JPH0645360A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0645360A
JPH0645360A JP19547392A JP19547392A JPH0645360A JP H0645360 A JPH0645360 A JP H0645360A JP 19547392 A JP19547392 A JP 19547392A JP 19547392 A JP19547392 A JP 19547392A JP H0645360 A JPH0645360 A JP H0645360A
Authority
JP
Japan
Prior art keywords
source
layer
insulating film
oxide film
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19547392A
Other languages
Japanese (ja)
Inventor
Yoshihiro Arimoto
由弘 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19547392A priority Critical patent/JPH0645360A/en
Publication of JPH0645360A publication Critical patent/JPH0645360A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To provide a manufacturing method of a semiconductor device wherein a gate electrode material can be selected freely, low temperature treatment is possible and source/drain electrodes and a gate electrode can be flattened well. CONSTITUTION:A mask layer is formed by patterning on a surface of a gate insulating film 5 and a surface of a field oxide film 4, the gate insulating film 5 is selectively removed by a mask layer 6, and source/drain regions 7, 8 are formed on a surface of an semiconductor layer 3 exposed thereby by adding impurities of reverse conductivity thereof. Source/drain electrodes 10, 11 are formed on a surface of source/drain regions by selective CVD method, a thermal oxide film 13 is formed in an upper surface and a side surface of the source/ drain electrodes 10, 11, the mask layer 6 is removed to expose a gate insulating film, a gate electrode material 14 is applied and formed which extends from a gate insulating film surface to a thermal oxide film surface and polishing is carried out from a surface of the gate electrode material 14 until a surface of the source/drain electrodes 10, 11 is exposed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSIの微細化・高速
化に適した半導体装置の製造方法に関する。LSIにお
いてはシステムを高速化するために、微細化および高集
積化が求められている。MOSFETの場合、チェネル
長を短縮することによってその性能を向上させることが
可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device suitable for miniaturization and speeding up of LSI. In LSI, miniaturization and high integration are required to speed up the system. In the case of MOSFET, it is possible to improve its performance by shortening the channel length.

【0002】[0002]

【従来の技術】従来のMOSFETでは、高速化・微細
化のためにチャネル長の短縮による特性向上や、SOI
基板を用いることによるソース領域・ドレイン領域の対
基板間容量の低減を図っている。ここで、チャネル長を
短くすると短チャネル効果が顕著になり、正常な動作が
できなくなるという問題がある。短チャネル効果を抑制
するためには、チャネル領域の不純物濃度を増大するこ
とが必要になるが、これは一方でチャネル移動度の低下
を招き、素子特性を劣化させることになる。
2. Description of the Related Art In a conventional MOSFET, the characteristics are improved by shortening the channel length for speeding up and miniaturization, and the SOI.
By using the substrate, the capacitance between the source region and the drain region with respect to the substrate is reduced. Here, when the channel length is shortened, the short channel effect becomes remarkable, and there is a problem that normal operation cannot be performed. In order to suppress the short channel effect, it is necessary to increase the impurity concentration of the channel region, but this causes a decrease in channel mobility and deteriorates device characteristics.

【0003】そこで、SOI基板を用い、その素子形成
用Si層の抵抗率を更に増大させる方法が、実用的な観
点から最も期待されている。しかしこの場合には、MO
SFETのしきい値の制御をゲート電極の仕事関数によ
って行う必要があるため、ゲート電極材料を任意に選択
でき、しかも低温で処理が可能なプロセスの開発が求め
られている。また、素子の微細化に際して、ソース電極
・ドレイン電極およびゲート電極に高低差があると配線
形成工程で断線が発生するため、微細化に十分対応でき
る平坦化方法の開発も必要である。
Therefore, a method of using an SOI substrate and further increasing the resistivity of the element forming Si layer is most expected from a practical viewpoint. However, in this case, MO
Since it is necessary to control the threshold value of the SFET by the work function of the gate electrode, it is required to develop a process that allows the gate electrode material to be arbitrarily selected and can be processed at a low temperature. Further, in the miniaturization of the device, if there is a difference in height between the source electrode / drain electrode and the gate electrode, disconnection occurs in the wiring forming process, so it is necessary to develop a planarization method that can sufficiently cope with the miniaturization.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来の
要請に対応すべく、ゲート電極材料を自由に選択でき、
低温処理が可能で、ソース電極・ドレイン電極およびゲ
ート電極を十分に平坦化し得る半導体装置の製造方法を
提供することを目的とする。
According to the present invention, the gate electrode material can be freely selected to meet the above-mentioned conventional demands.
It is an object of the present invention to provide a method for manufacturing a semiconductor device which can be processed at a low temperature and can sufficiently flatten a source electrode / drain electrode and a gate electrode.

