、 Arfken、[物理学者のための数学的手法J Acad
emic Press、 New York、 N、Y、、 +971゜第12
章を参照)。一般的に、U、マトリクスの各々の列はスペクトルに与えられてい
る周波数(または波長)に対応している。U、マトリクスの列はこの周波数に相
応して関係づけられている。第1列の要素は定数になり、第2列の要素は周波数
に直線的に依存し、第3列の要素は周波数の平方に依存し、以降の列も同様であ
る。正確な関係は、列が直交する場合、それより少し更に複雑になる。Lege
−ndre多項式は直交するように生成されるので、それらを直交させるために
、単一値分解またはGram−Schmidt直交に影響を及はす必要はない。
代わりに、適切な多項式の項の任意のセットが用いられると思われ、それらは単
一値分解またはGram−Schmidt直交を用いて直交される。代わりに、
バックグラウンド変動をシミュレーションするために計器に収集される実際のス
ペクトルか用いられ且つこれらの手順の1つから直交されることができる。他の
“補正スペクトル”は、通常、サンプル外化学合成物、例えば、水蒸気のスペク
トル、二酸化炭素蒸気のスペクトル、または計器の光ファイバーのスペクトルに
起因する干渉をシミュレーションするために、計器に収集される実際のスペクト
ルである。コンピュータ生成スペクトルは、水蒸気、二酸化炭素などのスペクト
ルがシミュレーションされることができる場合、ここで用いられると思われる。
補正方法の実施に関する他の違いは、これらの“補正スペクトル′がもともと直
交していないことなので、それらか手順の一部として直交されることが望まれる
。多項式とサンプル外化学合成物“補正スペクトル“は、1つのマトリクスに結
合され、なおかつ、補正ベクトルを生成する1つのステップで直交されると思わ
れる。しかし、実際には、これは、結果がサンプル外化学合成物″補正スペクト
ノビに関して多項式のスケーリングに敏感になると忠われるので、最良の手順で
ない。サンプル外化学合成物“補正スペクトル”が収集されるスペクトルの場合
、それらは成るノイズを含んでいる。多項式のスケーリングが余りにも小さい場
合、補正マトリクスU、の総変動に対するこれらの“補正スベクトノじのノイズ
の関与は多項式のものより大きくなり、なおかつ、ノイズ・ベクトルはサンプル
外化学合成物補正ベクトルに含まれた状態で終了すると思われる。これを避ける
ために、好ましくは、多項式か最初に生成され、サンプル外化学合成物“補正ス
ベクトノじが多項式と直交され、次に補正ベクトルが直交された“補正スペクト
ル”の上で単一値分離(次に説明される)を実施することに依って生成される。
前述のように、測定プロセス・スペクトル・データのために補正を実施する好ま
しい方式は、まずバックグラウンド変動をモデル化する多項式の直交セットを生
成し、次にサンプル外化学合成物(例えば二酸化炭素または水蒸気あるいはその
両方)に起因する任意の“補正スペクトル”をこのセットと直交させて“補正ス
ペクトノビのセットを生成し、最後に単一値分離を眉いてそれらのなかで最終的
な“補正スペクトノビを直交化する。“補正スペクトル“の複数の例、例えば水
蒸気の幾つかのスペクトルが用いられる場合、“補正ベクトル″の最終的な数は
、初期の“補正スペクトル”の数より減少する。推定されたものは測定ノイズに
対応している。基本的に、主要成分分析(PCA)は、ランダム測定ノイズから
モデル化される実際の測定プロセス・データを分離するために直交される“補正
スペクトル“の上で実施される。
補正マトリクスU、の列は、データ・マトリクスXの列か補正マトリクスU、の
列と直交されている限り、補正方法を使用するために相互に直交しないことか注
目される。しかし、U、マトリクスを生成して直交する列をもつだめのステップ
は、補正マトリクスU。
に関してサンプルのスペクトル・データXの直交化に要求される計算を単純にし
、なおかつ、測定プロセスを監視するために用いられることかできる統計的に非
従属性の補正項のセットを与えるために実施される。バックグラウンド変動をモ
デル化するU、に対してサンプル外化学合成物に起因する補正スペクトルX、を
始めに直交させることに依って、最終的な補正スペクトルに対する任意のバック
グラウンドの関与は、これらの補正スペクトルをそれら自体のなかで直交化する
前に除去される。この手順は、バックグラウンド変動の影響の分離をサンプル外
化学合成物変動の影響から効果的に達成し、なおかつ、次に述べられるように、
これらの補正か、未知の材料のスペクトルの測定中に計器の性能を監視する時の
品質管理特徴として用いられることを可能にする。
測定プロセス・スペクトル・データの影響を補正するテクニックを、検討中のサ
ンプルの未知の特性または組成あるいはその両方のデータを推定する方法の開発
に使用する時に、次に示すステップが実施される。まず、n個の較正サンプルの
各々スペクトルか収集され、スペクトルはfの離散周波数(または波長)で定量
化されて、次元fy、nのマトリクスXを形成する。次に、前述のような方式で
、次元fxmの補正マトリクスU、か生成される。このマトリクスは離散周波数
fてmのデジタル化された補正スペクトルをもち、補正スペクトルは測定プロセ
スそのものから生じるデータをシミュレーションする。次のステップは、そのス
ペクトルかUlのスペクトルの全てと各々直交する補正されるスペクトル・マト
リクスXeを生成するために、U、に関してXを直交させる。その方法は、Cの
特性または組成あるいはその両方のデータか次元nxc(c≧1)のマトリクス
Yを形成するためにn個の較正サンプルの各々に対して収集されることを更に要
求する。次に、予測モデルは、マトリクスYの要素とマトリクスXeの相関関係
を設定するためにめられる。異なる予測モデルが、次に説明されるように用いら
れることかできる。
特性または組成あるいはその両方を推定する方法は、次元fXlのマトリクスを
形成するために、fの離散周波数で検討中のサンプルのスペクトルを測定するこ
とを更に要求する。サンプルの未知の特性または組成あるいはその両方のデータ
か、次に、予測モデルを用いて、その測定されたスペクトルから推定される。一
般的に、各々特性または成分あるいはその両方は、モデルを構築するために別に
処理され、なおかつ、別のfxl予測ベクトルを生成する。その予測は、ちょう
ど、未知のスペクトルと予測ベクトルのドツト積になる。予測ベクトルの全てを
次元fxcのマトリクスPに結合することに依って、予測は、Cの特性と成分の
予測のIXCベクトルを生成するために、スペクトル・マトリクス(次元fのベ
クトルはIxfマトリクスと見なされることができる)と予測マトリクスを乗算
することに関係する。
前節で説明されたように、種々の形態の予測モデルが可能である。
予測モデルは、関係式Y=X; P+Eの数学的解法からめられることができる
、ここで、Xl′補正されたスペクトル・マトリクスXcの転置マトリクスであ
り、Pは次元fxcの予測マトリクスであり、Eはモデルの見逃し誤差のマトリ
クスであり且つ次元nxcである。関係式Y=X: P+Eの正当性はBeer
の法則の逆説明から白来し、それ自体は、サンプルの放射−吸光かサンプルを経
由する光路長およびサンプルの試験片の放射−吸収の濃度に比例する形態で表さ
れることかできる。次に、検討中のサンプルのC特性または組成あるいはその両
方のデータの推定を含めた次元1xcのベクトルy1をめるために、X、が次元
fxlである、検討中のサンプルのスペクトルX、が測定され、なおかつ、y、
はy、=x: Pの関係からめられる、ここでXシはマトリクスX、の転置マト
リクスである。
本発明の好ましい実施態様に於いて、関係式Y=X、’ P+Eは予測モデルを
決定するためにめられるか、発明は、その関係式がX。=AY“十Eとして表さ
れる(基本的にBeerの法則の説明に依って)モデルと共に用いられると思わ
れる、ここで、Aはhcマトリクスである。このケースに於いて、Aは、まずA
=XeY(Y’Y)相と推定される。検討中のサンプルのスペクトルX、から検
討中のサンプルのCの特性または組成あるいはその両方のデータをもつ次元1x
cのベクトルy、推定することは、そこで、y、=x、A(A’A)−の関係を
用いることに関係すると思われる。K−マトリクス方式の条件付形態になる、こ
の計算は、Yか全てのサンプルの成分の濃度値を含んでいて且つ特性データを含
めていないことを、Y’Yの要求される反転が要求するので、使用時に更に制約
される。
関係式Y=X、’ P+E (またはXe=AY’ 十E)の数学的解決は、線
形最小自乗回帰のように、本質的に周知のことであり、或いは時々、多重線形回
帰(MLR) 、主要成分分析/回帰(PCA/PCR)、部分最小平方(PL
S)として周知のことである、数多い数学的テクニックの任意のjつに依ってめ
られることかできる。前述のように、これらの数学的テクニックの紹介は、゛多
変量較正と分析の紹介”、分析化学、Vol、 59. No、 17.198
7年9月1日号、1007〜1017頁に与えられている。
補正マトリクスU、を生成し且つスペクトル・データ・マトリクスXをU、に直
交させる目的は2重にされる。第1に、最終的に補正されたデータ・マトリクス
Xcに基づく予測モデルは、前述のように、U、でモデル化されたバックグラウ
ンド変動とサンプル外化学成分の影響に対して鈍感である。第2に、U、の列と
Xの列の間で生成されるドツト(スカラー)積は、較正スペクトルに存在するバ
ックグラウンドとサンプル外化学成分干渉の大きさに関する情報を含めているの
で、較正スペクトル・データの収集中に存在していたこれらの干渉の大きさに関
する値の範囲の測定を与える。未知の特性または組成あるいはその両方をもつ材
料のスペクトルの分析中に、類似のドツト積は、未知のスペクトルX、とU、の
列の間で形成されることかできて、なおかつ、これらの値は、較正が達成される
時と予測モデルが試験中のサンプルの特性と成分の推定のために使用される時と
の間で、測定プロセスか大幅に変わらなかったことをチェックする手段として、
較正中に得られた値と比較されることができる。これらのドツト積は、従って、
測定プロセスに関する品質管理評価を実施する手段を与える。
U、の列とスペクトル・データ・マトリクスXの列のドツト積は、測定プロセス
・データが個々の較正スペクトルに関与する度合いに関する情報を含んでいる。
この情報は、較正サンプル成分に関する情報と一般的に混合されている。例えば
、一定のベクトル(第1次数多項式)のドツト積は、サンプル吸収の積分の合計
である総スペクトル積分と、バックグラウンドの積分に関する情報を含んでいる
。
較正サンプル成分に関する情報は、しかし、X、の単一値分解に依って生成され
る固有スペクトルにも含まれている。従って、サンプル成分と相関関係が示され
ていない値、すなわち、較正スペクトルに対する測定プロセス信号の関与の大き
さを表す値をリカバーするために、ドツト積からサンプル成分との相関関係が示
されている情報の部分を取り除くことができる。これは、次に示すステップに依
って行われる。即ち、
(1)次元nxmのマトリクスV、はX’U、の積として形成され、■、、の個
々の要素はXの列とU、の列のドツト積になる。
(2)補正されるデータ・マトリクスXcが形成され、その単一値分解はUΣV
′として計算される。
(3)V、=VZ+Rの形態の回帰か、ドツト積と主要成分のスコア間の相関関
係を設定するために計算される。ここで、vZはサンプル成分との相関関係が示
されるドツト積の部分を表し、回帰残留Rはサンプル成分との相関関係が示され
ていないドツト積の部分を表し、なおかつ、これが較正サンプルの測定プロセス
信号に実際になる。
(4)試験中のサンプルの分析の場合、未知のスペクトルと補正スペクトルの各
々に依るドツト積(U、の列)がベクトルV、を形成するために計算され、補正
されたスペクトルXeか計算され、補正されたスペクトルのスコアがv=x;U
Σ−1として計算され、なおかつ、相関関係が示されていない測定プロセス信号
値かr=v、−vZとして計算される。これらの値の大きさは、次に、未知のも
のの分析中の測定プロセスと較正中のものを比較する手段としてRの値の範囲と
比べられる。
前述の開示された補正方法および検討中のサンプルの未知の特性または組成ある
いはその両方のデータを推定する方法の能力は、実施される総合的な数学的計算
に関連することか認められる。実際に、該計算は、計器に接続された、1つまた
は複数のコンピュータを具備するコンピュータ手段に依って行われる。測定モー
ドで、コンピュータ手段は、較正サンプル、サンプル外化学合成物、または試験
サンプルの測定された出カスベクトルを受け取る。オペレーターと共に補正モー
ドで、コンピュータ手段は、マトリクスXを形成するために較正スペクトルを記
憶し、補正マトリクスU、を計算し、なおかつ、補正マトリクスU、に関してX
を直交させる。更に、コンピュータ手段は、次元nxc(c≧1)のマトリクス
Yを形成するためにn個の較正サンプルのCの既知の特性または組成あるいはそ
の両方のデータを記憶する記憶モードで作動する。モデル構築モードで、コンピ
ュータ手段は、オペレーターと共に、マトリクスYの要素とマトリクスXcの要
素との相関関係を示す予測モデルを決定する。
最後に、コンピュータ手段は、マトリクスYの要素とマトリクスX。
の要素との相関関係を示す定められた予測モデルを用いて、その測定されたスペ
クトルから、検討中のサンプルの未知の特性または組成あるいはその両方のデー
タを、それが推定する予測モデルで作動するように調整される。
更に詳細にわたって、検討中のサンプルの特性または組成あるいはその両方のデ
ータの予測を行う好ましい方式に基づいて関連されるステップが、次に示すよう
にして説明する。まず、較正のためのサンプルの選択が、オペレーターまたは実
験室の技術者に依って行われる。次に、何れかの順で、これらのサンプルのスペ
クトルと特性/組成は、補正として用いられるサンプル外化学合成物のスペクト
ルと共に、オペレーターまたは実験室の技術者あるいはその両者に依って、測定
され、収集され、コンピュータ手段に記憶される必要がある。更に、オペレータ
ーは、ベースライン変動をモデル化するために用いられるコンピュータ生成多項
式補正を選択する。コンピュータ手段は、補正マトリクスU、を生成し、次に補
正されるスペクトル・マトリクスXeを生成するために較正サンプル・スペクト
ル(マトリクスX)を直交させ、なおかつ、PCRか用いられている場合、単一
値分解をマトリクスXc上で実施する。オペレーターは、相関関係が示されるデ
ータとして保持する主要成分の数(PCRの場合)と(相関関係が示されない)
ノイズの見本として放棄する数を選択しなければならない。代わりに、PLSテ
クニックが採用されている場合、オペレーターは、使用する潜在変数の数を選択
しなければならない。MLRが補正されるスペクトル・マトリクスXeと測定さ
れた特性または組成あるいはその両方のデータ7間の相関関係を決定するために
用いられている場合、周波数の選択は、測定されたスペクトルか定量化される周
波数の数か較正サンプルの数より小さくなるようにして行われる必要がある。と
ちらのテクニックか、較正を終了した、XcとYを相互に関係づける相関関係を
示すために用いられていても(すなわち予測モデル)、実験室の技術者は、予測
される特性または組成あるいはその両方のデータを予測モデルに基づいて計算す
るコンピュータ手段に依って用いられる検討中のサンプルのスペクトルを測定す
る。
CPSAの数学的根拠
主要成分分析(PCA)の目的は、これらの変数の回帰を従属性の特性/組成変
数に対して可能にするために、スペクトル・データの非従属性変数の数を分離す
ることである。スペクトル・データ・マトリクスXは、長さfの列として較正に
用られるn個のサンプルのスペクトルを含んでいる、ここで、fはスペクトルご
とのデータ・ポイント(周波数または波長)の数である。PCAの目的は、fx
