JPH0631199B2 - Method for manufacturing compound semiconductor - Google Patents

Method for manufacturing compound semiconductor

Info

Publication number
JPH0631199B2
JPH0631199B2 JP63090212A JP9021288A JPH0631199B2 JP H0631199 B2 JPH0631199 B2 JP H0631199B2 JP 63090212 A JP63090212 A JP 63090212A JP 9021288 A JP9021288 A JP 9021288A JP H0631199 B2 JPH0631199 B2 JP H0631199B2
Authority
JP
Japan
Prior art keywords
pulling
crucible
melt
single crystal
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63090212A
Other languages
Japanese (ja)
Other versions
JPH01264994A (en
Inventor
正博 中島
佐多夫 八代
正幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP63090212A priority Critical patent/JPH0631199B2/en
Publication of JPH01264994A publication Critical patent/JPH01264994A/en
Publication of JPH0631199B2 publication Critical patent/JPH0631199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は化合物半導体の製造方法に係り、特にGa
P,GaAs,InP等の化合物半導体単結晶の引上げ
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a compound semiconductor, and particularly to Ga.
The present invention relates to a method for pulling a compound semiconductor single crystal of P, GaAs, InP or the like.

(従来の技術) GaP、GaAs、InPのようなIII.V族化合物半
導体単結晶は、その融液から高圧の不活性ガス雰囲気中
で融液上を覆う液体封止剤を通して、第1図に示したよ
うな引上げ装置によって引上げられる。この装置は不活
性ガス(2)で加圧された高圧容器(1)内において、引上軸
(6)とルツボ(2)が上下動および回転可能な状態に設けら
れており、ルツボ(2)内には、原料融液(9)と、その上層
を覆う液体封止剤(4)とが投入される。またルツボ(2)は
そのルツボ(2)を囲むように設けられた加熱器(7)および
保温筒(8)により引上げに適する温度に保たれる。そし
て単結晶を引き上げるにあたっては、種結晶が先端に取
り付けられた引上軸(6)及びルツボ(2)はそれぞれ一定の
速度で逆方向に回転させられる。一度ルツボ内に浸けら
れた種結晶を引上軸(6)により引き上げると、引上軸(6)
の先端の種結晶から単結晶が順次成長する。
(Prior Art) GaP, GaAs, InP, etc. III. The group V compound semiconductor single crystal is pulled up from the melt through a liquid sealant covering the melt in a high-pressure inert gas atmosphere by a pulling device as shown in FIG. This device is equipped with a pulling shaft in a high-pressure vessel (1) pressurized with an inert gas (2).
(6) and the crucible (2) is provided in a vertically movable and rotatable state, the raw material melt (9) in the crucible (2), and a liquid sealant (4) covering the upper layer thereof. Is thrown in. The crucible (2) is kept at a temperature suitable for pulling up by a heater (7) and a heat insulating cylinder (8) provided so as to surround the crucible (2). When pulling the single crystal, the pulling shaft (6) and the crucible (2) having the seed crystal attached to the tip thereof are rotated in the opposite directions at constant speeds. Once the seed crystal once immersed in the crucible is pulled up by the pulling shaft (6), the pulling shaft (6)
A single crystal grows sequentially from the seed crystal at the tip of.

(発明が解決しようとする課題) しかしながら、前記方法によって化合物半導体単結晶の
引上げを行なう場合、原料融液(9)を液体封止剤(4)でお
おい、且つ不活性ガス(3)の加圧下で行うため、液体封
止剤(4)の熱伝導の影響を受けやすく、また高圧による
熱対流が起こりやすい。そのため、単結晶引上げ中では
高圧容器(1)内の熱環境が著しく変化し、引上げられる
単結晶の品質、とくに引上げの初期段階と後期段階との
均質性に問題がある。
(Problems to be solved by the invention) However, when the compound semiconductor single crystal is pulled by the above method, the raw material melt (9) is covered with a liquid sealant (4), and an inert gas (3) is added. Since it is performed under pressure, it is easily affected by the heat conduction of the liquid sealant (4), and heat convection due to high pressure is likely to occur. Therefore, the thermal environment in the high-pressure vessel (1) changes remarkably during the pulling of the single crystal, and there is a problem in the quality of the pulled single crystal, particularly in the homogeneity between the early stage and the late stage of pulling.