【0005】[0005]

【課題を解決するための手段】上記の目的は、本発明に
よれば、支持基板表面に絶縁層が形成され、該絶縁層表
面に半導体層が形成されたSOI基板の、選ばれた表面
を熱酸化してフィールド酸化膜を形成し、該半導体層の
残る領域を素子領域とする工程と、該半導体層表面に一
様にゲート絶縁膜が形成される工程と、次いで、該ゲー
ト絶縁膜表面および前記フィールド酸化膜表面にマスク
層がパターニング形成され、該半導体層表面が露出する
ように、該マスク層によって該ゲート絶縁膜が選択的に
除去される工程と、次いで、露出した該半導体層表面
に、該半導体層とは反対導電型の不純物が添加され、ソ
ース・ドレイン領域が形成される工程と、次いで、該ソ
ース・ドレイン領域表面に、選択CVD法によって、ソ
ース・ドレイン電極が形成される工程と次いで、該ソー
ス・ドレイン電極上面および側面を熱酸化して、熱酸化
膜を形成する工程と、次いで、前記ゲート絶縁膜が露出
するように、前記マスク層を除去する工程と、次いで、
該ゲート絶縁膜表面から前記熱酸化膜表面に延在するよ
うに、ゲート電極材料が被着形成される工程と次いで、
該ゲート電極材料表面から前記ソース・ドレイン電極表
面を露出するまで研磨する工程とを有する半導体装置の
製造方法によって達成される。
According to the present invention, the above object is to provide a selected surface of an SOI substrate having an insulating layer formed on the surface of a supporting substrate and a semiconductor layer formed on the surface of the insulating layer. A step of forming a field oxide film by thermal oxidation and using the remaining region of the semiconductor layer as an element region, a step of uniformly forming a gate insulating film on the surface of the semiconductor layer, and then a surface of the gate insulating film And a step of patterning a mask layer on the surface of the field oxide film and selectively removing the gate insulating film by the mask layer so that the surface of the semiconductor layer is exposed, and then the exposed surface of the semiconductor layer A step of adding an impurity having a conductivity type opposite to that of the semiconductor layer to form a source / drain region, and then forming a source / drain electrode on the surface of the source / drain region by a selective CVD method. A step of forming the source / drain electrodes, a step of thermally oxidizing the top and side surfaces of the source / drain electrodes to form a thermal oxide film, and a step of removing the mask layer so that the gate insulating film is exposed. , Then
A step of depositing a gate electrode material so as to extend from the surface of the gate insulating film to the surface of the thermal oxide film, and then,
And a step of polishing the surface of the source / drain electrodes from the surface of the gate electrode material until the surface of the source / drain electrodes is exposed.