nXマトリクスを幾つかのマトリクスの積に分解することである。この分解は、
単一値分解を用いて行われることができる。
X=UΣV“ (1)
ここでU(左側の固有ベクトル・マトリクス)は次元fxnであり、Σ(単一値
δをもつ対角線マトリクス)は次元nXflであり、なおかつ、いは次元nXn
であるV(右側の固有ベクトル・マトリクス)の転置マトリクスである。PCA
の一部のバージョンは単一値分解をし気まぐれな状態になる。紛られしくなるこ
とを避けるために、Uは、Uの個々の列−ベクトル(固有スペクトル)は元の較
正スペクトルと同じ長さfなので、固有スペクトル・マトリクスとして引用され
る。項の固有ベクトルはVマトリクスに引用するためにしか用いられない。単一
値分解のマトリクスは次に示す特性をもつ。
X ’ X = V A V ’およびXX’ =UΔU’ (4)ここでIヵ
はnxn識別マトリクスであり、Δは、対角線上で、固有値λ(単一値の平方)
をもつマトリクスであり且つ対角線をなくしてしまう。積UU’はfより小さい
nの識別マトリクスを作らないことに注目すべきである。関係式2と3は、固有
スペクトルと固有ベクトルが共に直交しないことを示している。PCAの成るバ
ージョンで、UとΣはシングル・マトリクスに結合されるマトリクスになる。こ
のケースで、固有スペクトルは直交するか単一値に標準化される。
変数減少の目的は、従属性変数(特性または組成)か回帰されることができる非
従属性変数(主要成分)のセットを与えることである。直接較正の基本回帰式次
の式である。
Y=X’P (5)
ここでYはn個のサンプルとCの特性/組成の特性/組成データをもつnXCマ
トリクスてあり、Pは特性/組成データとスペクトル。
データを関係づける回帰係数のfxcマトリクスである。我々は、スペクトルX
(次元bl)の分析中に、サンプルの特性/組成の予測(次元IXcのy)が次
に示す関係式に依ってめられるので、予測ベクトルとしてPの0列を引用する。
y=x’P (6)
1つの特性/組成に対して、予測は未知のスペクトルと予測ベクトルのドツト積
としてめられることに注目すべきである。次に示すのは関係式5の解法である。
(X’l −’Y= (X′)−’X’P=P (7)ここで(X’)−’はX
′マトリクスの反転になる。マトリクスX’は、もちろん非平方であり且つ階数
不足(fan)であって、なおかつ直接反転されることかできない。単一値分解
を用いると、しかし、反転は次に示すように近似化されることができる。
(X’)−’=UΣ−1V“ (8)
ここでΣ−1は、平方単一値マトリクスの反転であり、1/σを対角線上にもっ
ている。関係式7と8を用いると、予測ベクトル・マトリクスは次に示すように
なる。
P=UΣ桐V’Y (9)
既に述べられたように、PCAの目的は、体系的な(周波数の関係する)信号を
ランダム・ノイズから分離することである。大きい単一値に対応する固有スペク
トルは体系的な信号を表しているが、これに対して小さい単一値に対応するもの
はノイズを表している。一般的に、安定モデルを構築する際に、これらのノイズ
成分は、予測ベクトルか計算される前に分析から削除される。まずk<n固有ス
ペクトルが保持されると、関係式lのマトリクスは、U’ (次元fxk)、Σ
′ (次元kxk)、v’ (次元nxk)になる。
X=U’Σ’ V” +E (10>
ここてEはfxnエラー・マトリクスである。理想的には、サンプル成分に起因
するデータの変動の全てが最初のkの固有スペクトルに対して説明される場合、
Eはランダム・ノイズしか含まないことになる。積v’ v’ “がちはや識別
マトリクスを生成しないこと1こ注目されるへきである。表記を単純にするため
に、′が省略され、なおかつ、U、Σ、■は、これから、階数減少されたマトリ
クスを表す。kの選択、較正に用いられる固有スペクトルの数は、スペクトル・
ノイズ・レベルの統計的試験と成る予備知識に基づくことになる。
特性/成分の予測は1つの予測へクトルしか要求しないが、予測に関する不確定
要因の計算は、完全に階数減少されたVマトリクスを要求する。実際に、Xマト
リクスの単一値分解か計算(関係式l)される、2ステツプ、間接較正方法が使
用され、次に、特性/組成か固有スペクトルに対して別々に回帰される。
分析中に、未知のスペクトルの固有ベクトルがめられる。
v=x’UΣ−1(+3)
および予測は次に示すようにして行われる。
y=vB (14)
間接方法は、関係式IOの直接方法と数学的に等価であるが、予測に関する不確
定要因を推定するために必要とされる値を容易に提供する。
関係式6は、いかに予測ベクトルPが未知のスペクトルの分析に用いられるかを
示している。我々は、未知のスペクトルか、未知の成分に起因するスペクトルx
eと、我々か制約条件を設定したい測定プロセス関連信号X、の2つの項の合計
として分離されることかできることを想定している。予測は、そこで、次に示す
ようになる。
y=x’P=xe’P+x、’P (15)予測が測定プロセス信号に対して鈍
感になる場合、関係式15の第2項はゼロになければならない。これは、予測ベ
クトルか測定プロセス信号スペクトルと直交するに違いないことを示している。
関係式IOから、予測ベクトルは、固有スペクトルの線形結合であり、それは、
もとの較正スペクトル(U=XVΣ−1)の線形結合に自ら順になる。もとの較
正スペクトルか特定の測定プロセス信号と全て直交する場合、最終的な予測ベク
トルも直交し、なおかつ、予測は測定プロセス信号に対して鈍感になる。この直
交化手順は、条件付き主要スペクトル分析アルゴリズムの基準として機能する。
条件付き主要スペクトル分析(CPSA)プログラムにおいては、2つのタイプ
の測定プロセス信号が考えられる。そのプログラムは、直交化、周波数従属性多
項式U、のセットを内部で生成する。U。
は、pが多項式の最大次数(度数マイナス1)である次元fxpのマトリクスて
あり、なおかつ、それは、分析に用いられるスペクトル範囲全体にわたって定義
される直交化Legendre多項式である、列を含んでいる。多項式は、スペ
クトル・ベースライン作用のための制約条件に与えることを意図されている。更
に、ユーザは、他の測定プロセス信号(例えば水蒸気スペクトル)を代表するス
ペクトルを与えることができる。測定プロセス信号の特定のタイプの複数の列を
含むことかできる、これらの補正スペクトル(Sが補正スペクトルの数である次
元bsのマトリクスX、)は、Gram−Schmidt直交化手順に依って多
項式に関して最初に直交化される。
X、’ =X、−U、(U、“X 、) (16)最終補正スペクトルの単一値
分解が次に実施され、X、’ =U、Σ、V、’ (17)
直交fヒ補正固有スペクトルU、のセットを生成する。ユーザは、モデル化され
る測定関連信号の数に対応する最初のS′項を選択し、なおかつ、多項式と選ば
れた補正固有スペクトルの両方を含んでいる、補正項U、の完全なセットを生成
する。これらの補正項は、次に、Gram Schmidt直交化手順を再び用
いて、補正データから取り除かれる。
xc=X−U、(U、’X) (17)補正されたスペクトルXeの主要成分分
析は、次に単一値分解に進み、
Xe=UeΣcVc’(+8)
予測モデルか、回帰を用いて構築される。
Y=VeB (+9)
最終予測ベクトル
P、=U、Σe−’V、’Y (20)は、多項式と補正固有スペクトルU。に
直交する。最終予測モデルは、従って、モデル化された測定プロセス信号に対し
て鈍感になる。
未知の分析の場合、スペクトルに対する測定プロセス信号の関与は、次のように
計算されることができて、
7、=Σ、−’U、、’ x (21)なおかつ、これらの値は、測定プロセス
が較正に関して変わったかどうかについての診断を与えるために、較正の@V、
と比較されることかできる。
前述の手順の結果は、多項式と補正項をスペクトルとしてデータ・マトリクスに
含めること、および、関係式12のBマトリクスを計算する条件付き最小自乗回
帰を用いることと数学的に等価になる。条件付き最小自乗手順は、それらが、デ
ータ・マトリクスの有意の変動が、回帰ステップに保持されているに固有スペク
トルに記憶されることを説明しなければならないので、補正スペクトルのスケー
リングに対して更に敏感になる。単一値分解を計算する前に、較正スペクトルを
補正スペクトルに直交させることに依って、我々はスケーリング感度を推定する
。
CPSAの経験モデルの構築
条件付き主要スペクトル分析方法は、較正サンプルのスペクトルに存在する、ま
たは後で分析されるサンプルのスペクトルに存在すると思われる測定プロセス信
号か、単一値分解に依って実施されるスペクトル変数の抽出前にモデル化され且
つデータから(Gram Schmidt直交化手順に依って)取り除かれるこ
とを可能にする(16)。従ってめられたスペクトル変数は、路長(9athl
ength)の非従属性推定のためのモデルを構築するために較正スペクトルの
路長に対して最初に回帰される。スペクトル変数は、回帰の結果に基づいて共通
路長に相応してリスケールされ、次に更に、これらのパラメータの推定のための
経験モデルを構築するために組成/特性データに対して回帰される。新しいサン
プルの分析中に、スペクトルか収集されて条件付きスペクトル変数に分解され、
路長が計算され、なおかつデータか適切な路長にスケールされ、次に回帰モデル
か新しい材料の組成/特性データを計算するために使用される。直交化手順は、
最終測定がモデル化された測定プロセス信号に対して鈍感になる(直交する)た
めに制約されることを保証している。内部路長計算と再標準化は、路長または流
れ変動を自動的に補正するので、データ・スケーリングに起因する誤差を最小限
度にする。
経験モデルの構築は次に示すステップから成る。即ち、(1,1)経験モデルか
構築される特性または成分あるいはその両方の濃度か、代表的なサンプルのセッ
ト、例えば較正セットに相応して独自に決定される。独自の測定は、要素組成分
析(燃焼分析、X−at蛍光、広い線のNMR)、成分分析(ガス・クロマトグ
ラフィー、質量分光)、他のスペクトル測定(IR,UV/可視性、NMR、カ
ラー)、物理的特性測定(APIまたは比重、屈折率、粘性、または粘度指数)
、性能特性測定(オクタン価、セタン価、燃焼性)を含めた、しかし限定されず
、標準分析試験に依って行われる。サンプル構成要素の数か限られている化学ア
プリケーションの場合、組成データは、較正混合物を準備する時に用いられる重
量または容積を反映していると忠われる。
(12)較正サンプルの吸収スペクトルは赤外線の1つまたは複数の領域にわた
って収集され、データはその分離かサンプルに依って表される吸収特性の幅より
狭い離散周波数(または波長)でデジタル化される。
(2,0)条件付き主要スペクトル分析(CPSA)アルゴリズムが経験モデル
を構築するために使用される。アルゴリズムは次に示す12ステツプから成る。
即ち、
(′2..1)較正スペクトルのための赤外線スペクトル・データは、fがスペ
クトルの周波数または波長の数であり、nが較正サンプルの数である、次元fx
nのマトリクスXの列にロードされる。
(2,2)周波数従属性多項式U、(その列が次元fxpをもつ直交Legen
dre多項式であるマトリクス、ここでpは多項式の最大次数である)が、分析
に用いられるスペクトル範囲を超えるスペクトル・ベースラインの可能な変動を
モデル化するために形成される。
(2,3)他のタイプの測定プロセス信号を代表するスペクトル(例えば、水蒸
気スペクトル、二酸化炭素など)は、Sが用いられている補正スペクトルの数で
ある、次元bsのマトリクスX、にロードされる。
(2,4)補正スペクトルはGram Schmidt直交化手順に依って多項
式に関して直交される。
X、’ =X、−U、(U、’X、) (2,4)(2,5)補正スペクトルの
単一値分解が、次に、X、’ =U、Σ、■、“ (2,5)直交化補正固有ス
ペクトルU、のセットを生成するために実施される。Σ、は対応する単一値であ
り、■、は、対応する右側の固有ベクトルであって、″は転置マトリクスを示し
ている。
(z6)多項式と補正固有スペクトルを共に含んでいる、補正項U、=U、 十
U、のフル・セットか、次に、Gram SchmIdt直交化手順を用いて再
び、較正データから取り除かれる。
Xe=X−U、(U、’X) (2,6)(2,7)補正されたスペクトルX、
の単一値分解か次に実施される。
Xe=U、Σ、Ve’ (2,7)
(z8)ステップ(2,7)の固有スペクトルが調べられ、なおかつ、Σ、の大
きい単一値に対応する最初のに固有スペクトルのサブセットか保持される。スペ
クトル・ノイズに対応するに+1からnの固有スペクトルか放棄される。
Xc=U、X、Vk’ 十Ek (2,8)(2,9)単一値分解のkの右側の
固有スペクトル■、か、較正スペクトルY、の路長値に対して回帰される(nx
1行ベクトル)。
Ye =VmBp十E、 (2,9a)ここでE、は回帰誤差である。回帰係数
B、は次のように計算される。
B、= (V、’Vk)−’V、’Y、=V、’Y、 (2,9b)(2,10
)較正スペクトルの路長の推定は次のように計算される。
Y、 =V、B、 (2,10)
nXn対角線マトリクスNか次に形成され、なおかつ、Nのi番目の対角線要素
は、較正スペクトルの平均路長(夛9かi番目の較正サンプル(Y、のi番目の
要素)のために推定された路長値に依って除算された比率となる。
(2,11)右側の固有ベクトル・マトリクスは次に次のように再漂準(2,1
2)再標準化されたマトリクスは、モデルの回帰係数をめるために、特性または
濃度あるいはその両方のY(Yは、n個の較正サンプルとCの特性/濃度の値を
もつnXCマトリクス)に対して回帰される。
Y=V、’ B+E (2,12a)
B= (V、” V、’ )−’Vk’ Y (2,12b)(3,0)未知の
特性/成分をもつ新しいサンプルの分析は、次に示すステップに依って進められ
る。
(3,1)未知の吸収スペクトルは、較正スペクトルの収集時に用いられる同じ
条件のもとでめられる。
(3,2)吸収スペクトルX。は条件付き変数に分解される。
(3,3)未知のスペクトルの路長は次のように推定される。
yp =y、13. (3,3)
(3,4)未知の固有ベクトルは次のようにリスケールされる。
Vす’ =v−(yt /y−) (3,4)ここで、Lは(2,10)の較正
スペクトルの平均路長である。
(3,5)特性/濃度は次のように推定される。
y“=7・’B (3,5)
(4,1)較正と分析に用いられるスペクトル領域は、スペクトルメーターの直
線状応答範囲外にでる可能性がある強い吸収を避けるために、または低信号成分
と強いノイズの領域を避けるために、2次領域に限定されることができる。
(5,1)較正に用いられるサンプルは、統計的試験に依って多変量孤立値(o
utlier)として識別される任意のサンプルを除外することに依って制約さ
れることかできる。
(6、I)ステップ(Z9)と(Z+2)の回帰は、経験モデルに保持される変
数の数を最初のに変数のサブセットに制限するために、階段状(step−wi
se)回帰(17)またはPRESSベース変数選択(+8) !:依って達成
されることができるので、推定されるパラメータに対して統計的に有意な相関関
係を示さない変数を除外できる。
(7,1)下記に依って与えられる、未知ノMahalanobis統計量り、
ff1It、D m’ =v −’ (V% ’V % )−’ v w” (
7,1)推定か、未知の値と較正サンプルのために計算された類似の値の平均を
比較することに依って、モデルの補間または外挿に基づいているかどうかについ
て決定することに用いられることができる。
(7,2)推定された値に関する不確定性も(2LI2)の回帰の標準誤差およ
び未知の場合に計算されるvahalanobiS統計量に基づいて推定される
ことができる。
(8,1)スペクトル島をもつ未知の分析の場合、スペクトルに対する測定プロ
セス信号の関与は、次のように計算されることができる。
