JPH06330139A - Method for smelting steel for line pipe having excellent sulfide stress crack resistance of weld zone - Google Patents

Method for smelting steel for line pipe having excellent sulfide stress crack resistance of weld zone

Info

Publication number
JPH06330139A
JPH06330139A JP5124452A JP12445293A JPH06330139A JP H06330139 A JPH06330139 A JP H06330139A JP 5124452 A JP5124452 A JP 5124452A JP 12445293 A JP12445293 A JP 12445293A JP H06330139 A JPH06330139 A JP H06330139A
Authority
JP
Japan
Prior art keywords
sulfide stress
steel
stress cracking
less
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5124452A
Other languages
Japanese (ja)
Inventor
Akihiko Takahashi
明彦 高橋
Hiroyuki Ogawa
洋之 小川
Takuya Hara
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5124452A priority Critical patent/JPH06330139A/en
Publication of JPH06330139A publication Critical patent/JPH06330139A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

PURPOSE:To execute ladle refining of steel having the excellent sulfide stress crack resistance in moist hydrogen sulfide atmosphere. CONSTITUTION:The steel consisting, by weight %, of 0.03 to 0.09 C, 0.1 to 0.4 Si, 0.5 to 1.0 Mn, <=0.015 P, (0.0010 S, 0.010 to 0.050 Nb, 0.005 to 0.03 Al, 0.001 to 0.003 Ca, 0.005 to 0.025 Ti, <=0.0050 O and (%Ca{1-98(%0)}/(%S)>1.7 and 0.07<(%Ca)/(%Al)<0.17 and 6<(%Si)/(%Al)<25 and the balance iron and inevitable impurities is subjected to ladle refining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿潤な硫化水素環境に
おいて優れた溶接部の耐硫化物応力割れ性を有するAP
IグレードX42からX56のラインパイプ用鋼の取鍋
精錬に関するものである。
This invention relates to an AP having excellent weld sulfide stress cracking resistance in a wet hydrogen sulfide environment.
The present invention relates to ladle refining of I grade X42 to X56 line pipe steel.

【0002】[0002]

【従来の技術】近年生産される石油、天然ガス中に硫化
水素を含む場合が非常に多くなっているため、これらの
石油、天然ガスを輸送するラインパイプは海水等の水が
共存した硫化水素環境(サワー環境)にさらされる可能
性が高くなっている。サワー環境中では、鋼表面の腐食
による鋼中への水素の侵入が硫化水素の触媒作用により
促進される。一方、操業中のラインパイプには内部を通
過する流体の圧力により周方向の応力、即ちフープ応力
が作用する。
2. Description of the Related Art Since oil and natural gas produced in recent years contain hydrogen sulfide very often, the line pipes for transporting these oil and natural gas are hydrogen sulfide in the presence of water such as seawater. More likely to be exposed to the environment (sour environment). In the sour environment, hydrogen penetration into the steel due to corrosion of the steel surface is promoted by the catalytic action of hydrogen sulfide. On the other hand, a stress in the circumferential direction, that is, a hoop stress acts on the line pipe during operation due to the pressure of the fluid passing through the inside.

【0003】このような環境条件のもとで生じるライン
パイプの破壊原因として硫化物応力割れが知られてい
る。特に溶接部の硬度の高い部分で生じる硫化物応力割
れが多く経験されてきた。そこで、硫化物応力割れの防
止方法としては、溶接部の最高硬さを規制することが一
般的となっており、通常はビッカース硬度で248以下
とするように求められることが多い。この要求に対応す
るために、鋼管製造メーカーは鋼管材の炭素等量を下
げ、それによる強度低下を補うために制御圧延、加速冷
却からなる加工熱処理法、いわゆるTMCPにより素材
を製造している。TMCP技術の導入は、溶接部の硬化
防止の他、金属組織制御により鋼管母材の耐硫化応力割
れ性を向上した。
[0003] Sulfide stress cracking is known as a cause of line pipe failure that occurs under such environmental conditions. In particular, sulfide stress cracking that occurs in the high hardness portion of the weld has been frequently experienced. Therefore, as a method for preventing sulfide stress cracking, it is general to regulate the maximum hardness of the welded portion, and it is usually required to set the Vickers hardness to 248 or less. In order to meet this demand, steel pipe manufacturers reduce the carbon equivalent of the steel pipe material and manufacture the material by a so-called TMCP, which is a thermomechanical treatment method including controlled rolling and accelerated cooling, in order to compensate for the strength reduction. The introduction of TMCP technology has improved the resistance to sulfide stress cracking of the steel pipe base material by controlling the metallographic structure, as well as preventing the hardening of the weld.