【0006】[0006]

【作用】本発明においては、ソース領域・ドレイン領域
上にそれぞれソース電極・ドレイン電極が形成するの
で、SOI基板のSi層を極めて薄くしてもソース領域
・ドレイン領域の抵抗の増大が抑制される。またソース
領域・ドレイン領域を形成した後にゲート電極を形成す
るので、ゲート電極材料を任意に選択することができる
し、且つ低温処理が可能である。更に研磨により各電極
を分離平坦化することができるので、段差を十分に軽減
して微細化時の断線を防止することができる。
In the present invention, since the source electrode and the drain electrode are formed on the source region and the drain region, respectively, an increase in the resistance of the source region and the drain region is suppressed even if the Si layer of the SOI substrate is extremely thin. . Further, since the gate electrode is formed after forming the source region / drain region, the gate electrode material can be arbitrarily selected, and the low temperature treatment can be performed. Further, since each electrode can be separated and flattened by polishing, it is possible to sufficiently reduce the step and prevent disconnection during miniaturization.

【0007】以下に、添付図面を参照し、実施例によっ
て本発明を更に詳細に説明する。
Hereinafter, the present invention will be described in more detail by way of examples with reference to the accompanying drawings.

【0008】[0008]

【実施例】図1を参照して、本発明によりMOSFET
を作製する手順の一例を説明する。工程1(図1(1)) 支持基板用Siウェハ1、SiO2 層2および素子形成
用Si層3から成るSOI基板を用いる。LOCOSに
よる酸化膜4と、ゲート酸化膜5と、その上の窒化膜6
とを形成する。次にゲート酸化膜5および窒化膜6とを
パターニングして、ソース領域・ドレイン領域に対応す
る部分に窓7W、8Wを開ける。この窓7Wおよび8W
を介してイオン注入により不純物をSi層3中に導入
し、ソース領域7およびドレイン領域8を形成する。ゲ
ート酸化膜5直下のSi層3の部分はチャネル領域9と
して作用する。工程2(図1(2)) 窓7Wおよび8W内に露出したSi層2上に、Siまた
はシリサイドから成るソース電極層10およびドレイン
電極層11をそれぞれ選択形成する。この選択形成で
は、各電極層10および11とその周囲の層4、5、6
との間には、非常に狭い隙間12が残る。工程3(図1(3)) ソース電極層10およびドレイン電極層11の表面を酸
化し、生成した酸化膜13で隙間12を埋める。その
後、窒化膜6を除去する。これによりゲート酸化膜5が
露出する。工程4(図1(4)) 次に、例えばNMOSの場合には、ゲート電極材料とし
てN+Siの層14を全面に堆積させる。工程5(図1(5)) ゲート電極材料層14を研磨し、各電極10、14、1
1の分離と、これらの上面の平坦化を同時に行いMOS
FET構造を完成させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, a MOSFET according to the present invention.
An example of a procedure for manufacturing the will be described. Step 1 (FIG. 1 (1)) An SOI substrate including a supporting substrate Si wafer 1, a SiO 2 layer 2 and a device forming Si layer 3 is used. LOCOS oxide film 4, gate oxide film 5, and nitride film 6 thereon.
To form. Next, the gate oxide film 5 and the nitride film 6 are patterned to open windows 7W and 8W in the portions corresponding to the source and drain regions. This window 7W and 8W
Impurities are introduced into the Si layer 3 by means of ion implantation to form the source region 7 and the drain region 8. The portion of the Si layer 3 immediately below the gate oxide film 5 acts as a channel region 9. Step 2 (FIG. 1 (2)) A source electrode layer 10 and a drain electrode layer 11 made of Si or silicide are selectively formed on the Si layer 2 exposed in the windows 7W and 8W. In this selective formation, each of the electrode layers 10 and 11 and the layers 4, 5, and 6 around them are formed.
A very narrow gap 12 remains between and. Step 3 (FIG. 1C) The surfaces of the source electrode layer 10 and the drain electrode layer 11 are oxidized, and the gap 12 is filled with the generated oxide film 13. Then, the nitride film 6 is removed. As a result, the gate oxide film 5 is exposed. Step 4 (FIG. 1 (4)) Next, in the case of NMOS, for example, an N + Si layer 14 is deposited on the entire surface as a gate electrode material. Step 5 (FIG. 1 (5)) The gate electrode material layer 14 is polished to form each electrode 10, 14, 1
1 separation and flattening of these upper surfaces at the same time
Complete the FET structure.