■・=Σ・−”UパX・ (8,1)
これらの値は、測定プロセスが較正に関して変わったかどうかについての診断を
与えるために、較正の値V、&比較されることができる。
(9,1)スペクトルX1をもつ未知の分析の場合、シミュレーションされるス
ペクトルX1は次のように計算される。
x、=U、Σv−v−’ + Uc:i:ev−’ (9,Ia)シミュレーシ
ョンされるスペクトルと実際のスペクトルの比較は、Euclidean No
rm If x、 −x、 IIを計算することに依って行われる。
Euclidean Normは、次に、未知のものが較正スペクトルの範囲に
入あるかどうかについて決定するために、スレッショルド値と比較される。その
スレッショルド値は、個々の較正スペクトルX1の各々(データ・マトリクスX
の列)を未知として処理し、これらのn個の較正サンプルのEuclidean
Normを計算し、なおかっ、較正セットの最大Euclidean Nor
[[lに基づいてスレッショルドを設定することに依って決定される。
(10,1)スペクトル島をもつ未知の分析の場合、未知のものと較正スペクト
ルX、の各々(Xの列)の間の距離は、次のように計算なおかつ、距離は、未知
のものが、予測モデルの較正サンプルの数が散在する領域にあるかどうかについ
て決定するためにスレッショルドと比較される。代わりに、主要成分スコアの距
離が計算のためここで、vlはi番目の較正サンプルに対応するV2のベクトル
である。スレッショルド値は、個々の較正スペクトルX、の各々(データ・マト
リクスXの列)を未知として処理し、関係式(10,1a)または(10,Ib
)を用いてこれらのn個の較正サンプルの距離を計算し、なおかっ、較正セット
の最大距離に基づいてスレッショルドを設定することに依って決定される。
発明のこれらの且つ他の特徴と長所が、添付の1つの図面を引用し、例を用いて
、ここで説明される。
図面の簡単な説明
1つの図面は、本発明の方法を実施する1つの好まれる方式を示すフローチャー
トである。
好ましい実施態様の詳細な説明
】っの図面のフローチャートは、本発明の方法を実施する好ましい方式に関連さ
れるステップの概略的な図解を与える。図面に用いられている引用番号は、次に
指定される方法のオペレーションに関する。
1)、2)、3)、4)
これらは、推定モデルの更新を処理するものであり、後で説明される。
5)オンライン測定を実施する。
検討中のサンプルの赤外線吸収スペクトルが測定される。しかし、方法は任意の
吸収スペクトルにも使用できる。方法手順は、紫外線、可視光線、核磁気共鳴(
NMR) 、反射、光音響分光などを含めた、多種多様な他の分光測定テクニッ
クにも応用できる。
オンライン測定を実施してめられたスペクトルは、アナライザのオペレーション
を制御するために用いられるコンピュータに記憶され、以降、試験サンプルの試
験スペクトルとして引用される。
6)データ収集オペレーションの有効性使用できるスペクトルと任意のスペクト
ルメータ状態の情報は、収集されたスペクトルがスペクトルメータ・オペレーシ
ョンのスタンド・ポイントから有効であることを確認するために調査される(推
定モデルの統計的比較でない)。有効性チェックに関する主な基準は、スペクト
ルメータの機械的または電気的な不具合に原因かあったと思われる明確な無効デ
ータかないことである。該不具合は、重大なベースライン・エラー、ゼロ・デー
タ、または無限(オーバーレンジ)データを含めた、しかし限定されない、異常
な特質についてスペクトルを調査することに依って、はとんど容易に識別される
ことができる。
データ収集オペレーションが有効と見なされる場合、処理は、収集されるデータ
の分析と共に進行する。データ収集オペレーションが無効と見なされる場合、診
断ルーチンか、スペクトルメータと測定システム診断を実施するために実行され
る(16) (()の中の番号は付記される数字のオペレーション番号を示す)
。これらは、特に書き込まれた診断機能から成る、またはスペクトルメータ・シ
ステムに搭載されている内部診断機能から成る場合もある。何れの場合でも、診
断の結果はオペレーション・コンピュータに記憶され、なおかつ、プロセス・オ
ペレーションは、スペクトルメータの潜在する異常かあることを知らせる〔17
〕。制御は、一部の異常は断続的であり且つ有効データの収集は再び試みる時に
成功する状態で再開されるので、オンライン測定を再び実施するために、オペレ
ーション〔5〕に戻る。
実施される診断機能の目的は、簡単な保守点検とするために、システム・モジュ
ール構成要素の異常の原因を隔離することである。従って、診断手順の一部とし
て、コンピュータに記憶されている今までのデータベースと比較されることがで
きる条件の既知のセットのもとて測定を実施するために、較正または標準引用あ
るいはその両方のサンプルをサンプル・セルに導入する必要があるかも知れない
。
自動サンプル抽出システムは、アナライザー・コンピュータからの要望に基づい
て、サンプル・セルにサンプルを導入することができる。
測定されたスペクトルがスペクトルの周波数帯域を横断する幾つかの離散測定周
波数(または波長)のスペクトル強度であるところの試験中のサンプルの測定さ
れたスペクトルは、特性または組成あるいはその両方のデータ・パラメータ推定
の計算の中間となる幾つかのモデル推定パラメータを計算するために、モデルと
共に用いられる。モデルが固有ベクトルに基いたモデルであるケースでは、PC
A。
PLS、 CPSA、または類似のモデルが用いられる時のケースように、モデ
ル固有スペクトルをもつ測定された試験スペクトルのドツト(スカラー)積は、
固有スペクトルが試験スペクトルを表すために用いられることができる程度の測
定である係数を作る。CPSAとPCRの場合、係数が1/σに依って更にスケ
ールされる場合、結果は、CPSAを表す仕様の前述の項目の関係式3.2bで
定義されるスコアV。
になると思われる。該スケーリングはシミュレーションされたスペクトルの生成
に要求されない。シミュレーションされた試験サンプル・スペクトルの逆算は、
対応する係数に依ってスケールされるモデル固有スペクトルと共に加えることに
依って実施される。固有ベクトルに基いた方法でないモデルの場合、パラメータ
推定モデルに対応する試験サンプルのシミュレーションされるスペクトルを計算
するために用いられることができるように、計算は定義されることかできる。
測定された試験サンプル・スペクトルとシミュレーションされた試験サンプル・
スペクトルの間の残りが、各々測定波長または周波数で計算される。最終残留ス
ペクトルはオペレーション〔8〕で与オペレーション〔7〕から使用できる係数
と残留スペクトルと、オペレーション〔5〕から測定された試験サンプル・スペ
クトルから、オペレーション(9−11)において、引続いて用いられる、幾つ
かの統計的試験値が、計算されることができる。好ましい統計量か、オペレーシ
ョン(9−11)の論述で説明されていて且つ固有ベクトルに基いた方法に特に
有用である。当面のオペレーションの計算は、試験サンプルのパラメータを推定
するモデルの的確性を評価するために用いられることができる統計的方法を与え
る。単独または組み合わせの何れかでモデル評価のために用いられることかでき
る、任意の方法、統計的な1つまたは複数の試験、任意の推論試験、また ゛は
任意のルールに基いた試験か用いられる場合がある。
主要成分(またはPLS)ベース分析のケースで、この試験は、各々測定周波−
数または波長で計算され平方された残りを合計することに依って、残留スペクト
ルから計算されたEuclidean normの調査に引用する。シミュレー
ションされたスペクトルだけが、モデルが基づかされた固有スペクトルを含んで
いる。従って、モデルを生成するために用いられた元の較正サンプルに存在して
いなかった化学試験片を表すスペクトル特質が、残留スペクトルに含められる。
モデルを生成するために用いられた較正サンプルに含まれていなかった化学試験
片を含有する試験サンプルのEuclidean normは、モデルを生成す
るために用いられた較正スペクトルのために計算されたEuclideanno
rmよりかなり大きくなる。オペレーション〔8〕で注目されたように、化学試
験片が較正サンプルに含まれていない試験サンプルに存在しているかどうかにつ
いての評価を与える試験または手順が用いられることができる。特に、パターン
認識テクニックまたはコンピュータ計算されたスペクトル・ライブラリーに含ま
れていたスペクトルとの比較あるいはその両方が、残留スペクトルと共に用いら
れることができる。
発明を実施する好ましい方式では、Euclidean normの強度は、試
験サンプル・スペクトルが、モデルを生成するために用いられた較正サンプル・
スペクトルの範囲に入っているかどうか、すなわち、類似の形態で計算された較
正サンプル・スペクトルのEuclldean normに関して小さいEuc
lidean normになるかどうかについて見るために検討される。小さい
Euclidean normは、化学試験片か較正サンプルに存在していなか
った試験サンプルに存在しないことの表示と見なされる。否定的(大きいEuc
lidean norm)の場合、サンプル・スペクトルが集められ、なおかつ
、スポット・サンプルか更なる実験分析のために収集される。これはオペレーシ
ョン〔12〕で実施される。
アナライザーに依るサンプル抽出システムは、アナライザー制御コンピュータに
依る命令に基づいてスポット・サンプルを自動的に入手することができる。
この試験の説明では、化学試験片は、ここに明確に現れ且つサンプルに存在する
化学的成分から区別されなければならない水蒸気のような外部干渉と逆に、サン
プルに含まれている化学的成分と考えられる。これは、測定された水蒸気スペク
トルをモデル化し、なおかつ、CPSAに関連して前に説明されたように、それ
と較正スペクトルを直交することに依って行われることができる。
10)試験サンプル・パラメータ推定はモデルの補間を含むかサンプルがオペレ
ーション
〔9〕において許容しつるように選ばれる場合、このサンプルの特性の
正確な推定に関してモデルの前動性を調査することが好ましい。パラメータ推定
または信頼性レベルの統計的精度を決定する任意の方法が適している。これを行
う好ましい方式は、Mahalanobjs距離(CPSAの経験モデルの構築
を説明する仕様の項目の関係式(7,1)で前に定義された)が、サンプルを推
定するモデル較正データ・セットの的確性を決定するために用いられることであ
る。Mahalanobis距離は、試験サンプル・スペクトルかモデルに用い
られた主要成分または固有スペクトルに依って定義された超3次元空間の上で表
されるようなモデル計算のために用いられるスペクトルのグループの幾何学的中
心から更に離れている時に、より大きくなる測定単位である。従って、大きい値
のMaha 1anob i s距離は、特性推定かモデル較正に依ってカバー
されるデータの範囲からの外挿になることを示している。これは、推定が間違っ
ていることを、推定の不確定性が所望のものよりも大きくなる(または信頼性が
小さくなる)場合があることだけを、なおかつ、この事実がデータの全ての次に
続く使用に伝えられるに違いないことを、必ずしも意味していない。
推定が不確定(大きいMahalanobis距離)になると考えられる場合、
サンプル・スペクトルを集め且つコンピュータで制御される自動サンプル抽出シ
ステムを用いて次の実験分析のためにスポット・サンプルを入手することが望ま
しい〔オペレーション12)。
サンプルがモデルに依ってカバーされるデータ・スペースに入っている(小さい
値のMahalanobis距離の)場合でも、サンプルは、モデル・セットの
較正サンプルの数が散在する領域にある場合かある。
このケースでは、モデルが改善されるように、サンプル・スペクトルを集めて、
スポット・サンプルを入手することが望ましい〔12〕。
任意の標準統計試験の距離が、この決定を行うために用いられる。
特に、各々試験サンプル/較正サンプルのペアのために計算された内部サンプル
Mahalanobjs距離が、サンプルが保存されるべきかどうかについての
決定を行うために調査される。内部サンプルMahala−nobis距離は、
試験サンプル・スペクトルのスコアと較正サンプル・スペクトルのスコア間の違
いの平方の合計として定義され、スコアはCPSAの経験モデルの構築を説明す
る本明細書の項目の関係式(3,2b)に依って計算される。否定的な応答は、
内部サンプルMahalanobis距離の全てが、較正サンプル・スペクトル
変動性の所望の分布を達成するために選ばれた予め設定されたスレッショルド値
より大きい場合の結果であり、そのケースでは、コンピュータで制御される自動
サンプル抽出システムを用いて次の実験分析のために、サンプル・スペクトルを
集めてスポット・サンプルを入手することか望ましいオペレーション[9][1
0][11]で示されている統計的試験を実施し且つステップ〔12〕に示され
ているスポット・サンプルをおそらく収集した後に、パラメータが、ここでモデ
ルから推定される。CPSAの場合、これは、スコアの計算(関係式3.2b)
とパラメータの推定(関係式3.3〜3.5)を包合する。実施される実際の数
値計算は用いられるモデルのタイプに依存する。固有ベクトルに基いた分析(P
CR,PLSのような)ケースの場合、方法は、CPSAで前に説明されたもの
と同じベクトル投影方法になる。
14)推定をプロセス監視/制御コンピュータに送るパラメータ推定と統計的試
験を計算した後に、パラメータ推定とパラメータ不確定性の推定がここで使用可
能になる。これらは、プロセス・コントロール・センターに普通は位置設定され
ている別のプロセス監視またはMWJコンピュータに送られる。結果は、プロセ
ス制御とプロセス診断を含めた数多くの目的のためにオペレーションに依って使
用されることができる。データ転送はアナログまたはデジタル形態になる。
15)推定を分析ワークステーションに送るアナライザーは全体的に独立して(
スタンドアロンで)普通は作動される。分析と統計的試験の結果は、アナライザ
ーとアプリケーション・エンジニアか日常使用できるワークステーションに送ら
れる。
これはオペレーション〔15〕に示されている。別のワークステーションでデー
タを入手できることは、便利なことであるか、アナライザー・システムのオペレ
ーションに不可欠な要素でない。
次のモデル更新のためにサンプルが入手され且つスペクトルが集められた時に、
推定モデルを更新する必要がある。これは、実験分析の結果が集められたスペク
トルと共に入手できる時にだけ実施されることができる。
モデル更新か必要とされない場合、オペレーションは〔5〕と共に継続する。
モデル更新
モデル更新はオペレーション[2] [3] [4]から成る。任意または全て
のオペレーションは、アナライザー・コンピュータ上で実施されるか、または分
離コンピュータ上でオフラインで実施される。後者の場合、更新されたモデルの
結果は、分析制御用コンピュータに送られなければならない。
2)必要なフル・モデルと回帰計算は必要かモデルに含まれているサンプルがオ
ペレーション
〔9〕の否定的決定から生じていなかった場合、モデル固有スペク
トルを生成する計算を実施する必要はない。これは、オペレーション
〔9〕が必
要なモデルに対する更なる固有スペクトルの包含を識別していなかったためであ
る。このケースでは、新しい回帰だけか要求され、プロセスはオペレーション〔
4〕と共に継続する。
−夕を含めることに依って更新される。データベースは、別のコンピュータおよ
びそのコンピュータで構築されたモデルに維持される。
全体的なモデル生成手順は、データの拡張されたセットを用いて繰り返される。
これは、例えば、CPSAモデルを再び実行すること、または何れかの数値方法
が元々用いられていたことを意味すると思われる。このステップがオフラインで
実施される場合、更新された固在スペクトルは分析用コンピュータに転送されな