【0004】しかし、TMCP鋼では、低炭素等量故に
必然的に溶接熱影響部(HAZ)に母材よりも強度の低
い軟化領域が生じる。特に溶接入熱の大きいUOE鋼管
では、軟化度が大きい。ラインパイプの耐硫化物応力割
れ性を評価する手法として、NACE規格TM0177
−90があるが、この場合、負荷応力の設定基準は母材
の強度に基づいて決定されるため、軟化部を含むTMC
P鋼では応力条件が厳しくなる軟化部で優先的に割れが
生じることが知られている。また、最近英国を中心とし
て、ラインパイプの耐硫化物応力割れ性評価試験として
実管で試験を行う試験法、通称CAPCIS試験が規格
化されようとしている。CAPCIS試験ではHAZ軟
化部を含めて評価される上、評価手段として超音波探傷
が採られるため軟化部に生じた微小な内部割れも問題視
され得るという厳しいものである。
However, in the TMCP steel, a softening region having a lower strength than the base metal is inevitably formed in the weld heat affected zone (HAZ) because of the low carbon equivalent. In particular, a UOE steel pipe having a high welding heat input has a high degree of softening. As a method for evaluating the sulfide stress crack resistance of line pipes, NACE standard TM0177 is used.
-90, but in this case, the setting criterion for the load stress is determined based on the strength of the base material, so TMC including the softened portion is included.
It is known that in P steel, cracking occurs preferentially in the softened portion where the stress condition becomes severe. In addition, recently, mainly in the United Kingdom, a test method for performing a sulfide stress cracking resistance evaluation test of a line pipe, a so-called CAPCIS test, is being standardized. In the CAPCIS test, the HAZ softened portion is included in the evaluation, and since ultrasonic flaw detection is adopted as an evaluation means, minute internal cracks generated in the softened portion can be regarded as a problem.

【0005】この軟化部の硫化物応力割れを防止する方
法として、従来、(1)軟化することを見越して母材強
度を高く設定する方法が採られてきた。また、(2)軟
化を防止する方法として、以下の対策が開示されてい
る。 窒化物などの析出硬化によりHAZの強度低下を防止
する方法(例えば、特開昭62−284043号公
報)。 溶接後溶接部を熱処理して軟化を改善する方法(例え
ば、特開平4−168220号公報)。 これらの手段は、軟化部の強度増加あるいは軟化防止と
いう意味では有効であるが、実際にラインパイプの製造
に適用するには次のような欠点がある。
As a method of preventing the sulfide stress cracking of the softened portion, conventionally, (1) a method of setting the base material strength to a high value in anticipation of softening has been adopted. Further, (2) the following measures are disclosed as a method for preventing softening. A method of preventing the HAZ from being deteriorated in strength by precipitation hardening of a nitride or the like (for example, JP-A-62-284043). A method of heat-treating a welded portion after welding to improve softening (for example, JP-A-4-168220). These means are effective in terms of increasing the strength of the softened portion or preventing softening, but have the following drawbacks when actually applied to the production of line pipes.

【0006】[0006]

【発明が解決しようとする課題】上記(1)のように母
材強度を高く設定した場合、例えば、X46の需要に対
してX60の強度を有する鋼管を供給した場合、いたず
らに合金コストなどの製造コストを上げることになる。
また、需要家によっては、強度の上限を設定するので、
このような方法は全く通用しない。
When the base metal strength is set high as described in (1) above, for example, when a steel pipe having a strength of X60 is supplied in response to a demand of X46, the cost of the alloy is unnecessarily increased. It will increase the manufacturing cost.
Also, depending on the customer, since the upper limit of strength is set,
Such a method does not work at all.

【0007】一方、上記(2)ののように析出硬化を
利用した場合、確かに軟化の程度は軽減されるが、軟化
部を皆無にするまでには至らない。また、析出元素とし
てVの窒化物を利用するのでラインパイプにおいて重要
な特性のひとつである溶接部の破壊靱性を低下させるこ
とになる。また、上記(2)のの方法は確かに軟化防
止の手段ではあるが、UOE鋼管の製造に適用するため
には大型の熱処理手段を必要とする上に、生産性を阻害
しコスト増となるため現実的な方法とは言えない。以上
のように溶接部の耐硫化物応力割れ性を得るための方法
として、軟化を改善するための手段が少なく、採り得た
としても工業的に有利な手段とはならない。
On the other hand, when precipitation hardening is used as in the above (2), the degree of softening is certainly reduced, but the softened portion is not completely eliminated. Further, since the nitride of V is used as the precipitation element, the fracture toughness of the welded portion, which is one of the important characteristics in the line pipe, is reduced. Further, although the method (2) is certainly a means for preventing softening, a large heat treatment means is required for application to the production of UOE steel pipes, and productivity is impaired, resulting in an increase in cost. Therefore, it is not a realistic method. As described above, as a method for obtaining the sulfide stress cracking resistance of the welded portion, there are few means for improving softening, and even if it can be adopted, it is not an industrially advantageous means.