【0009】なお、ゲート電極材料としては、SiG
e、シリサイド、各種メタルを用いることができる。こ
れにより、MOSFETのしきい値を任意に制御するこ
とができる。
The gate electrode material is SiG.
e, silicide, and various metals can be used. Thereby, the threshold value of the MOSFET can be controlled arbitrarily.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば、
ゲート電極に任意の材料を選択することができ、しかも
低温で各層を形成できるため、SOIMOSFETにお
いてもしきい値を自由に制御することができる。更に、
ソース電極・ドレイン電極が厚くなるため、Si層が薄
くてもソース領域・ドレイン領域の抵抗を低減すること
ができる。また、各ソース電極・ドレイン電極およびゲ
ート電極の上面を研磨により平坦化できるので、配線形
成工程での断線を起こさずに微細化ができる。
As described above, according to the present invention,
Since any material can be selected for the gate electrode and each layer can be formed at a low temperature, the threshold value can be freely controlled even in the SOI MOSFET. Furthermore,
Since the source electrode / drain electrode is thick, the resistance of the source region / drain region can be reduced even if the Si layer is thin. Further, since the upper surfaces of the source electrodes / drain electrodes and the gate electrode can be flattened by polishing, miniaturization can be achieved without causing disconnection in the wiring forming process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従ってSOI基板上にMOSFETを
作製する手順の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a procedure for manufacturing a MOSFET on an SOI substrate according to the present invention.

【符号の説明】[Explanation of symbols]

1…支持基板用Siウェハ 2…SiO2 層 3…素子形成用Si層 4…LOCOSによる酸化膜 5…ゲート酸化膜 6…窒化膜 7W…ソース領域に対応する窓 8W…ドレイン領域に対応する窓 7…ソース領域 8…ドレイン領域 9…チャネル領域 10…ソース電極層 11…ドレイン電極層 12…隙間 13…酸化膜 14…ゲート電極材料の層(この場合はN+Siの層)1 ... Si wafer for supporting substrate 2 ... SiO 2 layer 3 ... Si layer for element formation 4 ... Oxide film by LOCOS 5 ... Gate oxide film 6 ... Nitride film 7W ... Window corresponding to source region 8W ... Window corresponding to drain region 7 ... Source region 8 ... Drain region 9 ... Channel region 10 ... Source electrode layer 11 ... Drain electrode layer 12 ... Gap 13 ... Oxide film 14 ... Gate electrode material layer (N + Si layer in this case)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 支持基板(1)表面に絶縁層(2)が形
成され、該絶縁層(2)表面に半導体層(3)が形成さ
れたSOI基板の、選ばれた表面を熱酸化してフィール
ド酸化膜(4)を形成し、該半導体層(3)の残る領域
を素子領域とする工程と、 該半導体層(3)表面に一様にゲート絶縁膜(5)が形
成される工程と、 次いで、該ゲート絶縁膜(5)表面および前記フィール
ド酸化膜(4)表面にマスク層(6)がパターニング形
成され、該半導体層(3)表面が露出するように、該マ
スク層(6)によって該ゲート絶縁膜(5)が選択的に
除去される工程と、 次いで、露出した該半導体層(3)表面に、該半導体層
(3)とは反対導電型の不純物が添加され、ソース・ド
レイン領域が形成される工程と、 次いで、該ソース・ドレイン領域表面に、選択CVD法
によって、ソース・ドレイン電極が形成される工程と次
いで、該ソース・ドレイン電極上面および側面を熱酸化
して、熱酸化膜(13)を形成する工程と、 次いで、前記ゲート絶縁膜(5)が露出するように、前
記マスク層(6)を除去する工程と、 次いで、該ゲート絶縁膜(5)表面から前記熱酸化膜
(13)表面に延在するように、ゲート電極材料(1
4)が被着形成される工程と次いで、該ゲート電極材料
(14)表面から前記ソース・ドレイン電極表面を露出
するまで研磨する工程とを有する半導体装置の製造方
法。
1. A selected surface of an SOI substrate having an insulating layer (2) formed on the surface of a supporting substrate (1) and a semiconductor layer (3) formed on the surface of the insulating layer (2) is thermally oxidized. Forming a field oxide film (4) with the semiconductor layer (3) remaining as an element region, and forming a gate insulating film (5) uniformly on the surface of the semiconductor layer (3). Then, a mask layer (6) is patterned on the surface of the gate insulating film (5) and the surface of the field oxide film (4), and the mask layer (6) is exposed so that the surface of the semiconductor layer (3) is exposed. ), The gate insulating film (5) is selectively removed, and then an impurity having a conductivity type opposite to that of the semiconductor layer (3) is added to the exposed surface of the semiconductor layer (3) to form a source. The step of forming a drain region, and then the source / drain A step of forming source / drain electrodes on the surface of the region by a selective CVD method, and a step of thermally oxidizing the upper surfaces and side surfaces of the source / drain electrodes to form a thermal oxide film (13); Removing the mask layer (6) so as to expose the gate insulating film (5), and then extending from the surface of the gate insulating film (5) to the surface of the thermal oxide film (13), Gate electrode material (1
4) A method for manufacturing a semiconductor device, comprising the steps of depositing and forming 4), and then polishing the surface of the gate electrode material (14) until the surfaces of the source / drain electrodes are exposed.
JP19547392A 1992-07-22 1992-07-22 Manufacture of semiconductor device Withdrawn JPH0645360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19547392A JPH0645360A (en) 1992-07-22 1992-07-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19547392A JPH0645360A (en) 1992-07-22 1992-07-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0645360A true JPH0645360A (en) 1994-02-18