ければならない。
更新されたモデルが、全体モデル構築手順に戻ることなしに、推定されることを
可能にする、モデル更新方法が開発されると思われる。
4)新しい回帰を実施し、モデル回帰係数を更新する回帰は、オペレーション〔
13〕のパラメータと信頼性間隔推定を実施するために用いられる回帰係数をめ
るために、組成または特性あるいはその両方のパラメータの実験測定と更新され
た較正セットのスコアを用いて実施される。回帰ステップは、CPSAのために
前に説明されたステップと同じである(前述の経験モデルの構築の項目の関係式
2.9aとb)。このステップがオフラインで実施される場合、回帰係数は分析
用コンピュータに転送されなければならない。
前述のステップは、液体またはガス・プロセス・ストリームの吸光スペクトルの
オンライン測定を実施することに依って、特性または組成あるいはその両方のパ
ラメータの推定を可能にする。数学的分析は、化学的成分の濃度と化学的成分の
クラスの濃度の高品質の推定を提供する。化学的成分の濃度との直接または間接
的な相関関係が示されている物理的および性能的パラメータを推定することがで
きる。吸光スペクトルの測定のだめの条件は、i!J!+1スペクトル情報を与
えるために指定されるので、方法の診断および品質保証測定の計算が可能になる
。
方法測定をもつステップは、方法調整、オペレーション診断、自動サンプル収集
の連続的推定を与えるために、統合的な状態で実施される。方法測定の異なる側
面が、(1)〜(10)の番号の項目で次に説明される。
(1,)吸光スペクトル測定のためのサブセット領域の選択(1,1)種々の2
次領域の赤外線スペクトルの測定は、異なる赤外線スペクトルメーター装置を用
いて行われることができる。適切な2次領域の選択は、候補となる2次領域の各
々の代表的サンプルのスペクトルを入手し、なおかつ、関心のある化学成分に直
接または間接的に起因する吸収があると思われる2次領域を選択することに依っ
て行われる。適切な2次領域の選択の基準は、次のように要約される。
この項目の手順は、考えられる吸収スペクトル測定の広い範囲にわたって使用で
きる。1つのスペクトルメータだけで使用の全範囲をカバーできない。従って、
サンプルに存在し、なおかつ、パラメータ推定が計算される組成または特性ある
いはその両方のパラメータとの相関関係か示されている、化学的構成の有意な吸
収特質を与えるだけでなく、スペクトルメータで使用できるものと一致するサブ
セット領域を選択する必要がある。好ましい波長サブセット領域を選択する基準
は、スペクトルメータ性能の主観的で客観的な測定、実際のサンプル厚みの制限
、達成可能なサンプル・アクセル、スペクトルメータ検出器選択の検討を含んで
いる。液体二酸化炭素プロセス・ストリームを測定する好ましいサブセット領域
は、サンプルの厚みが約1cmのものである。これは、オンライン測定に好都合
に適応できるスペクトルメータ装置がいま使用できる近赤外m領域のサブセット
に対応する800nm〜1600nmの領域で達成できる。指定された領域は、
1つのスペクトルメータを用いて測定できる範囲の更なるサブセットである。範
囲の更なる制約は、吸光に於いて類似のダイナミックレンジをもち且つ波長の1
オクターブに制約された、全ての吸収を対象にできる十分な範囲を含めるために
望まれる。
1)較正モデル計算のためのサンプルの選択と推定の基準(2,1)サンプルは
、プロセス・ストリーム組成変動の範囲を代表するサンプル(較正サンプル)の
セットを得るために様々な時に収集される。
(2,2)サンプルの吸収スペクトルは、サンプル収集手順中のオンラインで得
られるか、または収集されたサンプルを用いて実験室で別々に測定される。
(2,3)較正モデルが生成される特性または組成あるいはその両方のデータは
、標準分析実験テクニックを用いて収集されたサンプルに対して別々に測定され
る。
(3,)較正モデル計算
(3,1)較正モデルは幾つかの多変量方法の中の任意の1つを用いてめられ、
なおかつ請求められたサンプルが指定された較正サンプルになる。方法の使用に
依って、較正スペクトルの特定の変形となる、面前スペクトルのセットがめられ
る。それらは、特性/組成推定ステップのために保持される。本発明の重要な好
ましい特徴か、サンプルを実際のオペレーション中に収集することに依って、予
測モデルの更新を可能にする。これは、まだ認められていなかったサンプルが分
析され且つ関連するデータか予測モデルに入力されるので、サンプルの優れたセ
ットが収集されることを可能にする。
従って、サンプルがめられる方法、または初期の予測モデルに用いられるモデル
計算方法は、特に重要なことにならない。初期の較正モデルは、更新されたサン
プル・セットからモデルを構築するために用いられたと思われる同じ方法を用い
て構築されることが望ましい。次に示すのは、較正モデル計算に用いられること
ができる方法である。
(3,1,I)前述の条件付き主要スペクトル分析が好ましい方法である。
(3,1,2)前述の主要成分回帰は代替方法である。
(3,1,3)より一般的な主要成分回帰の特定の実施態様である、部分最小自
乗分析。
(3,1,4)前述のものと実質的に同じ任意の特定のアルゴリズム。
(3,1,4)パラメータ推定モデルを生成するために用いられる、逆伝送(b
ack propagation)のような、神経学的ネットワーク・アルゴリ
ズム。このテクニックは、非直線的特性値推定を扱う際に特に長所をもつと思わ
れる。
(4,)特性/組成推定
(4,1)特性または組成あるいはその両方のデータは、前述のように次に示す
関係式に基づいて推定される(関係式3.5)。
y、=v、’ B
(5,)較正モデル確認
較正モデル確認は、初期較正モデルが適正であるかどうかについて決定するプロ
セスを意味する。較正モデルを確認する例は、前述の確認またはPRESSとク
ロスと思われる。
(5,1)較正モデル計算に用いられていない追加サンプル(前述の第3項)が
、収集され(試験セット)111J定される。
(5,1,I)スペクトルは、収集されていたサンプルを用いて、オンラインま
たは実験室の何れかで、これらのサンプルに対して測定される。
(5,1,2)特性または組成あるいはその両方のデータが、前述の2.3項で
示された同じ標準分析形実験分析から別々にめられる。
(5,2)特性または組成あるいはその両方のデータが、前述のCPSAの説明
の関係式(3,3−3,5)を用いて推定され、なおかつ、実験でめられた特性
または組成あるいはその両方のデータと比較して確認される。
(6,)オンライン吸収スペクトル測定(6,1)前述の第(1)項で決定され
たサブセット波長領域の測定機能を有する任意の赤外線スペクトルメータか用い
られることかできる。
(6,2)プロセス・スチームのサンプル抽出は、スリップ・ストリームを用い
てプロセス・ストリームからサンプルを抽出するか、または光学的プロセスをプ
ロセス・ストリームに挿入することに依って行われる。
(6,2,1)スリップ・ストリーム抽出は、サンプルを吸収スペクトル測定セ
ルに送るために用いられる。セルのサンプルのスペクトルは、セルをスペクトル
メータの光路に直接置くか、または測定セルをスペクトルメータに光フアイバー
技術を用いて間接的に結合することに依って測定される。間接的光フアイバー測
定技術を用いるスリップ・ストリーム抽出は、オンライン測定方法に好適である
。測定中に、サンプルは連続して流れ、そのケースでめられたスペクトルは時間
的に平均されたスペクトルになるか、またはバルブがスペクトル測定中に流れを
ストップするために用いられる。
(6,2,2)挿入サンプル抽出は、スペクトルメータの光学的測定部をサンプ
ル・ストリームに光フアイバー技術を用いて結合して行われる。
(7,)プロセス・パラメータ(オンライン特性または組成あるいはその両方)
の推定
(7,1)スペクトルは、プロセス・オペレーション中にプロセス・ストリーム
・サンプルに対してオンラインで測定される。スペクトル測定を実施する技術の
幾つかの選択が、すぐ前の第(6)項で説明されたようにして使用できる。
(7,2)パラメータ推定は、前の第(4,1)項の関係式を用いて実施される
。
(8,)較正モデルの更新
(8,1)推定されたパラメータが、次の第(9)項と(10)項で定められて
いるように、実験で測定されたパラメータと大きく異なるスポット試験サンプル
が較正セットに加えられ、なおかつ、較正手順は、前の第(3,1)項の関係式
で定められ更新された較正モデルを得るために、第(3)項からスタートして繰
り返される。
(8,2)オンラインで測定されたサンプルは、次の(9)と(10)項に用い
られるサンプルと比較される。(9)または(10)の試験に適合しないサンプ
ルが表示され、なおかつ、因数が特性/組成の実験分析およびスペクトルの確認
のために収集される。任意の該サンプルに対してオンラインで測定されたスペク
トルおよび実験で決定された特性/組成データか較正データ・セットに加えられ
、なおかつ、較正手順は、更新された較正モデルを得るために、第(3)項から
スタートして繰り返される。
(9,)診断と品質保証測定
(9,1)診断は、試験サンプル・スペクトルと較正に用いられたサンプルのス
ペクトルとの類似性を測定する、幾つかのパラメータを計算することに依って実
施される。
(9,1,I)ベクトル・ベース距離と類似性測定は、スペクトル測定を確認す
るために用いられる。これらは、次の項目を含んでいるが、限定されない。
(9,1,1,I)サンプルを推定する較正セットの適確性を決定するためのM
ahalanobis距離またはEucljdean normあるいはその両
方。
(9,1,1,2)有意な吸光をもつ予期されていなかった構成要素が存在する
かとうかを決定する残留スペクトル(実際のスペクトルとパラメータ推定に用い
られた固有スペクトルから推定されたスペクトル間の距離)。
(9,1,1,3)[察された組成の範囲か較正セットに含まれているかどうか
決定する、固有スペクトルの任意の個々の固有スペクトルまたは組み合わせに対
するスペクトルの投影の値。
(9,1,]、 4)パラメータ推定の有効性または推定されたパラメータに付
随する誤差に影響すると思われるスペクトルメータ・システム動作条件のベクト
ル推定要因(波長誤差、放射源変動、光学的構成部品の劣化のような)。
(9,1,2)コントロール・チャート・テクニック、周波数分布分析、または
較正サンプル・セットまたは過去のオンライン・サンプル測定の何れかから活用
できる過去の経験に照らし合わせて当面の測定(スペクトルまたはパラメータの
何れか)を評価する任意の類似のテクニックに依って、広く入手される経験に基
く診断。
(、10,)プロセス制御、最適化、診断(10,1)パラメータは、リアルタ
イムで計算され、それは、プロセス・オペレーションの診断であり、なおかつ、
稀のまたは予期されないプロセス・オペレーション条件のプロセスまたは診断あ
るいはその両方の#都または最適化あるいはその両方のために用いられることが
できる。
(]0.1.1) 1つのプロセス・ストリームのスペクトル測定に基づくパラ
メータの例は、化学組成測定(個々の化学的構成要素、例えば、ベンゼン、トル
エン、キシレンの濃度、または合成物のクラス、例えば、パラフィンの濃度のよ
うな)、物理的特性測定(密度、屈折率、硬度、粘性、引火点、流動点、蒸気圧
のような)、性能特性測定(オクタン価、セダン価、燃焼性のような)感覚(臭
い/臭気、カラーのような)を含めている。
(10,1,2)プロセスの異なるポイントでサンプル抽出されるので2つ以上
のストリームのスペクトル測定に基づいているので、サンプル抽出ポイント間で
プロセスの任意に遅延された影響と共にサンプル抽出ポイント間に含まれている
プロセスに関与する違い(デルタ)を測定できるパラメータ。
(10,1,3)他のプロセス・オペレーション測定(温度、圧力、流量のよう
な)と共に1つまたは複数のスペクトル測定に基づくパラメータが、マルチ−パ
ラメータ(多変量)プロセス・モデルを計算するために用いられる。
(10,2)第(10,1)項で説明されたリアルタイム・パラメータか次の項
目のために用いられることができる。
(Jo、2.1)プロセス・オペレーション監視。
(10,2,2)フィードバックまたはフィードワード制御戦術の一部としての
プロセス制御。
(10,2,3)プロセス応答と傾向を観察することに依る、プロセス診断また
は最適化あるいはその両方。
国際調査報告
フロントページの続き
(72)発明者 トッド、テリー レイアメリカ合衆国、ニューシャーシー
07828 、パッド レイク、サード ストリート19
(72)発明者 ブラウン、ジエームズ ミルトンアメリカ合衆国、ニューシャ
ーシー
08822 、フレミントン レーン ドライブ
Claims (12)
- 1.試験サンプルの特性および/または組成のデータを推定する方法であって、 試験サンプルのスペクトル測定を実施すること、および、試験サンプルの特性お よび/または組成のデータをその測定されたスペクトルから較正サンプル・スペ クトルとこれらの較正サンプルの既知の特性および/または組成のデータとの相 関関係を表す予測モデルに基づいて推定することを含んでいて、そこでは、決定 が、予測モデルに対して測定されたスペクトルのチェックに基づいて、測定され たスペクトルがモデルの較正サンプル・スペクトルの範囲に入っているかどうか について行われることを含み、そして、応答がチェックの結果が否定的な場合に 生成される方法。
- 2.請求項1に記載の方法において、応答が試験サンプルを隔離することである 方法。
- 3.請求項2に記載の方法において、試験サンプルの隔離後に、サンプルはその 特性および/または組成のデータを確認する分離方法に依って分析され、なおか つ、予測モデルはこのデータおよびスペクトル測定を試験サンプルに実施するこ とに依って得られたスペクトル測定データで更新される方法。
- 4.請求項1乃至請求項3のいずれかに記載の方法において、試験サンプルのス ペクトル測定が赤外線領域で実施される方法。
- 5.請求項1乃至請求項4のいずれかに記載の方法であって、予測モデルが固有 ベクトルに基いたものであって、そこでは、試験サンプルに対してシミュレーシ ョンされるスペクトルが、測定された試験スペクトルとモデル固有スペクトルの 各々とのドット積から測定された試験スペクトルの係数を誘導し且つ対応する係 数に依ってスケールされたモデル固有スペクトルを互いに加えることに依って決 定され、なおかつ、比較が、測定されたスペクトルがモデルの較正サンプル・ス ペクトルの範囲に入っているかどうかについての推定としてシミュレーションさ れたスペクトルと測定されたスペクトルとの間で行われる方法。
- 6.請求項5に記載の方法において、シミュレーションされたスペクトルと測定 されたスペクトル間の比較が、残留スペクトルをシミュレーションされたスペク トルと測定されたスペクトル間の違いとして決定し、離散周波数の残留スペクト ルの大きさの平方を合計してEuclideannormを計算し、なおかつE uclideannormの大きさを評価することに依って行われる方法。
- 7.請求項5に記載の方法において、Mahalanobis距離が測定された スペクトルに対して決定され、なおかつ、試験サンプルは、決定されたMaha lanobis距離の長さが試験サンプルの特性および/または組成のデータの 推定が較正サンプルに依ってカバーされるデータの範囲からの外挿であることを 示している場合に、隔離される方法。
- 8.請求項7に記載の方法であって、各々試験サンプル/較正サンプルのペアに 対して誘導されたEuclideannormを計算し、なおかつ、計算された Euclideannormと予め設定されたスレッショルド値を前記のスレッ ショルド値が越えられている場合に試験サンプルを隔離するために比較すること を更に行う方法。
