JPH08330578A - High breakdown voltage field-effect transistor and its manufacture - Google Patents

High breakdown voltage field-effect transistor and its manufacture

Info

Publication number
JPH08330578A
JPH08330578A JP15998795A JP15998795A JPH08330578A JP H08330578 A JPH08330578 A JP H08330578A JP 15998795 A JP15998795 A JP 15998795A JP 15998795 A JP15998795 A JP 15998795A JP H08330578 A JPH08330578 A JP H08330578A
Authority
JP
Japan
Prior art keywords
film
drain region
region
resist
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15998795A
Other languages
Japanese (ja)
Inventor
Takeshi Ogishi
毅 大岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15998795A priority Critical patent/JPH08330578A/en
Publication of JPH08330578A publication Critical patent/JPH08330578A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a high breakdown voltage field-effect transistor wherein both reliability and current drive ability are high, by reducing parasitic resistance caused by an offset drain region. CONSTITUTION: A lightly doped region 35 and an SiO2 film 36 on the region 35 are formed. A gate electrode a part of which is superposed with a part of the SiO2 film 36 is formed of a polycrystalline Si film 42. After a part of the SiO2 film 36 which part is not covered with the polycrystalline Si film 42 is eliminated, an impurity region 45 as a drain region is formed. Thereby the length wherein the SiO2 film 36 is superposed with the polycrystalline Si film 42 becomes the length of an offset drain region, and can be made shorter than the working minimum width.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願の発明は、LOCOSオフセ
ットドレイン構造と称されておりオフセットドレイン領
域がフィールド絶縁膜下に設けられている電界効果型高
耐圧トランジスタ及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect type high breakdown voltage transistor, which is called a LOCOS offset drain structure and has an offset drain region provided under a field insulating film, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】図5は、LOCOSオフセットドレイン
構造を有するNMOS型高耐圧トランジスタの一従来例
であってCMOS型半導体装置中に含まれているものを
示している。この一従来例を製造するためには、図6に
示す様に、P型またはPウェルを有するSi基板11の
表面に熱酸化でSiO2 膜12を形成し、このSiO2
膜12上にCVD法等でSiN膜13を堆積させる。
2. Description of the Related Art FIG. 5 shows a conventional example of an NMOS type high breakdown voltage transistor having a LOCOS offset drain structure, which is included in a CMOS type semiconductor device. To manufacture this conventional example, as shown in FIG. 6, a SiO 2 film 12 is formed on the surface of a Si substrate 11 having a P-type or P-well by thermal oxidation, and this SiO 2 film 12 is formed.
A SiN film 13 is deposited on the film 12 by the CVD method or the like.

【0003】次に、図7(a)に示す様に、NMOS型
高耐圧トランジスタのソース領域、ドレイン領域及びチ
ャネル領域を形成すべき部分等を覆い、フィールド領域
及びNMOS型高耐圧トランジスタのオフセットドレイ
ン領域を形成すべき部分等の上に開口14aを有するパ
ターンのレジスト14を、フォトリソグラフィ法でSi
N膜13上に形成する。そして、レジスト14をマスク
にして、SiN膜13をエッチングする。
Next, as shown in FIG. 7A, the field region and the offset drain of the NMOS high withstand voltage transistor are covered by covering the source region, the drain region and the channel region where the NMOS high withstand voltage transistor is to be formed. A resist 14 having a pattern having an opening 14a is formed on a portion where a region is to be formed, and the resist 14 is formed by photolithography.
It is formed on the N film 13. Then, the SiN film 13 is etched using the resist 14 as a mask.

【0004】次に、図7(b)に示す様に、レジスト1
4を除去し、NMOS型高耐圧トランジスタのオフセッ
トドレイン領域を形成すべき部分上にのみ開口を有する
パターンのレジスト(図示せず)をフォトリソグラフィ
法で形成する。そして、このレジストをマスクにしてS
i基板11に不純物をイオン注入して、比較的低濃度の
N型の不純物領域15を形成する。
Next, as shown in FIG. 7B, the resist 1
4 is removed, and a resist (not shown) having a pattern having an opening only on the portion where the offset drain region of the NMOS high breakdown voltage transistor is to be formed is formed by photolithography. Then, using this resist as a mask, S
Impurities are ion-implanted into the i substrate 11 to form an N-type impurity region 15 having a relatively low concentration.