Family

ID=16341673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19547392A Withdrawn JPH0645360A (en) 1992-07-22 1992-07-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0645360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811339A (en) * 1996-09-11 1998-09-22 Vanguard International Semiconductor Corporation Method of fabricating deep submicron MOSFET with narrow gate length using thermal oxidation of polysilicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811339A (en) * 1996-09-11 1998-09-22 Vanguard International Semiconductor Corporation Method of fabricating deep submicron MOSFET with narrow gate length using thermal oxidation of polysilicon

Similar Documents

Publication Publication Date Title
US6043157A (en) Semiconductor device having dual gate electrode material and process of fabrication thereof
WO2003054966A1 (en) Soi device with different silicon thicknesses
US20050098774A1 (en) Method of forming multiple gate insulators on a strained semiconductor heterostructure
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH05343686A (en) Semiconductor device and manufacture thereof
JP3196858B2 (en) Method for manufacturing semiconductor device
JP3264110B2 (en) Method for manufacturing semiconductor device
JPH0645360A (en) Manufacture of semiconductor device
JP2004079790A (en) Complete depletion type soi-mos transistor and its manufacturing method
JPH08330578A (en) High breakdown voltage field-effect transistor and its manufacture
JPH098308A (en) Transistor of semiconductor element and its manufacture
JP3260200B2 (en) Method for manufacturing semiconductor device
JPH06196689A (en) Insulated gate field-effect semiconductor device and manufacture thereof
JPH0548108A (en) Semiconductor device and its manufacture
JPH0684939A (en) Manufacture of mis field-effect semiconductor device
JPH069245B2 (en) Field effect semiconductor device
JPH0431193B2 (en)
JPH0128509B2 (en)
JPH0341773A (en) Semiconductor device and manufacture thereof
JPS63144543A (en) Formation of semiconductor interelement isolation region
JP2506864B2 (en) Method for manufacturing MOS semiconductor device
JPS63122272A (en) Mos type field effect transistor and its manufacture
JPS62120079A (en) Manufacture of semiconductor device
JPH09246399A (en) Semiconductor device and manufacture thereof
JPH04359567A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005