- 9.請求項1乃至請求項8のいずれかに記載の方法において、測定プロセスその ものに起因する較正サンプル・スペクトルのデータが、較正サンプル・スペクト ルを測定プロセス・データをモデル化する1つまたは複数のスペクトルと直交さ せることに依って、予測モデルを形成する前にそこから取り除かれる方法。
- 10.請求項1乃至請求項9のいずれかに記載の方法において、前記のサンプル が二酸化炭素/水の混合物であり且つ推定が前記の混合物の二酸化炭素成分また は水成分の推定である方法。
- 11.二酸化炭素試験サンプルの特性および/または組成のデータを推定する装 置であって、 −スペクトル測定を試験サンプルに実施するスペクトルメータ手段と、 −(i)試験サンプルの特性または組成あるいはその両方のデータをその測定さ れたスペクトルから較正サンプル・スペクトルとこれらの較正サンプルの既知の 特性および/または組成のデータの相関関係を示す予測モデルに基づいて推定し 、(ii)予測モデルに対して測定されたスペクトルのチェックに基づいて、測 定されたスペクトルがモデルの較正サンプル・スペクトルの範囲に入っているか どうかについて決定し、(iii)チェックの結果が否定的である場合に応答を 生成するためのコンピュータ手段とを備えた装置。
- 12.請求項11に記載の装置において、コンピュータ手段が較正サンプル・ス ペクトル・データの全てと且つそのデータベースの較正サンプルの既知の特性お よび/または組成のデータの全てに基づいて予測モデルを決定するように構成さ れ、該コンピュータ手段がそこでの記憶のためにそのデータベースに入力される 更なる該データに応答するように更に構成されていて、そこで、予測モデルが前 記の更なる該データに基づいて更新される装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59643590A | 1990-10-12 | 1990-10-12 | |
US596,435 | 1990-10-12 | ||
PCT/US1991/007583 WO1992007326A1 (en) | 1990-10-12 | 1991-10-09 | Method of estimating property and/or composition data of a test sample |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06502247A true JPH06502247A (ja) | 1994-03-10 |
JP3130931B2 JP3130931B2 (ja) | 2001-01-31 |
Family
ID=24387259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03518377A Expired - Fee Related JP3130931B2 (ja) | 1990-10-12 | 1991-10-09 | 試験サンプルの特性または組成あるいはその両方を推定する方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US5446681A (ja) |
EP (1) | EP0552291B1 (ja) |
JP (1) | JP3130931B2 (ja) |
CA (1) | CA2093015C (ja) |
DE (1) | DE69128357T2 (ja) |
MY (1) | MY107650A (ja) |
SG (1) | SG45468A1 (ja) |
WO (1) | WO1992007326A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1030982A (ja) * | 1996-07-13 | 1998-02-03 | Horiba Ltd | 多成分水溶液の分析方法 |
JP2000074827A (ja) * | 1998-08-28 | 2000-03-14 | Perkin Elmer Ltd | 分光計の測定スペクトルにおける望まれないコンポ―ネントの抑圧方法及び装置 |
JP2008517252A (ja) * | 2004-10-04 | 2008-05-22 | ユニヴァーシティー オブ サウスカロライナ | 熱選択性多変量光学的コンピューティング |
Families Citing this family (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07218491A (ja) * | 1994-01-31 | 1995-08-18 | Shimadzu Corp | クロマトグラフ用検出装置 |
SE9401718L (sv) * | 1994-05-18 | 1995-11-19 | Eka Nobel Ab | Sätt att bestämma parametrarna i papper |
GB9415869D0 (en) * | 1994-08-05 | 1994-09-28 | Univ Mcgill | Substrate measurement by infrared spectroscopy |
WO1996011399A1 (en) * | 1994-10-07 | 1996-04-18 | Bp Chemicals Limited | Property determination |
EP0706050A1 (en) * | 1994-10-07 | 1996-04-10 | Bp Chemicals S.N.C. | Lubricant property determination |
EP0706049A1 (en) * | 1994-10-07 | 1996-04-10 | Bp Chemicals S.N.C. | Cracking property determination |
US5935863A (en) * | 1994-10-07 | 1999-08-10 | Bp Chemicals Limited | Cracking property determination and process control |
EP0706041A1 (en) * | 1994-10-07 | 1996-04-10 | Bp Chemicals S.N.C. | Chemicals property determination |
EP0706040A1 (en) * | 1994-10-07 | 1996-04-10 | Bp Chemicals S.N.C. | Property determination |
JPH08147357A (ja) * | 1994-11-22 | 1996-06-07 | Nec Yamagata Ltd | 製造装置の簡易モデリング方法 |
US5641962A (en) * | 1995-12-05 | 1997-06-24 | Exxon Research And Engineering Company | Non linear multivariate infrared analysis method (LAW362) |
FR2734360B1 (fr) * | 1995-05-19 | 1997-07-04 | Elf Antar France | Procede de correction d'un signal delivre par un instrument de mesure |
US6070128A (en) * | 1995-06-06 | 2000-05-30 | Eutech Engineering Solutions Limited | Method for determining properties using near infra-red (NIR) spectroscopy |
GB2301897B (en) * | 1995-06-08 | 1999-05-26 | Univ Wales Aberystwyth The | Composition analysis |
US5699270A (en) * | 1995-06-23 | 1997-12-16 | Exxon Research And Engineering Company | Method for preparing lubrication oils (LAW232) |
US5699269A (en) * | 1995-06-23 | 1997-12-16 | Exxon Research And Engineering Company | Method for predicting chemical or physical properties of crude oils |
GB2303720B (en) * | 1995-07-25 | 2000-03-08 | Kodak Ltd | Reject Analysis |
US6232609B1 (en) * | 1995-12-01 | 2001-05-15 | Cedars-Sinai Medical Center | Glucose monitoring apparatus and method using laser-induced emission spectroscopy |
FR2743143B1 (fr) * | 1995-12-28 | 1998-02-27 | Elf Antar France | Procede de determination de la valeur d'une grandeur physique |
CN1086039C (zh) * | 1996-01-19 | 2002-06-05 | 日本电气株式会社 | 确定估算项目加工时间的指标的方法 |
US5610836A (en) * | 1996-01-31 | 1997-03-11 | Eastman Chemical Company | Process to use multivariate signal responses to analyze a sample |
US5744702A (en) * | 1996-09-12 | 1998-04-28 | Exxon Research And Engineering Company | Method for analyzing total reactive sulfur |
US5808180A (en) * | 1996-09-12 | 1998-09-15 | Exxon Research And Engineering Company | Direct method for determination of true boiling point distillation profiles of crude oils by gas chromatography/mass spectrometry |
US6512156B1 (en) | 1996-10-22 | 2003-01-28 | The Dow Chemical Company | Method and apparatus for controlling severity of cracking operations by near infrared analysis in the gas phase using fiber optics |
FR2754899B1 (fr) * | 1996-10-23 | 1998-11-27 | Elf Antar France | Procede de suivi et de surveillance d'une unite de fabrication et/ou d'un spectrometre proche infrarouge au moyen d'un critere de qualite d'ensembles de spectres |
US6085153A (en) * | 1996-11-06 | 2000-07-04 | Henry M. Jackson Foundation | Differential spectral topographic analysis (DISTA) |
US5862060A (en) * | 1996-11-22 | 1999-01-19 | Uop Llc | Maintenance of process control by statistical analysis of product optical spectrum |
US6072576A (en) * | 1996-12-31 | 2000-06-06 | Exxon Chemical Patents Inc. | On-line control of a chemical process plant |
DE19713194C2 (de) * | 1997-03-27 | 1999-04-01 | Hkr Sensorsysteme Gmbh | Verfahren und Anordnung zum Erkennen von Eigenschaften einer Probe auf der Basis der Massenspektroskopie |
US5907495A (en) * | 1997-06-27 | 1999-05-25 | General Motors Corporation | Method of formulating paint through color space modeling |
US5930784A (en) * | 1997-08-21 | 1999-07-27 | Sandia Corporation | Method of locating related items in a geometric space for data mining |
US6049764A (en) * | 1997-11-12 | 2000-04-11 | City Of Hope | Method and system for real-time control of analytical and diagnostic instruments |
US6549899B1 (en) * | 1997-11-14 | 2003-04-15 | Mitsubishi Electric Research Laboratories, Inc. | System for analyzing and synthesis of multi-factor data |
FR2776074B1 (fr) * | 1998-03-13 | 2000-04-21 | Transtechnologies | Equipement pour la caracterisation olfactive absolue d'une substance ou d'un produit odorant |
US6167391A (en) * | 1998-03-19 | 2000-12-26 | Lawrence Technologies, Llc | Architecture for corob based computing system |
US6087182A (en) | 1998-08-27 | 2000-07-11 | Abbott Laboratories | Reagentless analysis of biological samples |
EP0985920A1 (fr) * | 1998-09-11 | 2000-03-15 | Naphtachimie | Procédé et dispositif de contrôle de qualité d'effluents |
FR2787883B1 (fr) * | 1998-11-30 | 2001-03-16 | Naphtachimie Sa | Procede et dispositif de controle de qualite d'effluents par spectrophotometrie |