【0005】その後、レジストを除去し、SiN膜13
を耐酸化マスクにした熱酸化や熱拡散等を行って、Si
N膜13が設けられていない部分に膜厚が500nm程
度のSiO2 膜16を形成すると共に不純物領域15中
の不純物を活性化させる。そして、エッチング等によっ
てSiN膜13を除去する。
After that, the resist is removed and the SiN film 13 is removed.
Is used as an anti-oxidation mask for thermal oxidation, thermal diffusion, etc.
An SiO 2 film 16 having a film thickness of about 500 nm is formed in a portion where the N film 13 is not provided, and the impurities in the impurity region 15 are activated. Then, the SiN film 13 is removed by etching or the like.

【0006】次に、図8(a)に示す様に、SiO2
16及び必要な場合はPMOS型トランジスタの形成領
域を覆うレジスト(図示せず)をマスクにして、閾値電
圧調整用の不純物17をSi基板11の表面近傍にイオ
ン注入する。そして、SiO2 膜12を除去した後、S
iO2 膜16に囲まれているSi基板11の表面にゲー
ト酸化膜としてのSiO2 膜21を形成する。
Next, as shown in FIG. 8A, the SiO 2 film 16 and, if necessary, a resist (not shown) covering the formation region of the PMOS type transistor are used as a mask to make impurities for adjusting the threshold voltage. Ions 17 are implanted near the surface of the Si substrate 11. Then, after removing the SiO 2 film 12, S
A SiO 2 film 21 as a gate oxide film is formed on the surface of the Si substrate 11 surrounded by the iO 2 film 16.

【0007】その後、CVD法で多結晶Si膜22を堆
積させ、フォトリソグラフィ法によって多結晶Si膜2
2上でレジスト(図示せず)をゲート電極のパターンに
加工し、このレジストをマスクにして多結晶Si膜22
をエッチングする。この時、不純物領域15上のSiO
2 膜16と多結晶Si膜22とを、それらの一部同士で
重畳させる。
After that, a polycrystalline Si film 22 is deposited by the CVD method, and the polycrystalline Si film 2 is formed by the photolithography method.
2, a resist (not shown) is processed into a pattern of the gate electrode, and this resist is used as a mask to form the polycrystalline Si film 22.
Is etched. At this time, SiO on the impurity region 15
The 2 film 16 and the polycrystalline Si film 22 are partially overlapped with each other.

【0008】次に、図8(b)に示す様に、PMOS型
トランジスタの形成領域を覆うパターンにリソグラフィ
法でレジスト23を加工する。そして、このレジスト2
3と多結晶Si膜22とSiO2 膜16とをマスクにし
てSi基板11に不純物をイオン注入して、ソース領域
及びドレイン領域である高濃度のN型の不純物領域2
4、25を形成する。その後、レジスト23を除去すれ
ば、図5に示したこの一従来例が形成される。
Next, as shown in FIG. 8B, a resist 23 is processed by a lithographic method so as to form a pattern covering the formation region of the PMOS type transistor. And this resist 2
3 and the polycrystalline Si film 22 and the SiO 2 film 16 are used as masks to ion-implant impurities into the Si substrate 11 to form high-concentration N-type impurity regions 2 which are source regions and drain regions.
4 and 25 are formed. Then, if the resist 23 is removed, this one conventional example shown in FIG. 5 is formed.