【0008】従って、HAZ軟化の存在を前提として、
軟化部の耐硫化物応力割れ性を確保することが溶接部の
耐硫化物応力割れ性に優れたラインパイプを製造するに
あたっての課題となる。
Therefore, assuming the presence of HAZ softening,
Securing the sulfide stress cracking resistance of the softened part is an issue in manufacturing a line pipe having excellent sulfide stress cracking resistance of the welded part.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
有利に解決するもので、取鍋精錬において硫化物の形態
制御に必要なCaを添加した上で、Ca、Al、Siの
添加量を調整して硫化物応力割れの発生起点となる酸化
物の形態を制御し、軟化部でも耐硫化物応力割れ性を得
るというものである。
The present invention advantageously solves the above-mentioned problems by adding Ca, which is necessary for controlling the morphology of sulfides in ladle refining, and then adding Ca, Al and Si. By adjusting the amount, the morphology of the oxide, which is the starting point of sulfide stress cracking, is controlled to obtain sulfide stress cracking resistance even in the softened portion.

【0010】すなわち、本発明の要旨とするところは、
重量%で、C :0.03〜0.09%、Si:0.1
〜0.4%、Mn:0.5〜1.0%、P :0.01
5%以下、S :0.0010%以下、Nb:0.01
0〜0.050%、Al:0.005〜0.03%、C
a:0.001〜0.003%、Ti:0.005〜
0.025%、O :0.0050%以下を含有し、さ
ら必要に応じて、V :0.01〜0.1%、Ni:
0.05〜0.5%、Cu:0.05〜0.5%、C
r:0.05〜0.5%、Mo:0.05〜0.5%の
1種または2種以上を含有し、残部が鉄及び不可避不純
物からなる鋼の取鍋精錬に際して、下記の(1)、
(2)及び(3)式を満足するようにCa、Al、Si
の添加量を調整することを特徴とする溶接部の耐硫化物
応力割れ性に優れたラインパイプ用鋼の溶製方法にあ
る。
That is, the gist of the present invention is that
% By weight, C: 0.03 to 0.09%, Si: 0.1
To 0.4%, Mn: 0.5 to 1.0%, P: 0.01
5% or less, S: 0.0010% or less, Nb: 0.01
0-0.050%, Al: 0.005-0.03%, C
a: 0.001-0.003%, Ti: 0.005-
0.025%, O: 0.0050% or less is contained, and if necessary, V: 0.01 to 0.1%, Ni:
0.05-0.5%, Cu: 0.05-0.5%, C
In the ladle refining of steel containing one or two or more of r: 0.05 to 0.5% and Mo: 0.05 to 0.5%, and the balance consisting of iron and unavoidable impurities, the following ( 1),
Ca, Al, Si so as to satisfy the expressions (2) and (3).
The method for producing a steel for line pipes having excellent resistance to sulfide stress cracking of welded portions is characterized by adjusting the addition amount of.

【0011】[0011]

【数3】 [Equation 3]

【0012】 0.07<(%Ca)/(%Al)<0.17 …(2) 6<(%Si)/(%Al)<25 …(3)0.07 <(% Ca) / (% Al) <0.17 (2) 6 <(% Si) / (% Al) <25 (3)

【0013】[0013]