すなわち、一般には引上げの初期段階の成長条件を適性
化することに束縛されているので、引上量の増加に伴う
熱方散と融液量の減少によって融液(9)の固液界面部形
状が不安定になり、融液(9)中に度度のムラが出てく
る。その結果引上げられた結晶の約40%に相当する部
分が多結晶化してしまう。
That is, since it is generally bound to optimize the growth conditions in the initial stage of pulling, the solid-liquid interface part of the melt (9) is reduced by the heat dissipation and the decrease in the melt volume as the pulling volume increases. The shape becomes unstable, and some unevenness appears in the melt (9). As a result, about 40% of the pulled crystal is polycrystallized.

本発明は上記課題を改良するためになされたもので、そ
の目的は化合物半導体単結晶の引上げにおける引上げ量
の増加と融液量の減少に伴なう融液の固液界面部形状を
安定させ、高品質の化合物半導体単結晶を得る化合物半
導体単結晶の製造方法を提供するものである。
The present invention has been made to improve the above object, the object is to stabilize the solid-liquid interface portion shape of the melt with the increase of the pulling amount and the decrease of the melt amount in pulling the compound semiconductor single crystal Provided is a method for producing a compound semiconductor single crystal, which obtains a high quality compound semiconductor single crystal.

[発明の構成] (課題を解決するための手段) 本発明では、高圧の不活性ガス雰囲気中でルツボ内の化
合物半導体の融液から、この融液を被覆する液体封止剤
を通じて、前記ルツボと引上軸をそれぞれ逆方向に回転
させながら単結晶の引上げを行なうにあたり、引上げの
進歩に伴ってルツボと引上軸との相対的回転数を徐々に
増加させる。
[Structure of the Invention] (Means for Solving the Problems) In the present invention, the crucible is melted from a melt of a compound semiconductor in a crucible in a high-pressure inert gas atmosphere through a liquid sealant coating the melt. When pulling a single crystal while rotating the pulling shaft and the pulling shaft in opposite directions, the relative rotation number between the crucible and the pulling shaft is gradually increased with the progress of pulling.

(作 用) 上述したように、単結晶の引上げ量の増加に伴って融液
の入っているルツボと引上軸との相対的回転数を徐々に
増加させることにより、引上げた単結晶と融液との固液
界面部の形状は安定する。それによって引上げが進み融
液量が減少しても固液界面部近傍の温度は一定し、引上
げの後期段階における引上げ体の多結晶化を防ぐことが
できる。
(Operation) As described above, by gradually increasing the relative rotational speed between the crucible containing the melt and the pulling shaft as the pulling amount of the single crystal increases, The shape of the solid-liquid interface with the liquid is stable. As a result, even if the pulling progresses and the melt amount decreases, the temperature in the vicinity of the solid-liquid interface portion becomes constant, and polycrystallization of the pulling body in the latter stage of pulling can be prevented.

(実施例) 第2図は本発明の一実施例である単結晶引上げにおける
単結晶の長さと、ルツボと引上軸の相対的回転数との関
係を示した図である。そして、引上げ装置の従来と変わ
らない部分については第1図に示したとおりである。以
下、第1図および第2図を参照しつつ本発明を詳細に説
明する。
(Example) FIG. 2 is a diagram showing the relationship between the length of a single crystal in pulling a single crystal which is an example of the present invention and the relative rotation number of the crucible and the pulling shaft. The parts of the pulling device that are the same as the conventional parts are as shown in FIG. Hereinafter, the present invention will be described in detail with reference to FIGS. 1 and 2.