【0009】以上の様にして製造した一従来例では、ド
レイン領域である不純物領域25からの空乏層が比較的
低濃度の不純物領域15で伸びるので、この不純物領域
15がチャネル領域のうちでドレイン領域側の端部にお
ける電界を緩和してドレイン耐圧を向上させるためのオ
フセットドレイン領域になっている。
In the conventional example manufactured as described above, since the depletion layer from the impurity region 25 which is the drain region extends in the impurity region 15 having a relatively low concentration, this impurity region 15 is the drain of the channel region. The offset drain region serves to relax the electric field at the end on the region side and improve the drain breakdown voltage.

【0010】[0010]

【発明が解決しようとする課題】ところが、上述の一従
来例では、図7(a)からも明らかな様に、レジスト1
4をパターニングして不純物領域15の範囲を定めてい
るので、低濃度の不純物領域15の長さをフォトリソグ
ラフィの限界に起因する加工最小幅よりも短くすること
ができない。従って、この一従来例では、不純物領域1
5に起因する寄生抵抗が大きく、高い電流駆動能力を得
ることが困難であった。
However, in the above-mentioned conventional example, as shown in FIG.
Since the range of the impurity region 15 is defined by patterning No. 4, the length of the low concentration impurity region 15 cannot be made shorter than the minimum processing width due to the limit of photolithography. Therefore, in this conventional example, the impurity region 1
Therefore, it was difficult to obtain a high current driving ability.

【0011】[0011]

【課題を解決するための手段】請求項1の電界効果型高
耐圧トランジスタは、オフセットドレイン領域とこのオ
フセットドレイン領域上のフィールド絶縁膜とが半導体
基板に設けられており、前記フィールド絶縁膜をゲート
電極の一部が覆っており、前記フィールド絶縁膜及び前
記ゲート電極の側方の前記半導体基板にドレイン領域が
設けられていることを特徴としている。
According to another aspect of the present invention, there is provided a field effect high breakdown voltage transistor, wherein an offset drain region and a field insulating film on the offset drain region are provided on a semiconductor substrate, and the field insulating film is a gate. A part of the electrode is covered, and a drain region is provided in the semiconductor substrate on the side of the field insulating film and the gate electrode.

【0012】請求項2の電界効果型高耐圧トランジスタ
の製造方法は、オフセットドレイン領域とこのオフセッ
トドレイン領域上のフィールド絶縁膜とを半導体基板に
形成する工程と、前記フィールド絶縁膜と一部同士で重
畳するゲート電極を前記半導体基板上に形成する工程
と、前記フィールド絶縁膜のうちで前記ゲート電極に覆
われていない部分を除去する工程と、前記除去の後に、
前記ゲート電極をマスクにして前記半導体基板にドレイ
ン領域を形成する工程とを具備することを特徴としてい
る。
According to a second aspect of the present invention, there is provided a method of manufacturing a field effect type high withstand voltage transistor, which comprises a step of forming an offset drain region and a field insulating film on the offset drain region on a semiconductor substrate, and a part of the field insulating film. A step of forming an overlapping gate electrode on the semiconductor substrate, a step of removing a portion of the field insulating film which is not covered by the gate electrode, and a step of removing the portion,
Forming a drain region on the semiconductor substrate using the gate electrode as a mask.

【0013】[0013]

【作用】本願の発明による電界効果型高耐圧トランジス
タ及びその製造方法では、フィールド絶縁膜とゲート電
極とが重畳している長さをオフセットドレイン領域の長
さにしている。
In the field effect type high withstand voltage transistor and the method of manufacturing the same according to the present invention, the length of the offset drain region is set to the overlapping length of the field insulating film and the gate electrode.

【0014】従って、フィールド絶縁膜を当初は加工最
小幅以上の幅で形成しても、加工最小幅よりも短い長さ
でゲート電極をフィールド絶縁膜に重畳させれば、フィ
ールド絶縁膜のうちでゲート電極に覆われていない部分
をその後に除去することによって、オフセットドレイン
領域の長さを加工最小幅よりも短くすることができる。
Therefore, even if the field insulating film is initially formed to have a width equal to or larger than the minimum processing width, if the gate electrode is superposed on the field insulating film with a length shorter than the minimum processing width, the field insulating film can be formed. By removing the portion not covered with the gate electrode after that, the length of the offset drain region can be made shorter than the minimum processing width.