【作用】本発明者らは、実機で製造したX42からX5
2グレードの種々のUOEラインパイプについて割れ感
受性の高い溶接軟化部の硫化物応力割れを再現する実験
を行い、軟化部に生じる初期の割れの破面を観察して割
れの発生起点を観察した。その結果、Caによる硫化物
の形態制御が十分に行われていない場合、比較的大きな
割れが生じ、割れは伸長したMnSを起点とすること、
Caによる硫化物の形態制御が十分に行われている場
合、比較的小さな割れが生じ、割れの起点は、群状に存
在するCaO・Al2 3 系酸化物またはAl2 3
SiO2 系酸化物であることが判明した。そこで、本発
明者は軟化部の硫化物応力割れを防止するには、まず、
硫化物の形態制御を十分に行うことが必要であると考え
た。実機で製造したX42からX56グレードの種々の
UOEラインパイプについて調査した結果、取鍋精錬で
硫化物の形態制御を十分に行うために必要なCa量に関
して、下記(1)式を満足するすることが必要であるこ
とを知見した。
[Function] The inventors of the present invention have manufactured X42 to X5 manufactured on an actual machine.
Experiments were performed to reproduce sulfide stress cracking in the weld softened portion having high crack susceptibility for two grades of various UOE line pipes, and the starting point of cracking was observed by observing the fracture surface of the initial crack generated in the softened portion. As a result, when the sulfide morphology control by Ca is not sufficiently performed, relatively large cracks occur, and the cracks start from elongated MnS,
When the sulfide morphology control by Ca is sufficiently performed, relatively small cracks occur, and the origins of the cracks are CaO.Al 2 O 3 based oxides or Al 2 O 3
It was found to be a SiO 2 type oxide. Therefore, in order to prevent the sulfide stress cracking of the softened portion, the present inventor first
It was considered necessary to sufficiently control the morphology of sulfides. As a result of investigating various UOE line pipes of X42 to X56 grades manufactured on an actual machine, it is necessary to satisfy the following formula (1) with respect to the amount of Ca necessary for sufficiently controlling the form of sulfide in ladle refining. It was found that

【0014】[0014]

【数4】 [Equation 4]

【0015】本条件を満足した上で、酸化物の存在状態
がCaとAlの添加量及びSiとAlの添加量により異
なると推量し、Ca/Al及びSi/Alを変化させた
種々のUOEラインパイプについて、シーム溶接部から
溶接線に垂直方向にNACE規格TM0177−90
method Aに従う試験片を作製し、同規格に従い
定荷重試験を実施し、720時間後に試験片が破断しな
い限界の応力σthを求めた。σthを鋼管の規格最小
降伏応力SMYSで規格化し、σth/SMYS≧0.
8をもって、優れた耐硫化物応力割れ性を有すると判断
し、溶接部の硫化物応力割れの発生状況を検討した。図
1に示すように、取鍋精錬において下記の(2)式及び
(3)式を満足すれば軟化部でも優れた耐硫化物応力割
れ性が得られることを知見するに至った。
After satisfying these conditions, it is assumed that the existence state of oxides varies depending on the addition amounts of Ca and Al and the addition amounts of Si and Al, and various Ca / Al and Si / Al UOEs are changed. Regarding line pipe, NACE standard TM0177-90 from the seam welded portion in the direction perpendicular to the weld line.
A test piece according to method A was prepared, a constant load test was carried out according to the same standard, and a stress σth at a limit at which the test piece did not break was determined after 720 hours. σth is normalized by the standard minimum yield stress SMYS of the steel pipe, and σth / SMYS ≧ 0.
8, it was judged that it had excellent sulfide stress cracking resistance, and the occurrence of sulfide stress cracking in the weld was examined. As shown in FIG. 1, it has been found that excellent sulfide stress cracking resistance can be obtained even in the softened portion if the following expressions (2) and (3) are satisfied in ladle refining.

【0016】 0.07<(%Ca)/(%Al)<0.17 …(2) 6<(%Si)/(%Al)<25 …(3) 以上の事実に基づき、後述する理由で化学成分を限定し
た上で、取鍋精錬で上記の条件が満足されれば、溶接部
の耐硫化物応力割れ性に優れたAPIグレードX46か
らX52のラインパイプの製造が可能であるという結論
を得た。
0.07 <(% Ca) / (% Al) <0.17 (2) 6 <(% Si) / (% Al) <25 (3) Based on the above facts, the reason to be described later If the above conditions are satisfied in ladle refining after limiting the chemical components with, the conclusion is that it is possible to manufacture API grade X46 to X52 line pipes with excellent resistance to sulfide stress cracking in welds. Got

【0017】次に本発明における成分限定理由を述べ
る。Cは、強化元素であるため、所望の強度を得るため
に0.03%以上とする。一方、多量に添加すると、ラ
インパイプの母材、溶接部の硬度が高くなり、靱性が低
下することに加え、硫化水素環境中で、硫化物応力割れ
が生じやすくなるため0.09%以下とする。
Next, the reasons for limiting the components in the present invention will be described. Since C is a strengthening element, it is made 0.03% or more to obtain a desired strength. On the other hand, if added in a large amount, the hardness of the base material of the line pipe and the welded portion will increase, the toughness will decrease, and sulfide stress cracking will easily occur in a hydrogen sulfide environment, so 0.09% or less. To do.

【0018】Siは脱酸元素であり、0.1%未満で
は、十分に脱酸力が得られないため、また、0.4%を
超えると鋼を脆化させるため0.1〜0.4%とする。
Mnは、硫化物応力割れの発生起点となるMnSを形成
するとともに、鋼の脆化を促進するPと共偏析して、割
れの伝播、進展を助長するので、Mnの添加量は、でき
るだけ低い方が望ましい。しかし、Mnは強度、靱性を
得る上で不可欠の元素であるから、X42からX52の
ラインパイプの強度を得るため、0.5〜1.0%とす
る。
Si is a deoxidizing element. If it is less than 0.1%, sufficient deoxidizing power cannot be obtained, and if it exceeds 0.4%, the steel is embrittled, so that 0.1 to 0. 4%.
Mn forms MnS, which is a starting point of sulfide stress cracking, and co-segregates with P that promotes embrittlement of steel to promote crack propagation and progress. Therefore, the amount of Mn added is as low as possible. Is preferable. However, since Mn is an essential element for obtaining strength and toughness, it is set to 0.5 to 1.0% in order to obtain the strength of the line pipe from X42 to X52.

【0019】Pは偏析により硫化物応力割れの伝播を起
こしやすくする元素で、低い方が望ましく、0.015
%を上限とする。SはMnと結びついて硫化物応力割れ
の発生起点であるMnSを形成するため、極力低い方が
望ましい。耐割れ性を安定して得るという観点から、
0.0010%を上限とする。
P is an element that facilitates the propagation of sulfide stress cracking due to segregation, and the lower the better, 0.015
% Is the upper limit. Since S is combined with Mn to form MnS, which is the starting point of sulfide stress cracking, S is preferably as low as possible. From the viewpoint of obtaining stable crack resistance,
The upper limit is 0.0010%.

【0020】Nbは圧延組織の細粒化、焼入性の向上と
析出硬化のため0.010%以上添加するが、0.05
0%を超えて添加しても多量に添加することによる効果
は小さく、むしろ粗大な炭化物を形成して耐水素誘起割
れ性を低下するので、0.050%を上限とする。Al
は脱酸元素として重要であるが、多量に添加すると鋼を
汚染し、また靱性を低下させるので、0.005〜0.
03%とする。
Nb is added in an amount of 0.010% or more in order to make the rolling structure finer grain, improve hardenability and precipitation hardening.
Even if added over 0%, the effect of adding a large amount is small, and rather coarse carbides are formed and hydrogen-induced cracking resistance is lowered, so 0.050% is made the upper limit. Al
Is important as a deoxidizing element, but if added in a large amount, it contaminates the steel and reduces toughness, so 0.005 to 0.
It is set to 03%.

【0021】CaはMnS等の硫化物系介在物の形状を
制御するために、0.001%以上添加するが、多量に
添加すると鋼が汚染されるので0.003%以下とす
る。Ti添加量の下限0.005%は、微細なTiNを
形成し、ミクロ組織の細粒化が期待される最小量であ
り、上限はTiCによる靱性低下が起きない条件から
0.025%とする。
[0021] Ca is added in an amount of 0.001% or more in order to control the shape of sulfide inclusions such as MnS. However, if added in a large amount, the steel is contaminated, so Ca is made 0.003% or less. The lower limit of 0.005% of the amount of Ti added is the minimum amount at which fine TiN is formed and micronization of the microstructure is expected, and the upper limit is 0.025% from the condition that the toughness does not decrease due to TiC. .

【0022】Oは鋼中に残存し酸化物を形成するが、O
量が多く、その結果酸化物が多くなると、水素誘起割
れ、硫化物応力割れの発生起点となるほか、靱性も低下
させるので、0.0050%を上限とする。本発明で
は、上記元素に加えて必要に応じてさらにV、Ni、C
u、Cr、Moの1種または2種以上を添加し得る。
O remains in the steel to form an oxide, but O
When the amount is large, and as a result, the amount of oxide is large, it becomes a starting point of hydrogen-induced cracking and sulfide stress cracking and also lowers toughness, so 0.0050% is made the upper limit. In the present invention, in addition to the above elements, V, Ni, C may be further added if necessary.
One, two or more of u, Cr and Mo may be added.

【0023】Vは強化元素として0.01%以上添加
し、過剰に添加すると靱性を低下させるので0.1%以
下とする。Ni、Cu、Cr、Moはいずれも鋼の焼入
性を増大し、強度を増加する必要がある場合に添加する
が、過度の添加により低温変態生成物が形成され靱性及
び耐水素誘起割れ性が損なわれるので、それぞれ0.5
%を上限とする。また、0.05%未満では添加効果が
小さいため、それぞれ0.05%を下限とする。
V is added as a strengthening element in an amount of 0.01% or more, and if added excessively, the toughness is lowered, so V is made 0.1% or less. Ni, Cu, Cr, and Mo are all added when it is necessary to increase the hardenability and strength of steel, but excessive addition forms a low temperature transformation product, resulting in toughness and hydrogen-induced cracking resistance. Is impaired, so 0.5
% Is the upper limit. Further, if less than 0.05%, the effect of addition is small, so 0.05% is the lower limit.

【0024】本発明は、上記成分を有するラインパイプ
用鋼の取鍋精錬に際して、Ca、Al、Si添加量を前
記式(1)、(2)、(3)に従い調整して、優れた溶
接部の耐硫化物応力割れ性を付与する。式(1)は、比
較的大きな硫化物応力割れの原因となる伸長したMnS
の生成を防止するため、硫化物の形態制御を十分に行う
のに必要な条件である。前記式(2)は、比較的小さな
硫化物応力割れの原因となる群状に存在するCaO・A
2 3 系酸化物の生成を防止する条件、前記式(3)
は比較的小さな硫化物応力割れの原因となる群状に存在
するAl2 3 ・SiO2 系酸化物の生成を防止する条
件である。これらの条件は、鋼管の母材の耐硫化物応力
割れ性を得るためにも十分な条件である。
The present invention provides excellent welding by adjusting the amounts of Ca, Al and Si added in accordance with the above formulas (1), (2) and (3) in ladle refining of line pipe steel having the above-mentioned components. Imparts sulfide stress cracking resistance to the part. Equation (1) shows that elongated MnS causes relatively large sulfide stress cracking.
This is a condition necessary to sufficiently control the morphology of sulfides in order to prevent the formation of sulfide. The above formula (2) is CaO · A existing in a group that causes relatively small sulfide stress cracking.
Conditions for preventing formation of l 2 O 3 -based oxide, the above formula (3)
Is a condition for preventing the formation of Al 2 O 3 .SiO 2 -based oxides existing in groups that cause relatively small sulfide stress cracking. These conditions are also sufficient for obtaining the sulfide stress cracking resistance of the base material of the steel pipe.

【0025】[0025]

【実施例】表1、表2(表1につづく)に化学成分を示
す鋼を転炉溶製し、取鍋精錬で成分の調整を行った後、
連続鋳造でスラブを製造し、厚板圧延を実施後、UOE
鋼管に造管した。鋼管のサイズは、外径が約30イン
チ、管厚が約20mmで、各鋼管は成分により異なるが
API規格X42からX52を満足する。シーム溶接部
から溶接線に垂直方向にNACE規格TM0177−9
0 method Aに従う試験片を採取して作製し、
シーム溶接部から180°離れた鋼管の母材部より同様
の試験片を採取して作製した。同規格に従い定荷重試験
を実施し、720時間後に試験片が破断しない限界の応
力σthを求めた。σthを鋼管の規格最小降伏応力S
MYSで規格化し、σth/SMYS≧0.8をもっ
て、優れた耐硫化物応力割れ性を有すると判断した。
[Example] Steels having chemical compositions shown in Tables 1 and 2 (following Table 1) were melted in a converter, and the components were adjusted by ladle refining.
Slab is manufactured by continuous casting, and after rolling thick plate, UOE
It was made into a steel pipe. The size of the steel pipe has an outer diameter of about 30 inches and a pipe thickness of about 20 mm, and each steel pipe satisfies API standards X42 to X52, although it depends on the composition. NACE standard TM0177-9 from the seam weld to the direction perpendicular to the weld line
A test piece according to 0 method A was sampled and produced,
A similar test piece was sampled from the base material of the steel pipe 180 ° away from the seam weld. A constant load test was performed according to the same standard, and after 720 hours, a limit stress σth at which the test piece did not break was determined. σth is the standard minimum yield stress S of the steel pipe
It was judged to have excellent sulfide stress cracking resistance by standardizing with MYS and having σth / SMYS ≧ 0.8.