まず、高圧容器(1)内に、原料であるGa,Asを入れ
その上にBなどの液体封止剤(9)を入れたルツボ
(2)を配置する。その後、高圧容器(1)内をNガス等の
不活性ガス(3)により35〜45気圧まで加圧し、加熱
器(7)により加熱してGa,Asを融液にする。ルツボ
(2)内がGaAs融液(9)になったら、不活性ガス(3)の
圧力を15〜25気圧程度まで減少させ、GaAs融液
(9)にGaAs単結晶育成のための種結晶を浸す。Ga
As融液(9)に種結晶が馴染んだ後、種結晶を引上軸(6)
により3〜5r.p.m程度の一定の速さで回転させつ
つ、6〜8mm/Hの引上げ速度で引上げを行なう。この
時GaAs融液(9)の入ったルツボ(2)は引上軸(6)の回
転方向と逆方向に5〜10r.p.mの速さで回転させ
るため、相対的回転数としては8〜15r.p.mで引
上げを行なっている。そして、成長したGaAs単結晶
(5)の長さが種結晶が約40mmになるまで同じ条件で引
上げを続け、第2図に示したように40mm程度に達した
時にルツボの回転数を2〜4mm引上げる毎に1r.p.
mの割合で増加させていき結晶育成が終るまで続けた。
GaAs単結晶(5)の長さが種結晶から40mm程度に達
した時にルツボ(2)の回転数を増加させるのは、その長
さが30〜50mmになると引上げ量の増加に伴う熱方散
と融液量の減少によってGaAs単結晶(5)の引上げ体
と融液(9)の固液界面部(10)の形状が不安定になり始
め、融液中の温度にムラが出るためである。このように
して引上げることにより100%単結晶であるGaAs
半導体単結晶を得ることができる。
First, a crucible in which Ga and As as raw materials are placed in a high-pressure container (1) and a liquid sealant (9) such as B 2 O 3 is placed thereon.
Place (2). Then, the inside of the high-pressure container (1) is pressurized to 35 to 45 atm with an inert gas (3) such as N 2 gas and heated by a heater (7) to turn Ga and As into a melt. Crucible
When the inside of (2) becomes the GaAs melt (9), the pressure of the inert gas (3) is reduced to about 15 to 25 atm, and the GaAs melt is melted.
A seed crystal for growing a GaAs single crystal is immersed in (9). Ga
After the seed crystal has become accustomed to the As melt (9), pull up the seed crystal (6)
3-5 r. p. Pulling is performed at a pulling speed of 6 to 8 mm / H while rotating at a constant speed of about m. At this time, the crucible (2) containing the GaAs melt (9) moved in the direction opposite to the rotation direction of the pulling shaft (6) for 5 to 10 r. p. In order to rotate at a speed of m, the relative rotation speed is 8 to 15 r. p. We are pulling up with m. And the grown GaAs single crystal
Pulling was continued under the same conditions until the length of (5) reached about 40 mm for the seed crystal, and when it reached about 40 mm as shown in FIG. 2, it was 1 r.p.m. for every 2 to 4 mm of rotation of the crucible. p.
It was increased at a rate of m until the crystal growth was completed.
When the length of the GaAs single crystal (5) reaches about 40 mm from the seed crystal, the number of rotations of the crucible (2) is increased by increasing the pulling amount when the length becomes 30 to 50 mm. This is because the shape of the pulling body of the GaAs single crystal (5) and the solid-liquid interface (10) of the melt (9) begins to become unstable due to the decrease in the melt volume, and the temperature in the melt becomes uneven. is there. By pulling in this way, GaAs that is 100% single crystal
A semiconductor single crystal can be obtained.