FR2783322B1 (fr) * | 1998-09-11 | 2001-03-09 | Naphtachimie Sa | Procede et dispositif de controle de qualite d'effluents |
JP3349455B2 (ja) | 1998-09-30 | 2002-11-25 | 宮崎沖電気株式会社 | 半導体製造装置のための管理方法および管理システム |
US7436511B2 (en) * | 1999-01-22 | 2008-10-14 | Sensys Medical, Inc. | Analyte filter method and apparatus |
US6864978B1 (en) * | 1999-07-22 | 2005-03-08 | Sensys Medical, Inc. | Method of characterizing spectrometer instruments and providing calibration models to compensate for instrument variation |
US6295485B1 (en) * | 1999-01-29 | 2001-09-25 | Mobil Oil Corporation | Control of lubricant production by a method to predict a base stock's ultimate lubricant performance |
US6317654B1 (en) * | 1999-01-29 | 2001-11-13 | James William Gleeson | Control of crude refining by a method to predict lubricant base stock's ultimate lubricant preformance |
CA2372447A1 (en) * | 1999-02-19 | 2000-08-24 | Fox Chase Cancer Center | Methods of decomposing complex data |
US6223133B1 (en) * | 1999-05-14 | 2001-04-24 | Exxon Research And Engineering Company | Method for optimizing multivariate calibrations |
US7106329B1 (en) | 1999-09-30 | 2006-09-12 | Battelle Memorial Institute | Methods and apparatus for displaying disparate types of information using an interactive surface map |
US6898530B1 (en) | 1999-09-30 | 2005-05-24 | Battelle Memorial Institute | Method and apparatus for extracting attributes from sequence strings and biopolymer material |
US6990238B1 (en) | 1999-09-30 | 2006-01-24 | Battelle Memorial Institute | Data processing, analysis, and visualization system for use with disparate data types |
DE19953387A1 (de) * | 1999-11-06 | 2001-05-23 | Andreas Gronauer | Verfahren zur Auswertung elektromagnetischer Spektren von Stoffen hinsichtlich ihrer anwendungsspezifischen Wirkung |
US6611735B1 (en) * | 1999-11-17 | 2003-08-26 | Ethyl Corporation | Method of predicting and optimizing production |
US20020049548A1 (en) * | 2000-04-03 | 2002-04-25 | Libraria, Inc. | Chemistry resource database |
DE60122712T2 (de) * | 2000-05-16 | 2007-09-13 | Jeacle Ltd., Stillorgan | Photometrische gewässeranalyse |
US6549861B1 (en) | 2000-08-10 | 2003-04-15 | Euro-Celtique, S.A. | Automated system and method for spectroscopic analysis |
EP1311189A4 (en) | 2000-08-21 | 2005-03-09 | Euro Celtique Sa | Near-BLOOD GLUCOSE MONITORING DEVICE |
DE10065445A1 (de) * | 2000-12-27 | 2002-07-04 | Haarmann & Reimer Gmbh | Auswahlverfahren für kosmetische Hilfsstoffe |
CA2331116A1 (en) * | 2001-01-15 | 2002-07-15 | Chenomx, Inc. | Compound identification and quantitation in liquid mixtures -- method and process using an automated nuclear magnetic resonance measurement system |
JP4878085B2 (ja) | 2001-04-20 | 2012-02-15 | ラピスセミコンダクタ株式会社 | 製造工程のための管理方法 |
WO2002088662A2 (en) | 2001-04-25 | 2002-11-07 | Bristol-Myers Squibb Company | Method of molecular structure recognition |
US6947913B1 (en) | 2001-08-23 | 2005-09-20 | Lawrence Technologies, Llc | Systems and methods for generating string correlithm objects |
JP3891807B2 (ja) * | 2001-09-14 | 2007-03-14 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超電導マグネットの故障予測装置およびその方法、並びに磁気共鳴撮影システム |
US6662116B2 (en) * | 2001-11-30 | 2003-12-09 | Exxonmobile Research And Engineering Company | Method for analyzing an unknown material as a blend of known materials calculated so as to match certain analytical data and predicting properties of the unknown based on the calculated blend |
US7945393B2 (en) * | 2002-01-10 | 2011-05-17 | Chemimage Corporation | Detection of pathogenic microorganisms using fused sensor data |
US6875414B2 (en) | 2002-01-14 | 2005-04-05 | American Air Liquide, Inc. | Polysulfide measurement methods using colormetric techniques |
US7031969B2 (en) * | 2002-02-20 | 2006-04-18 | Lawrence Technologies, Llc | System and method for identifying relationships between database records |
FR2836572B1 (fr) * | 2002-02-27 | 2004-06-04 | Earth Resource Man Services Er | Procede pour la determination d'un indice de qualite spatiale de donnees regionalisees |
US6995558B2 (en) * | 2002-03-29 | 2006-02-07 | Wavbank, Inc. | System and method for characterizing a sample by low-frequency spectra |
US6724188B2 (en) * | 2002-03-29 | 2004-04-20 | Wavbank, Inc. | Apparatus and method for measuring molecular electromagnetic signals with a squid device and stochastic resonance to measure low-threshold signals |
EP1511995A4 (en) * | 2002-04-19 | 2005-10-19 | Wavbank Inc | SYSTEM AND METHOD FOR DETECTING SAMPLES BASED ON LOW FREQUENCY SPECTRAL COMPONENTS |
CN1656364A (zh) * | 2002-05-22 | 2005-08-17 | 第一应答器系统及技术有限责任公司 | 用于远程化学鉴定的处理系统 |
US6897071B2 (en) * | 2002-08-13 | 2005-05-24 | Saudi Arabian Oil Company | Topological near infrared analysis modeling of petroleum refinery products |
US7302349B2 (en) | 2002-08-16 | 2007-11-27 | Lattec I/S | System and a method for observing and predicting a physiological state of an animal |
CA2399472A1 (en) * | 2002-09-06 | 2004-03-06 | Karine Lapointe | Printing media evaluation method |
US20040059560A1 (en) * | 2002-09-20 | 2004-03-25 | Martha Gardner | Systems and methods for developing a predictive continuous product space from an existing discrete product space |
US7295954B2 (en) * | 2002-09-26 | 2007-11-13 | Lam Research Corporation | Expert knowledge methods and systems for data analysis |
US7653515B2 (en) * | 2002-12-20 | 2010-01-26 | Lam Research Corporation | Expert knowledge methods and systems for data analysis |
US7238847B2 (en) * | 2002-12-23 | 2007-07-03 | Shell Oil Company | Apparatus and method for determining and controlling the hydrogen-to-carbon ratio of a pyrolysis product liquid fraction |
WO2004069164A2 (en) * | 2003-01-30 | 2004-08-19 | Euro Celtique Sa | Wireless blood glucose monitoring system |
US7253619B2 (en) * | 2003-04-04 | 2007-08-07 | Siemens Aktiengesellschaft | Method for evaluating magnetic resonance spectroscopy data using a baseline model |
US6992768B2 (en) * | 2003-05-22 | 2006-01-31 | Schlumberger Technology Corporation | Optical fluid analysis signal refinement |
CA2501003C (en) | 2004-04-23 | 2009-05-19 | F. Hoffmann-La Roche Ag | Sample analysis to provide characterization data |
WO2006004986A1 (en) * | 2004-06-29 | 2006-01-12 | Pharmix Corporation | Estimating the accuracy of molecular property models and predictions |
US20060080041A1 (en) * | 2004-07-08 | 2006-04-13 | Anderson Gary R | Chemical mixing apparatus, system and method |
US7281840B2 (en) * | 2004-07-09 | 2007-10-16 | Tres-Ark, Inc. | Chemical mixing apparatus |
EP1766483A4 (en) * | 2004-07-08 | 2008-02-27 | Tres Ark Inc | CHEMICAL MIXING DEVICE, SYSTEM AND METHOD |
EP1779122A4 (en) * | 2004-07-27 | 2011-01-19 | Nativis Inc | SYSTEM AND METHOD FOR COLLECTING, STORING, PROCESSING, TRANSFERRING AND PRESENTING SIGNALS WITH VERY LOW AMPLITUDE |
US20060190137A1 (en) * | 2005-02-18 | 2006-08-24 | Steven W. Free | Chemometric modeling software |
US7127372B2 (en) * | 2005-02-24 | 2006-10-24 | Itt Manufacturing Enterprises, Inc. | Retro-regression residual remediation for spectral/signal identification |