【0026】表2に示すように、本発明に従う条件で
は、いずれの場合も溶接部、母材ともσth/SMYS
≧0.8であり、優れた耐硫化物応力割れ性が得られ
た。しかし、比較例1では式(1)の値が、比較例2で
はCa量と式(1)の値が、比較例3ではS量と式
(1)の値が、比較例4、5では式(2)の値が、比較
例6、7では式(3)の値が、比較例8、9では式
(2)の値と式(3)の値が本発明の範囲を逸脱するた
めに、それぞれ耐硫化物応力割れ性が劣化している。
As shown in Table 2, under the conditions according to the present invention, in both cases, σth / SMYS for both the weld and the base metal.
≧ 0.8, and excellent sulfide stress cracking resistance was obtained. However, in Comparative Example 1, the value of formula (1), in Comparative example 2 the amount of Ca and the value of formula (1), in Comparative example 3 the amount of S and the value of formula (1), and in Comparative examples 4 and 5, The values of the formula (2), the values of the formula (3) in the comparative examples 6 and 7, and the values of the formula (2) and the formula (3) in the comparative examples 8 and 9 are outside the scope of the present invention. In addition, the sulfide stress cracking resistance is deteriorated.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】本発明により、湿潤な硫化水素環境にお
いて優れた溶接部の耐硫化物応力割れ性を有する、AP
IグレードX42からX52のラインパイプ用鋼が得ら
れるため、工業的効果は著しく大きい。
INDUSTRIAL APPLICABILITY According to the present invention, AP having excellent resistance to sulfide stress cracking of welds in a humid hydrogen sulfide environment
I grades X42 to X52 steels for line pipes are obtained, so that the industrial effect is remarkably large.

【図面の簡単な説明】[Brief description of drawings]

【図1】取鍋精錬で、Ca/Al比が0.07から0.
17でSi/Al比が6から25の範囲の場合、溶接部
の耐硫化物応力割れ抵抗が高いことを示す図である。
[Fig. 1] Ca / Al ratio of 0.07 to 0.
17 is a diagram showing that the sulfide stress cracking resistance of the welded portion is high when the Si / Al ratio in 17 is in the range of 6 to 25. FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.03〜0.09%、 Si:0.1〜0.4%、 Mn:0.5〜1.0%、 P :0.015%以下、 S :0.0010%以下、 Nb:0.010〜0.050%、 Al:0.005〜0.03%、 Ca:0.001〜0.003%、 Ti:0.005〜0.025%、 O :0.0050%以下を含有し、残部が鉄及び不可
避不純物からなる鋼の取鍋精錬に際して、下記の
(1)、(2)及び(3)式を満足するようにCa、A
l、Siの添加量を調整することを特徴とする溶接部の
耐硫化物応力割れ性に優れたラインパイプ用鋼の溶製方
法。 【数1】 0.07<(%Ca)/(%Al)<0.17 …(2) 6<(%Si)/(%Al)<25 …(3)
1. By weight%, C: 0.03 to 0.09%, Si: 0.1 to 0.4%, Mn: 0.5 to 1.0%, P: 0.015% or less, S: 0.0010% or less, Nb: 0.010 to 0.050%, Al: 0.005 to 0.03%, Ca: 0.001 to 0.003%, Ti: 0.005 to 0.025. %, O: 0.0050% or less, and the balance of Ca and A to satisfy the following formulas (1), (2) and (3) in the ladle refining of steel containing the balance of iron and inevitable impurities.
1. A method of melting steel for line pipes, which is excellent in sulfide stress cracking resistance of a welded portion, characterized by adjusting an addition amount of 1 and Si. [Equation 1] 0.07 <(% Ca) / (% Al) <0.17 (2) 6 <(% Si) / (% Al) <25 (3)
【請求項2】 重量%で、 C :0.03〜0.09%、 Si:0.1〜0.4%、 Mn:0.5〜1.0%、 P :0.015%以下、 S :0.0010%以下、 Nb:0.010〜0.050%、 Al:0.005〜0.03%、 Ca:0.001〜0.003%、 Ti:0.005〜0.025%、 O :0.0050%以下を含有し、 V :0.01〜0.1%、 Ni:0.05〜0.5%、 Cu:0.05〜0.5%、 Cr:0.05〜0.5%、 Mo:0.05〜0.5%の1種または2種以上を含有
し、残部が鉄及び不可避不純物からなる鋼の取鍋精錬に
際して、下記の(1)、(2)及び(3)式を満足する
ようにCa、Al、Siの添加量を調整することを特徴
とする溶接部の耐硫化物応力割れ性に優れたラインパイ
プ用鋼の溶製方法。 【数2】 0.07<(%Ca)/(%Al)<0.17 …(2) 6<(%Si)/(%Al)<25 …(3)
2. By weight%, C: 0.03 to 0.09%, Si: 0.1 to 0.4%, Mn: 0.5 to 1.0%, P: 0.015% or less, S: 0.0010% or less, Nb: 0.010 to 0.050%, Al: 0.005 to 0.03%, Ca: 0.001 to 0.003%, Ti: 0.005 to 0.025. %, O: 0.0050% or less, V: 0.01 to 0.1%, Ni: 0.05 to 0.5%, Cu: 0.05 to 0.5%, Cr: 0. In the ladle refining of steel containing one or two or more of 05 to 0.5% and Mo: 0.05 to 0.5%, and the balance being iron and inevitable impurities, the following (1), ( A line pie excellent in sulfide stress cracking resistance of welds, characterized in that the addition amounts of Ca, Al and Si are adjusted so as to satisfy the expressions (2) and (3). The method of melting of use steel. [Equation 2] 0.07 <(% Ca) / (% Al) <0.17 (2) 6 <(% Si) / (% Al) <25 (3)
JP5124452A 1993-05-26 1993-05-26 Method for smelting steel for line pipe having excellent sulfide stress crack resistance of weld zone Withdrawn JPH06330139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5124452A JPH06330139A (en) 1993-05-26 1993-05-26 Method for smelting steel for line pipe having excellent sulfide stress crack resistance of weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5124452A JPH06330139A (en) 1993-05-26 1993-05-26 Method for smelting steel for line pipe having excellent sulfide stress crack resistance of weld zone