【0015】[0015]

【実施例】以下、CMOS型半導体装置中に含まれてい
るNMOS型高耐圧トランジスタに適用した本願の発明
の一実施例を、図1〜4を参照しながら説明する。図1
が、本実施例のNMOS型高耐圧トランジスタを示して
いる。本実施例を製造するためには、図2に示す様に、
P型またはPウェルを有するSi基板31の表面に熱酸
化でSiO2 膜32を形成し、このSiO2 膜32上に
CVD法等でSiN膜33を堆積させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to an NMOS type high breakdown voltage transistor included in a CMOS type semiconductor device will be described below with reference to FIGS. FIG.
Shows the NMOS type high breakdown voltage transistor of this embodiment. In order to manufacture this example, as shown in FIG.
A SiO 2 film 32 is formed on the surface of a Si substrate 31 having a P type or P well by thermal oxidation, and a SiN film 33 is deposited on the SiO 2 film 32 by a CVD method or the like.

【0016】次に、図3(a)に示す様に、上述の一従
来例におけるレジスト14と同じパターンのレジスト3
4をフォトリソグラフィ法でSiN膜33上に形成し、
このレジスト34をマスクにしてSiN膜33をエッチ
ングする。
Next, as shown in FIG. 3A, a resist 3 having the same pattern as the resist 14 in the above-mentioned conventional example.
4 is formed on the SiN film 33 by photolithography,
The SiN film 33 is etched using the resist 34 as a mask.

【0017】次に、図3(b)に示す様に、レジスト3
4を除去し、NMOS型高耐圧トランジスタのドレイン
領域を形成すべき部分及びその近傍の部分上にのみ開口
を有するパターンのレジスト(図示せず)をフォトリソ
グラフィ法で形成する。そして、このレジストをマスク
にして不純物をSi基板31にイオン注入して、比較的
低濃度のN型の不純物領域35を形成する。
Next, as shown in FIG. 3B, the resist 3
4 is removed, and a resist (not shown) having a pattern having an opening only on the portion where the drain region of the NMOS high withstand voltage transistor is to be formed and the portion in the vicinity thereof is formed by photolithography. Then, using this resist as a mask, impurities are ion-implanted into the Si substrate 31 to form a relatively low concentration N-type impurity region 35.

【0018】その後、レジストを除去し、SiN膜33
を耐酸化マスクにした熱酸化や熱拡散等を行って、Si
N膜33が設けられていない部分に膜厚が500nm程
度のSiO2 膜36を形成すると共に不純物領域35中
の不純物を活性化させる。そして、エッチング等によっ
てSiN膜33を除去する。
After that, the resist is removed and the SiN film 33 is formed.
Is used as an anti-oxidation mask for thermal oxidation, thermal diffusion, etc.
A SiO 2 film 36 having a film thickness of about 500 nm is formed in a portion where the N film 33 is not provided, and the impurities in the impurity region 35 are activated. Then, the SiN film 33 is removed by etching or the like.

【0019】次に、図4(a)に示す様に、SiO2
36及び必要な場合はPMOS型トランジスタの形成領
域を覆うレジスト(図示せず)をマスクにして、閾値電
圧調整用の不純物37をSi基板31の表面近傍にイオ
ン注入する。そして、SiO2 膜32を除去した後、S
iO2 膜36に囲まれているSi基板31の表面にゲー
ト酸化膜としてのSiO2 膜41を形成する。
Next, as shown in FIG. 4A, the SiO 2 film 36 and, if necessary, a resist (not shown) covering the formation region of the PMOS type transistor are used as a mask, and impurities for threshold voltage adjustment are used. 37 is ion-implanted near the surface of the Si substrate 31. Then, after removing the SiO 2 film 32, S
A SiO 2 film 41 as a gate oxide film is formed on the surface of the Si substrate 31 surrounded by the iO 2 film 36.

【0020】その後、CVD法で多結晶Si膜42を堆
積させ、フォトリソグラフィ法によって多結晶Si膜4
2上でレジスト(図示せず)をゲート電極のパターンに
加工し、このレジストをマスクにして多結晶Si膜42
をエッチングする。この時、不純物領域35上のSiO
2 膜36と多結晶Si膜42とを、それらの一部同士で
重畳させる。
Then, a polycrystalline Si film 42 is deposited by the CVD method, and the polycrystalline Si film 4 is formed by the photolithography method.
2, a resist (not shown) is processed into a pattern of a gate electrode, and the resist is used as a mask to form the polycrystalline Si film 42.
Is etched. At this time, SiO on the impurity region 35
The 2 film 36 and the polycrystalline Si film 42 are partially overlapped with each other.

【0021】次に、図4(b)に示す様に、NMOS型
高耐圧トランジスタの形成領域上にのみ開口43aを有
するパターンにリソグラフィ法でレジスト43を加工
し、このレジスト43と多結晶Si膜42とをマスクに
してSiO2 膜36をエッチングする。
Next, as shown in FIG. 4B, a resist 43 is processed by a lithographic method into a pattern having an opening 43a only in the formation region of the NMOS high withstand voltage transistor, and the resist 43 and the polycrystalline Si film are processed. The SiO 2 film 36 is etched using 42 and 42 as a mask.

【0022】そして、レジスト43と多結晶Si膜42
とをマスクにしてSi基板31に不純物をイオン注入し
て、ソース領域及びドレイン領域である高濃度のN型の
不純物領域44、45を形成する。その後、レジスト4
3を除去すれば、図1に示した本実施例が形成される。
Then, the resist 43 and the polycrystalline Si film 42
Impurities are ion-implanted into the Si substrate 31 by using the and as masks to form high-concentration N-type impurity regions 44 and 45 which are source and drain regions. Then resist 4
If 3 is removed, the present embodiment shown in FIG. 1 is formed.

【0023】以上の様にして製造した本実施例では、図
1からも明らかな様に、SiO2 膜36と多結晶Si膜
42とを重畳させた長さがオフセットドレイン領域の長
さになっているが、この重畳の長さは加工最小幅よりも
短くすることが可能である。従って、不純物領域35に
よってドレイン耐圧を高くしつつ不純物領域35に起因
する寄生抵抗を小さくして、信頼性及び電流駆動能力の
何れもを高くすることができる。
In the present embodiment manufactured as described above, as is apparent from FIG. 1, the length in which the SiO 2 film 36 and the polycrystalline Si film 42 are overlapped is the length of the offset drain region. However, the overlapping length can be shorter than the minimum processing width. Therefore, it is possible to increase the drain breakdown voltage by the impurity region 35, reduce the parasitic resistance caused by the impurity region 35, and improve both the reliability and the current driving capability.

【0024】なお、以上の実施例では、上述の様に、図
4(b)の工程で、SiO2 膜36を選択的にエッチン
グし、Si基板31のうちでこのエッチングによって表
面が露出した部分に、ドレイン領域としての不純物領域
45を形成している。
In the above embodiment, as described above, in the step of FIG. 4B, the SiO 2 film 36 is selectively etched, and the portion of the Si substrate 31 whose surface is exposed by this etching is exposed. An impurity region 45 is formed as a drain region.

【0025】従って、本実施例では、図3(a)の工程
で形成したレジスト34のパターンを、既述の一従来例
における図7(a)の工程で形成したレジスト14のパ
ターンと同じにしているが、この一従来例におけるドレ
イン領域としての不純物領域25を形成するための素子
活性領域に対応するパターン部をレジスト34に必ずし
も設ける必要はない。
Therefore, in this embodiment, the pattern of the resist 34 formed in the step of FIG. 3A is made the same as the pattern of the resist 14 formed in the step of FIG. However, it is not always necessary to provide the resist 34 with a pattern portion corresponding to the element active region for forming the impurity region 25 as the drain region in the conventional example.