US7373256B2 (en) * | 2005-04-19 | 2008-05-13 | Nicholson Jeremy K | Method for the identification of molecules and biomarkers using chemical, biochemical and biological data |
US20060266102A1 (en) * | 2005-05-25 | 2006-11-30 | Tolliver Charlie L | System, apparatus and method for detecting unknown chemical compounds |
EP1902356A4 (en) * | 2005-06-09 | 2009-08-19 | Chemimage Corp | CRIMINOLOGICAL INTEGRATED SEARCH TECHNOLOGY |
US8112248B2 (en) * | 2005-06-09 | 2012-02-07 | Chemimage Corp. | Forensic integrated search technology with instrument weight factor determination |
US8645079B2 (en) | 2005-09-01 | 2014-02-04 | Kuwait University | Method for measuring the properties of petroleum fuels by distillation |
US20070050154A1 (en) * | 2005-09-01 | 2007-03-01 | Albahri Tareq A | Method and apparatus for measuring the properties of petroleum fuels by distillation |
GB0523832D0 (en) * | 2005-11-23 | 2006-01-04 | Univ City | Non-invasive optical monitoring of glucose using an adaptive modelling scheme |
WO2007106810A2 (en) * | 2006-03-13 | 2007-09-20 | William Marsh Rice University | Nmr method of detecting precipitants in a hydrocarbon stream |
US20110237446A1 (en) * | 2006-06-09 | 2011-09-29 | Chemlmage Corporation | Detection of Pathogenic Microorganisms Using Fused Raman, SWIR and LIBS Sensor Data |
AU2007272630B2 (en) * | 2006-07-10 | 2013-05-09 | Amo Manufacturing Usa, Llc | Systems and methods for wavefront analysis over circular and noncircular pupils |
FR2906034B1 (fr) * | 2006-09-18 | 2014-06-06 | Topnir Systems | Procede pour l'estimation d'une propriete d'un echantillon |
FR2906033B1 (fr) * | 2006-09-18 | 2014-06-06 | Topnir Systems | Procede pour l'estimation d'une propriete d'un echantillon |
US8158945B2 (en) | 2007-05-02 | 2012-04-17 | Siemens Aktiengesellschaft | Detector arrangement for a nondispersive infrared gas analyzer and method for the detection of a measuring gas component in a gas mixture by means of such a gas analyzer |
US20100127217A1 (en) * | 2007-06-15 | 2010-05-27 | David Lightowlers | Method for the online analysis of a vapour phase process stream |
US20090192340A1 (en) * | 2007-11-01 | 2009-07-30 | Robert Dielman Culp | Alkylaromatic dehydrogenation system and method for monitoring and controlling the system |
US7672813B2 (en) * | 2007-12-03 | 2010-03-02 | Smiths Detection Inc. | Mixed statistical and numerical model for sensor array detection and classification |
JP4991586B2 (ja) * | 2008-01-31 | 2012-08-01 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
US7880473B2 (en) | 2008-03-31 | 2011-02-01 | General Electric Company | Non-invasive monitoring and diagnosis of electric machines by measuring external flux density |
US20100305872A1 (en) * | 2009-05-31 | 2010-12-02 | University Of Kuwait | Apparatus and Method for Measuring the Properties of Petroleum Factions and Pure Hydrocarbon Liquids by Light Refraction |
EP2480875A4 (en) * | 2009-09-24 | 2017-10-11 | Commonwealth Scientific and Industrial Research Organisation | Method of contaminant prediction |
US20110153035A1 (en) * | 2009-12-22 | 2011-06-23 | Caterpillar Inc. | Sensor Failure Detection System And Method |
US8645082B2 (en) * | 2010-09-13 | 2014-02-04 | Mks Instruments, Inc. | Monitoring, detecting and quantifying chemical compounds in a sample |
US20120116731A1 (en) * | 2010-11-04 | 2012-05-10 | Charles David Eads | Multidimensional relaxometry methods for consumer goods |
US8725469B2 (en) * | 2011-03-03 | 2014-05-13 | Mks Instruments, Inc. | Optimization of data processing parameters |
US10048100B1 (en) * | 2012-04-24 | 2018-08-14 | Westco Scientific Instruments, Inc | Spectrometer secondary reference calibration |
US9665693B2 (en) * | 2012-05-30 | 2017-05-30 | Exxonmobil Research And Engineering Company | System and method to generate molecular formula distributions beyond a predetermined threshold for a petroleum stream |
CA2897165A1 (en) | 2013-03-08 | 2014-09-12 | Halliburton Energy Services, Inc. | Systems and methods for optical fluid identification approximation and calibration |
JP6654132B2 (ja) | 2013-03-15 | 2020-02-26 | ネイティヴィス、インコーポレイテッド | ガン治療などの治療を施すためのコントローラ及び可撓性コイル |
EP2799841A1 (fr) | 2013-04-30 | 2014-11-05 | Topnir Systems SAS | Procede de caracterisation d'un produit par analyse spectrale topologique |
EP2799840A1 (fr) | 2013-04-30 | 2014-11-05 | Topnir Systems SAS | Procede de caracterisation d'un produit par analyse spectrale topologique |
CN104346366B (zh) * | 2013-07-30 | 2017-11-24 | 国际商业机器公司 | 扩展测试数据的方法及设备 |
US10746706B2 (en) * | 2014-01-03 | 2020-08-18 | The Regents Of The University Of Michigan | Photoacoustic physio-chemical tissue analysis |
US10697953B2 (en) * | 2014-06-18 | 2020-06-30 | Texas Tech University System | Portable apparatus for liquid chemical characterization |
US11187692B2 (en) | 2014-06-18 | 2021-11-30 | Texas Tech University System | Enhanced chemical characterization of solid matrices using x-ray fluorescence and optical color reflectance |
JP2016028229A (ja) * | 2014-07-08 | 2016-02-25 | キヤノン株式会社 | データ処理装置、及びそれを有するデータ表示システム、試料情報取得システム、データ処理方法、プログラム、記憶媒体 |
US9678002B2 (en) * | 2014-10-29 | 2017-06-13 | Chevron U.S.A. Inc. | Method and system for NIR spectroscopy of mixtures to evaluate composition of components of the mixtures |
CN104897709A (zh) * | 2015-06-15 | 2015-09-09 | 江苏大学 | 一种基于x-射线荧光分析的农产品元素定量检测模型构建方法 |
US10725000B2 (en) | 2016-01-06 | 2020-07-28 | Shimadzu Corporation | Chromatogram data processing method and device |
US11111425B2 (en) * | 2016-06-20 | 2021-09-07 | Schlumberger Technology Corporation | Methods and system to reduce imperceptible lab experiments |
DE102016009636B4 (de) | 2016-08-10 | 2018-07-12 | Qfood Gmbh | Verfahren zum Überprüfen der Übereinstimmung einer Bierprobe mit einem Referenzbier |
US10570733B2 (en) * | 2016-12-05 | 2020-02-25 | Baker Hughes, A Ge Company, Llc | Synthetic chromatogram from physical properties |
WO2018152231A1 (en) * | 2017-02-14 | 2018-08-23 | The United States Of America, As Reprsented By The Secretary, Department Of Health And Human Services | Denoising of dynamic magnetic resonance spectroscopic imaging using low rank approximations in the kinetic domain |
EP3667295A4 (en) * | 2017-08-07 | 2021-05-05 | Horiba, Ltd. | ANALYZER, ANALYSIS METHOD, ANALYZER PROGRAM AND ANALYZER DEVICE |
US10696906B2 (en) | 2017-09-29 | 2020-06-30 | Marathon Petroleum Company Lp | Tower bottoms coke catching device |
US12000720B2 (en) | 2018-09-10 | 2024-06-04 | Marathon Petroleum Company Lp | Product inventory monitoring |
CN113490841B (zh) * | 2019-02-27 | 2024-10-11 | 热电科学仪器有限公司 | 用于ftir光谱的背景生成 |
US12031676B2 (en) | 2019-03-25 | 2024-07-09 | Marathon Petroleum Company Lp | Insulation securement system and associated methods |
US11975316B2 (en) | 2019-05-09 | 2024-05-07 | Marathon Petroleum Company Lp | Methods and reforming systems for re-dispersing platinum on reforming catalyst |
KR20200137103A (ko) | 2019-05-29 | 2020-12-09 | 삼성전자주식회사 | 생체 정보 추정 모델 갱신 장치 및 방법 |
JP7267883B2 (ja) * | 2019-09-18 | 2023-05-02 | 株式会社日立製作所 | 材料特性予測システムおよび材料特性予測方法 |