Publications (1)

Publication Number Publication Date
JPH06330139A true JPH06330139A (en) 1994-11-29

Family

ID=14885874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5124452A Withdrawn JPH06330139A (en) 1993-05-26 1993-05-26 Method for smelting steel for line pipe having excellent sulfide stress crack resistance of weld zone

Country Status (1)

Country Link
JP (1) JPH06330139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011528A (en) * 1999-06-24 2001-01-16 Kawasaki Steel Corp Method for melting steel excellent in hydrogen induced cracking resistance
WO2009063660A1 (en) 2007-11-14 2009-05-22 Sumitomo Metal Industries, Ltd. Steel for steel pipes excellent in sour resistance and process for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011528A (en) * 1999-06-24 2001-01-16 Kawasaki Steel Corp Method for melting steel excellent in hydrogen induced cracking resistance
WO2009063660A1 (en) 2007-11-14 2009-05-22 Sumitomo Metal Industries, Ltd. Steel for steel pipes excellent in sour resistance and process for manufacturing the same
US7959709B2 (en) 2007-11-14 2011-06-14 Sumitomo Metal Industries, Ltd. Method of producing steel for steel pipe excellent in sour-resistance performance
US8262767B2 (en) 2007-11-14 2012-09-11 Sumitomo Metal Industries, Ltd. Method of producing steel for steel pipe excellent in sour-resistance performance

Similar Documents

Publication Publication Date Title
EP2105513B1 (en) High strength thick welded steel pipe for a line pipe superior in low temperature toughness and process for producing the same.
WO2009125863A1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP5504717B2 (en) Manufacturing method of ERW steel pipe for sour line pipe
JP3846233B2 (en) Steel with excellent resistance to hydrogen-induced cracking
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP7155703B2 (en) Thick steel plate for line pipe and manufacturing method thereof
JP4082464B2 (en) Manufacturing method of high strength and high toughness large diameter welded steel pipe
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance
JP2002047531A (en) High tensile strength steel for welded structure having excellent fatigue characteristic and its production method
JP2004099930A (en) High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same
WO2000036173A1 (en) Steel for boiler excellent in butt seam weldability and electroseamed steel pipe for boiler using the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4222073B2 (en) H-section steel with excellent fillet part toughness and method for producing the same
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JPH06256894A (en) High strength line pipe excellent in hydrogen induced cracking resistance
JPH06271974A (en) Line pipe excellent in hydrogen induced cracking resistance
JP7216902B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JPH06330139A (en) Method for smelting steel for line pipe having excellent sulfide stress crack resistance of weld zone
JP4513311B2 (en) Welded joint with excellent fatigue strength characteristics
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JPH06306530A (en) Low-medium strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801