【0026】[0026]

【発明の効果】本願の発明による電界効果型高耐圧トラ
ンジスタ及びその製造方法では、オフセットドレイン領
域の長さを加工最小幅よりも短くすることができるの
で、オフセットドレイン領域によってドレイン耐圧を高
くしつつオフセットドレイン領域に起因する寄生抵抗を
小さくすることができる。従って、信頼性及び電流駆動
能力の何れもが高い電界効果型高耐圧トランジスタを提
供することができる。
In the field effect type high withstand voltage transistor and the manufacturing method thereof according to the present invention, since the length of the offset drain region can be made shorter than the minimum processing width, the drain withstand voltage can be increased by the offset drain region. The parasitic resistance caused by the offset drain region can be reduced. Therefore, it is possible to provide a field effect type high breakdown voltage transistor having high reliability and high current driving capability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の発明の一実施例によるNMOS型高耐圧
トランジスタの側断面図である。
FIG. 1 is a side sectional view of an NMOS high breakdown voltage transistor according to an embodiment of the present invention.

【図2】一実施例の最初の工程を示す側断面図である。FIG. 2 is a side sectional view showing a first step of an example.

【図3】図2に続く工程を順次に示す側断面図である。FIG. 3 is a side sectional view sequentially showing a step following FIG.

【図4】図3に続く工程を順次に示す側断面図である。FIG. 4 is a side sectional view sequentially showing a step following FIG.

【図5】本願の発明の一従来例によるNMOS型高耐圧
トランジスタの側断面図である。
FIG. 5 is a side sectional view of an NMOS type high breakdown voltage transistor according to a conventional example of the present invention.

【図6】一従来例の最初の工程を示す側断面図である。FIG. 6 is a side sectional view showing a first step of a conventional example.

【図7】図6に続く工程を順次に示す側断面図である。FIG. 7 is a side sectional view sequentially showing a step following FIG.

【図8】図7に続く工程を順次に示す側断面図である。FIG. 8 is a side sectional view sequentially showing a step following FIG.

【符号の説明】[Explanation of symbols]

31 Si基板 35 不純物領域 36 SiO2 膜 42 多結晶Si膜 45 不純物領域31 Si substrate 35 Impurity region 36 SiO 2 film 42 Polycrystalline Si film 45 Impurity region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オフセットドレイン領域とこのオフセッ
トドレイン領域上のフィールド絶縁膜とが半導体基板に
設けられており、 前記フィールド絶縁膜をゲート電極の一部が覆ってお
り、 前記フィールド絶縁膜及び前記ゲート電極の側方の前記
半導体基板にドレイン領域が設けられていることを特徴
とする電界効果型高耐圧トランジスタ。
1. An offset drain region and a field insulating film on the offset drain region are provided on a semiconductor substrate, a part of a gate electrode covers the field insulating film, and the field insulating film and the gate. A field effect type high breakdown voltage transistor, characterized in that a drain region is provided on the semiconductor substrate on the side of an electrode.
【請求項2】 オフセットドレイン領域とこのオフセッ
トドレイン領域上のフィールド絶縁膜とを半導体基板に
形成する工程と、 前記フィールド絶縁膜と一部同士で重畳するゲート電極
を前記半導体基板上に形成する工程と、 前記フィールド絶縁膜のうちで前記ゲート電極に覆われ
ていない部分を除去する工程と、 前記除去の後に、前記ゲート電極をマスクにして前記半
導体基板にドレイン領域を形成する工程とを具備するこ
とを特徴とする電界効果型高耐圧トランジスタの製造方
法。
2. A step of forming an offset drain region and a field insulating film on the offset drain region on a semiconductor substrate, and a step of forming a gate electrode partially overlapping the field insulating film on the semiconductor substrate. And a step of removing a portion of the field insulating film which is not covered with the gate electrode, and a step of forming a drain region in the semiconductor substrate after the removal using the gate electrode as a mask. A method of manufacturing a field-effect high-voltage transistor, comprising:
JP15998795A 1995-06-02 1995-06-02 High breakdown voltage field-effect transistor and its manufacture Pending JPH08330578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15998795A JPH08330578A (en) 1995-06-02 1995-06-02 High breakdown voltage field-effect transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15998795A JPH08330578A (en) 1995-06-02 1995-06-02 High breakdown voltage field-effect transistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH08330578A true JPH08330578A (en) 1996-12-13

Family

ID=15705530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15998795A Pending JPH08330578A (en) 1995-06-02 1995-06-02 High breakdown voltage field-effect transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH08330578A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314065A (en) * 2001-04-13 2002-10-25 Sanyo Electric Co Ltd Mos semiconductor device and its manufacturing method
WO2009012276A3 (en) * 2007-07-16 2009-03-26 Ibm Asymmetric field effect transistor structure and method
JP2010034302A (en) * 2008-07-29 2010-02-12 Seiko Instruments Inc Semiconductor device and method of manufacturing the same
US7723748B2 (en) 2007-10-02 2010-05-25 Ricoh Company, Ltd. Semiconductor device including electrostatic discharge protection circuit
US7843016B2 (en) 2007-07-16 2010-11-30 International Business Machines Corporation Asymmetric field effect transistor structure and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314065A (en) * 2001-04-13 2002-10-25 Sanyo Electric Co Ltd Mos semiconductor device and its manufacturing method
WO2009012276A3 (en) * 2007-07-16 2009-03-26 Ibm Asymmetric field effect transistor structure and method
US7843016B2 (en) 2007-07-16 2010-11-30 International Business Machines Corporation Asymmetric field effect transistor structure and method
US7915670B2 (en) 2007-07-16 2011-03-29 International Business Machines Corporation Asymmetric field effect transistor structure and method
US8053314B2 (en) 2007-07-16 2011-11-08 International Business Machines Corporation Asymmetric field effect transistor structure and method
US8288806B2 (en) 2007-07-16 2012-10-16 International Business Machines Corporation Asymmetric field effect transistor structure and method
US7723748B2 (en) 2007-10-02 2010-05-25 Ricoh Company, Ltd. Semiconductor device including electrostatic discharge protection circuit
JP2010034302A (en) * 2008-07-29 2010-02-12 Seiko Instruments Inc Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2707977B2 (en) MOS type semiconductor device and method of manufacturing the same
JPH02172253A (en) Semiconductor device and its manufacture
JPH10223771A (en) Semiconductor device and fabrication thereof
JP2010212636A (en) Semiconductor device and method of manufacturing the same
JP2715929B2 (en) Semiconductor integrated circuit device
JP2951893B2 (en) Method of manufacturing transistor for semiconductor device
JPH0730107A (en) High voltage withstand transistor and its manufacture
JPH08330578A (en) High breakdown voltage field-effect transistor and its manufacture
KR20020013427A (en) Insulated gate semiconductor device and manufacturing method thereof
JP2834058B2 (en) Method for manufacturing semiconductor device
JPH05283687A (en) Production of semiconductor element
JP3439415B2 (en) Method for manufacturing semiconductor device
JPH09223793A (en) Semiconductor device and its manufacture
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JPH08181223A (en) Manufacture of semiconductor device
JP2004079790A (en) Complete depletion type soi-mos transistor and its manufacturing method
KR100206130B1 (en) Method of fabricating cmos semiconductor device
JPH0955502A (en) Transistor and its manufacture
JP2992312B2 (en) Semiconductor device
JP2594121B2 (en) Method for manufacturing semiconductor device
JP3279827B2 (en) Method for manufacturing MOS type semiconductor device
JP2954311B2 (en) MOS transistor
JPH05283425A (en) Manufacture of mis type semiconductor device
JPH0410564A (en) Semiconductor integrated circuit device and manufacture thereof
KR0155301B1 (en) Method for fabricating mosfet