以上のようにGaAs融液(9)からその単結晶を引上げ
る場合、融液の入っているルツボ(2)の回転数を徐々に
増していくことにより、引上げ体と融液(9)の固液界面
部(10)の形状は安定し、融液中の温度を一定に保つこと
ができる。このことにより引上げ体の単結晶化領域は増
加し、高品質のGaAs半導体単結晶を得ることができ
る。第3図に従来の引上げ方法と本発明の引上げ方法に
よって、それぞれ連続して20本のGaAs単結晶の引
上げを行なった結果を示す。これによると従来の方法で
は単結晶化率の良いロットでも80%,悪いロットにな
ると30%になってしまい、平均単結晶化率は57%で
あった。それに対し、本発明による引上げでは、ほとん
どのロットが100%の単結晶化領域をもったものであ
り、悪いロットでも60%なので、本発明による引上げ
方法ではより高品質のGaAs半導体単結晶を得ること
ができることがわかる。
When pulling the single crystal from the GaAs melt (9) as described above, by gradually increasing the rotation speed of the crucible (2) containing the melt, the pulling body and the melt (9) The shape of the solid-liquid interface (10) is stable, and the temperature in the melt can be kept constant. As a result, the single crystallized region of the pulling body is increased, and a high quality GaAs semiconductor single crystal can be obtained. FIG. 3 shows the results obtained by continuously pulling 20 GaAs single crystals by the conventional pulling method and the pulling method of the present invention. According to this, in the conventional method, the lot having a good single crystallization rate was 80%, and the lot having a bad single crystallization rate was 30%, and the average single crystallization rate was 57%. On the other hand, in the pulling according to the present invention, most lots have 100% single crystallized regions, and even in the bad lots, 60%, so that a higher quality GaAs semiconductor single crystal can be obtained by the pulling method according to the present invention. You can see that you can.

本実施例においては、単結晶の長さが種結晶から40mm
程度より短い時は、ルツボ(2)内の融液(9)は多く温度ム
ラがないため、ルツボ(2)と引上軸(6)は一定の回転で単
結晶の引上げを行なったものであるが引上げ量等の異な
る場合、相対的回転数の増加時期はその量に合わせて決
めるものである。また、引上げの初期段階より除去にル
ツボ(2)と引上軸(6)の相対的回転数を増加させても同様
である。前記相対的回転数を増加させるために本実施例
では、作業性を考えルツボ(2)の回転数だけを増加させ
たが、逆方向に回転している引上軸の回転数を増加させ
てもよい。
In this embodiment, the length of the single crystal is 40 mm from the seed crystal.
When the length is shorter than about a certain amount, the melt (9) in the crucible (2) is large and there is no temperature unevenness, so the crucible (2) and the pulling shaft (6) are pulled single crystals at a constant rotation. However, if the amount of pull-up is different, the timing of increasing the relative rotational speed is determined according to the amount. The same applies when the relative rotation number of the crucible (2) and the pull-up shaft (6) is increased for removal from the initial stage of pulling. In this embodiment, in order to increase the relative rotation speed, only the rotation speed of the crucible (2) is increased in consideration of workability, but the rotation speed of the pulling shaft rotating in the opposite direction is increased. Good.