ES2955072T3 (es) * | 2019-10-17 | 2023-11-28 | Evonik Operations Gmbh | Método de predicción de un valor de propiedad de un material usando análisis de componentes principales |
CN110687072B (zh) * | 2019-10-17 | 2020-12-01 | 山东大学 | 一种基于光谱相似度的校正集和验证集的选择及建模方法 |
US11124714B2 (en) | 2020-02-19 | 2021-09-21 | Marathon Petroleum Company Lp | Low sulfur fuel oil blends for stability enhancement and associated methods |
US11905468B2 (en) | 2021-02-25 | 2024-02-20 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US20220268694A1 (en) * | 2021-02-25 | 2022-08-25 | Marathon Petroleum Company Lp | Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers |
US11898109B2 (en) | 2021-02-25 | 2024-02-13 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers |
US11702600B2 (en) | 2021-02-25 | 2023-07-18 | Marathon Petroleum Company Lp | Assemblies and methods for enhancing fluid catalytic cracking (FCC) processes during the FCC process using spectroscopic analyzers |
CN113686810B (zh) * | 2021-08-24 | 2024-04-16 | 重庆城市管理职业学院 | 一种基于卷积神经网络的近红外光谱波长选择方法 |
US12037548B2 (en) | 2021-10-10 | 2024-07-16 | Marathon Petroleum Company Lp | Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive |
US12018216B2 (en) | 2021-10-10 | 2024-06-25 | Marathon Petroleum Company Lp | Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using plastic |
CN113866047B (zh) * | 2021-10-21 | 2024-04-02 | 南京信息工程大学 | 一种基于机器学习的粘滞系数光学测定装置及方法 |
CN114295675B (zh) * | 2021-12-31 | 2024-06-25 | 中南大学 | 一种用于硫化矿尘爆炸危险性评价的装置与方法 |
US11802257B2 (en) | 2022-01-31 | 2023-10-31 | Marathon Petroleum Company Lp | Systems and methods for reducing rendered fats pour point |
CN114965836A (zh) * | 2022-06-01 | 2022-08-30 | 国网湖北省电力有限公司超高压公司 | 基于紫外红外sf6分解气体检测方法的背景气体修正方法 |
CN116609720B (zh) * | 2023-07-19 | 2023-09-12 | 深圳市北汉科技有限公司 | 基于数据驱动的台式万用表误差智能补偿方法及系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60107554A (ja) * | 1983-11-16 | 1985-06-13 | Ube Ind Ltd | 未知物質の化学構造を決定する方法および装置 |
US4866644A (en) * | 1986-08-29 | 1989-09-12 | Shenk John S | Optical instrument calibration system |
US4766551A (en) * | 1986-09-22 | 1988-08-23 | Pacific Scientific Company | Method of comparing spectra to identify similar materials |
US4802102A (en) * | 1987-07-15 | 1989-01-31 | Hewlett-Packard Company | Baseline correction for chromatography |
JPH01124751A (ja) * | 1987-11-10 | 1989-05-17 | Konica Corp | 変換式の作成方法 |
US4864842A (en) * | 1988-07-29 | 1989-09-12 | Troxler Electronic Laboratories, Inc. | Method and system for transferring calibration data between calibrated measurement instruments |
US5014217A (en) * | 1989-02-09 | 1991-05-07 | S C Technology, Inc. | Apparatus and method for automatically identifying chemical species within a plasma reactor environment |
US4975581A (en) * | 1989-06-21 | 1990-12-04 | University Of New Mexico | Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids |
US5121337A (en) * | 1990-10-15 | 1992-06-09 | Exxon Research And Engineering Company | Method for correcting spectral data for data due to the spectral measurement process itself and estimating unknown property and/or composition data of a sample using such method |
US5243546A (en) * | 1991-01-10 | 1993-09-07 | Ashland Oil, Inc. | Spectroscopic instrument calibration |
-
1991
- 1991-10-08 MY MYPI91001837A patent/MY107650A/en unknown
- 1991-10-09 EP EP91920018A patent/EP0552291B1/en not_active Expired - Lifetime
- 1991-10-09 WO PCT/US1991/007583 patent/WO1992007326A1/en active IP Right Grant
- 1991-10-09 DE DE69128357T patent/DE69128357T2/de not_active Expired - Fee Related
- 1991-10-09 CA CA002093015A patent/CA2093015C/en not_active Expired - Fee Related
- 1991-10-09 JP JP03518377A patent/JP3130931B2/ja not_active Expired - Fee Related
- 1991-10-09 SG SG1996009697A patent/SG45468A1/en unknown
-
1994
- 1994-09-02 US US08/300,016 patent/US5446681A/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1030982A (ja) * | 1996-07-13 | 1998-02-03 | Horiba Ltd | 多成分水溶液の分析方法 |
JP2000074827A (ja) * | 1998-08-28 | 2000-03-14 | Perkin Elmer Ltd | 分光計の測定スペクトルにおける望まれないコンポ―ネントの抑圧方法及び装置 |
JP2008517252A (ja) * | 2004-10-04 | 2008-05-22 | ユニヴァーシティー オブ サウスカロライナ | 熱選択性多変量光学的コンピューティング |
Also Published As
Publication number | Publication date |
---|---|
SG45468A1 (en) | 1998-01-16 |
EP0552291A4 (en) | 1994-10-26 |
JP3130931B2 (ja) | 2001-01-31 |
WO1992007326A1 (en) | 1992-04-30 |
EP0552291A1 (en) | 1993-07-28 |
CA2093015A1 (en) | 1992-04-13 |
DE69128357D1 (de) | 1998-01-15 |
US5446681A (en) | 1995-08-29 |
EP0552291B1 (en) | 1997-12-03 |
DE69128357T2 (de) | 1998-07-16 |
CA2093015C (en) | 1999-12-21 |
MY107650A (en) | 1996-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06502247A (ja) | 試験サンプルの特性または組成あるいはその両方を推定する方法 | |
JP3245157B2 (ja) | スペクトルデータの測定および補正 | |
Workman Jr | A review of calibration transfer practices and instrument differences in spectroscopy | |
US5606164A (en) | Method and apparatus for biological fluid analyte concentration measurement using generalized distance outlier detection | |
US5459677A (en) | Calibration transfer for analytical instruments | |
JP6089345B2 (ja) | 時および/または空間系列ファイルの多成分回帰/多成分分析 | |
AU711324B2 (en) | Biological fluid analysis using distance outlier detection | |
US5641962A (en) | Non linear multivariate infrared analysis method (LAW362) | |
US20030109998A1 (en) | Automatic process for sample selection during multivariate calibration | |
Lorber et al. | Estimation of prediction error for multivariate calibration | |
Hobbs et al. | Simulation-based uncertainty quantification for estimating atmospheric co _2 from satellite data | |
CN101430276A (zh) | 一种光谱分析中波长变量优选方法 | |
Cao | Calibration optimization and efficiency in near infrared spectroscopy | |
Cook et al. | PLS regression algorithms in the presence of nonlinearity | |
Sulub et al. | Spectral simulation methodology for calibration transfer of near-infrared spectra | |
US6629041B1 (en) | Methods to significantly reduce the calibration cost of multichannel measurement instruments | |
EP3892985A1 (en) | System and computer-implemented method for extrapolating calibration spectra | |
Segtnan et al. | Low-cost approaches to robust temperature compensation in near-infrared calibration and prediction situations | |
AU689016B2 (en) | Non linear multivariate infrared analysis method | |
US11340110B2 (en) | System and method for assessing spectroscopic sensor accuracy | |
Bouveresse et al. | Assessing the validity of near-infrared monochromator calibrations over time | |
Meloun et al. | Number of species in complexation equilibria of SNAZOXS or Naphtylazoxine 6S and Cd2+, Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions by PCA of UV–vis spectra | |
Wu et al. | Shelf-life Quality Monitor of Postharvest Tomato Based on Visible/Near Infrared Spectroscopy | |
Snell et al. | Simulation testbed for atmospheric LIDAR applications | |
Chang | Bayesian regression and discrimination with many variables |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071117 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |