JPS62138393A - Growth of compound semiconductor mixed crystal - Google Patents

Growth of compound semiconductor mixed crystal

Info

Publication number
JPS62138393A
JPS62138393A JP28035385A JP28035385A JPS62138393A JP S62138393 A JPS62138393 A JP S62138393A JP 28035385 A JP28035385 A JP 28035385A JP 28035385 A JP28035385 A JP 28035385A JP S62138393 A JPS62138393 A JP S62138393A
Authority
JP
Japan
Prior art keywords
melt
growth
crystal
compound semiconductor
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28035385A
Other languages
Japanese (ja)
Inventor
Hisao Watanabe
渡邊 久夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28035385A priority Critical patent/JPS62138393A/en
Publication of JPS62138393A publication Critical patent/JPS62138393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To reduce time for crystal growth in the stage of growth of a compound semiconductor mixed crystal by the liquid encapsulated Czochralski method by inserting a stirring plate into the melt for over a specified time after melting the starting materials, stirring the melt by revolving the crucible, then executing pulling thereafter. CONSTITUTION:Starting materials (e.g. crystals of GaAs and GaP) for the growth of compound semiconductor mixed crystal are charged to a crucible 2 in a high pressure vessel 1, and the starting materials are encapsulated with an encapsulating material 6. Then, the vessel 1 is evacuated and pressurized with inert gas, and the starting materials are melted by heating with a heater 5. Then, a movable bar 9 is inserted from the top of the vessel 1, and a stirring plate 10 fitted to the tip of the bar is dipped in the melt 3, and the melt 3 is stirred by revolving the crucible 2 for over a fixed time by the aid of a susceptor 4. By this method, the temp. condition of the crucible 2 is stabilized within a short time. Thereafter, the movable bar 9 is pulled out and the growth of a compound semiconductor mixed crystal is executed by pulling while allowing a seed crystal 8 to contact with the melt 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体封止引上法を用いて化合物半導体混晶結晶
を引上成長する結晶の成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for growing a compound semiconductor mixed crystal by pulling it using a liquid-sealed pulling method.

〔従来の技術〕[Conventional technology]

I nAs xP 1− x + GaAs xP 1
−x等の化合物半導体混晶結晶は高速度素子、光素子等
を製造するにあたって重要な材料である。これ等の混晶
結晶を成長させるには従来気相成長法による結晶の成長
が多く行なわれている。しかし気相成長法による結晶成
長は成長速度が遅く、基板として用いる結晶などの厚い
成長層を必要とする結晶成長には引上法を用いて結晶を
成長させる方法が成長速度等の点で有利である。このよ
うなことから液体封止引上法を用いての化合物半導体混
晶結晶の成長が試みられている。、液体封止引上法によ
る混晶結晶の成長をGaAs 1−、PK結晶の成長を
例に説明すれば第2図に示すように高圧容器1内K P
BN製などのるりぼ2を設置し、とのるつば内に成長さ
せる混晶原料のGmA@とGaPとの結晶を入れる。る
つぼ2はサセプター4により支持され、加熱ヒーター5
により加熱される。6は封止用の酸化硼素、7は引上用
シャフト、8は種結晶である。原料溶融後に種結晶8を
降下させ、対土用酸化硼素6を通して原料融液3に接触
させ、融液3の温度を制御し所定の引上速度で81結晶
8を回転しながら引上げることにより混晶結晶を成長さ
せている。
I nAs xP 1- x + GaAs xP 1
Compound semiconductor mixed crystals such as -x are important materials in manufacturing high-speed devices, optical devices, etc. In order to grow these mixed crystals, conventionally, crystal growth is often performed by a vapor phase growth method. However, crystal growth using the vapor phase growth method has a slow growth rate, and for crystal growth that requires a thick growth layer, such as crystals used as substrates, the method of growing crystals using the pulling method is advantageous in terms of growth speed, etc. It is. For this reason, attempts have been made to grow compound semiconductor mixed crystals using the liquid-sealed pulling method. To explain the growth of a mixed crystal by the liquid seal pulling method using the growth of a GaAs 1-, PK crystal as an example, as shown in FIG.
A luribo 2 made of BN or the like is installed, and a crystal of GmA@ and GaP, which is a mixed crystal material to be grown, is placed in the brim of the luribo. The crucible 2 is supported by a susceptor 4 and is heated by a heater 5.
heated by. 6 is boron oxide for sealing, 7 is a pulling shaft, and 8 is a seed crystal. After melting the raw material, the seed crystal 8 is lowered, brought into contact with the raw material melt 3 through the boron oxide for soil 6, and by controlling the temperature of the melt 3 and pulling up the 81 crystal 8 while rotating at a predetermined pulling speed. Growing mixed crystals.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところでこのような方法で化合物半導体混晶結晶を成長
させる場合、原料結晶が溶融後、融液の温度を融液の液
相温度よりわずかに低い温度に調節し、種結晶8を融液
面に接触させて極子づけるが、この時の融液の温度の決
定は最も重要で、融液の温度が高過ぎる時は種結晶8は
溶融し又低過ぎる時は成長して来る結晶は多結晶に成長
する。
By the way, when growing a compound semiconductor mixed crystal using such a method, after the raw material crystal is melted, the temperature of the melt is adjusted to a temperature slightly lower than the liquidus temperature of the melt, and the seed crystal 8 is placed on the surface of the melt. The temperature of the melt at this time is most important; if the temperature of the melt is too high, the seed crystal 8 will melt, and if it is too low, the growing crystal will become polycrystalline. grow up.