[発明の効果] 以上詳述したように化合物半導体単結晶の引上げを行な
う場合、引上げ量の増加に伴う熱方散と融液量の減少に
伴ってルツボと引上げ軸との相対的回転数を増加させる
ので、固液界面部の形状が安定し、融液中の温度ムラが
なくなる。よって単結晶化比率の高い高品質の化合物半
導体単結晶を得ることができる。
[Effects of the Invention] When the compound semiconductor single crystal is pulled as described above in detail, the relative rotational speed between the crucible and the pulling shaft is changed with the increase of the pulling amount and the decrease of the melt amount. Since the amount is increased, the shape of the solid-liquid interface is stabilized, and the temperature unevenness in the melt is eliminated. Therefore, a high quality compound semiconductor single crystal having a high single crystallization ratio can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は化合物半導体単結晶の引上げ装置の断面図,第
2図は本発明の一実施例を示す単結晶長さと、ルツボと
引上軸の相対的回転数の関係図,第3図は従来例と実施
例とにより引上げを行なった場合の結晶化比率を表わす
結果図である。 1……高圧容器, 2……ルツボ, 3……不活性ガス, 4……液体封止剤(B), 5……GaAs単結晶, 6……引上軸, 7……加熱器, 8……保温筒, 9……GaAs融液, 10……固液界面部。
FIG. 1 is a cross-sectional view of a pulling apparatus for a compound semiconductor single crystal, FIG. 2 is a diagram showing a relationship between a single crystal length and a relative rotation number of a crucible and a pulling shaft, showing an embodiment of the present invention, and FIG. It is a result figure showing the crystallization ratio when pulling up by a conventional example and an example. 1 ...... high pressure vessel, 2 ...... crucible, 3 ...... inert gas, 4 ...... liquid sealant (B 2 O 3), 5 ...... GaAs single crystal, 6 ...... pulling member, 7 ...... heating Container, 8 ... Insulating cylinder, 9 ... GaAs melt, 10 ... Solid-liquid interface part.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭59−13480(JP,B2) 特公 昭53−29677(JP,B2) 特公 昭57−27077(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Bibliography Sho 59-13480 (JP, B2) Sho 53-29677 (JP, B2) Sho 57-27077 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高圧容器内のルツボに化合物半導体原料お
よび液体封止剤を投入する工程と、前記高圧容器内を不
活性ガスにより加圧する工程と、加圧された前記高圧容
器内を加熱して前記化合物半導体原料を溶融する工程
と、前記高圧容器を貫通して設けられた引上軸及び前記
ルツボをそれぞれ逆方向に回転させ、両方の相対的回転
数を順次増加させながら前記ルツボ内の化合物半導体溶
液から単結晶の引上げを行なう工程とを有することを特
徴とする化合物半導体の製造方法。
1. A step of introducing a compound semiconductor raw material and a liquid sealant into a crucible in a high-pressure container, a step of pressurizing the inside of the high-pressure container with an inert gas, and heating the inside of the pressurized high-pressure container. And the step of melting the compound semiconductor raw material, the pulling shaft provided through the high-pressure container and the crucible are respectively rotated in opposite directions, and the relative rotation speeds of both are sequentially increased while the crucible inside the crucible is increased. And a step of pulling a single crystal from a compound semiconductor solution.
JP63090212A 1988-04-14 1988-04-14 Method for manufacturing compound semiconductor Expired - Lifetime JPH0631199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63090212A JPH0631199B2 (en) 1988-04-14 1988-04-14 Method for manufacturing compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090212A JPH0631199B2 (en) 1988-04-14 1988-04-14 Method for manufacturing compound semiconductor

Publications (2)

Publication Number Publication Date
JPH01264994A JPH01264994A (en) 1989-10-23
JPH0631199B2 true JPH0631199B2 (en) 1994-04-27

Family

ID=13992178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090212A Expired - Lifetime JPH0631199B2 (en) 1988-04-14 1988-04-14 Method for manufacturing compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0631199B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118303A (en) * 1976-08-30 1978-10-03 Burroughs Corporation Apparatus for chemically treating a single side of a workpiece
JPS5727077A (en) * 1980-07-25 1982-02-13 Toshiba Corp Method for sealing semiconductor optical sensor
JPS5913480A (en) * 1982-07-15 1984-01-24 Hitachi Ltd Video recording and reproducing device

Also Published As

Publication number Publication date
JPH01264994A (en) 1989-10-23

Similar Documents

Publication Publication Date Title
US5379717A (en) Method of growing single crystal of compound semiconductors
JPH0631199B2 (en) Method for manufacturing compound semiconductor
JP3018738B2 (en) Single crystal manufacturing equipment
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPS6317291A (en) Method for growing crystal and device therefor
JPH07277870A (en) Method and device for growing single crystal
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2681114B2 (en) Single crystal manufacturing method
JP2834558B2 (en) Compound semiconductor single crystal growth method
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JPH04321590A (en) Growing method of single crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JPH06340492A (en) Method for growing single crystal
JPS62138393A (en) Growth of compound semiconductor mixed crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH02248399A (en) Method for growing mixed crystal-type compound semiconductor
JP3416186B2 (en) Method for producing multi-component single crystal
JPS5934680B2 (en) Single crystal manufacturing method
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPH0692776A (en) Silicon single crystal pulling up device
JPH04325496A (en) Manufacture of magnesium added lithium niobade single crystal
JPS62230696A (en) Production of semiconductor single crystal
JPH0465388A (en) Growing method for single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term