特に混晶結晶を融液より引上成長する場合、原料溶融直
後よυ長い時間にわたシ、あたかも、融液の液相温度が
時間とともに変化してみえることがありた。このため、
融液3に種結晶8を接触させる温度条件が変動するとい
う問題があり、これまでは原料溶融径長時間ただ放置し
、後に種結晶8を融液3に接触させて引上成長を行って
おり、原料溶融後から引上成長を開始するまでに非常に
長い時間を要するという欠点があった。
In particular, when a mixed crystal is pulled up and grown from a melt, the liquidus temperature of the melt sometimes appears to change over time for a long time after melting the raw materials. For this reason,
There is a problem that the temperature conditions for bringing the seed crystal 8 into contact with the melt 3 fluctuate, and up until now, the melt diameter of the raw material has been left alone for a long time, and then the seed crystal 8 has been brought into contact with the melt 3 to perform pulling growth. However, there was a drawback that it took a very long time from the time the raw materials were melted until the pulling growth started.

本発明の目的はこのような従来の欠点を除去せしめて引
上法により融液より化合物半導体混晶結晶を成長する方
法を提供することにある。
An object of the present invention is to provide a method for growing a compound semiconductor mixed crystal from a melt by a pulling method, which eliminates these conventional drawbacks.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は液体封止引上法を用いて融液よp混晶結晶を成
長するに際し、原料結晶の溶融後一定時間以上攪拌板を
融液中に挿入し、るつぼを回転することにより融液を攪
拌し、しかる後融液に種結晶を接触させて引上成長を行
うことを特徴とする化合物半導体混晶結晶の引上成長方
法である。
In the present invention, when a p-mix crystal is grown from a melt using the liquid-sealed pulling method, a stirring plate is inserted into the melt for a certain period of time after the raw material crystal is melted, and the crucible is rotated. This is a method for pulling growth of a compound semiconductor mixed crystal, which is characterized by stirring the melt, and then bringing a seed crystal into contact with the melt to perform pulling growth.

〔実施例〕〔Example〕

以下本発明の実施例を混晶結晶のGaAm1−xPX結
晶成長に適用した例を第1図によって説明する。
An example in which an embodiment of the present invention is applied to the growth of a GaAm1-xPX mixed crystal will be described below with reference to FIG.

なお、第2図と同一構成部分は同一番号を付して説明す
る。
Components that are the same as those in FIG. 2 will be described using the same numbers.

第1図に示すように高圧容器1内のPBNるつは2の中
に結晶成長用原料としてあらかじめ合成されたGaAm
とGaP結晶を成長しようとする結晶の目的組成に対応
し九モル比で入れ、その上に封止剤の酸化硼素6を入れ
る。次に容器1内を排気後、Arガスで数気圧に加圧し
加熱ヒーター5を徐々に昇温し、原料の上に置いた酸化
硼素6が溶融後、加圧圧力を30気圧とし更に昇温し、
原料を溶融した。原料溶融径容器1の上部より可動棒9
を挿入し、その先端に取付けた攪拌板10を融液3中に
浸漬保持し、サセプター4を1Orpmの速度で30分
間回転した。その後に可動棒9を融液3中より抜きだし
、所定の操作により融液3に種結晶8を接触し、結晶の
引上成長を行った。この結果、種結晶を溶液に接触する
時の温度条件を短時間の間に安定させることが確認され
た。この処置を施こさないときには数時間経過後も安定
しなかりた。このようなことから従来の方法に比較し、
原料溶融後から融液面に種結晶を接触させるまでの時間
が大巾に短縮されると共に成長結晶の単結晶化庫も向上
した。
As shown in FIG. 1, GaAm synthesized in advance as a raw material for crystal growth is contained in a PBN melt 2 in a high-pressure vessel 1.
and a GaP crystal in a molar ratio of 9 corresponding to the intended composition of the crystal to be grown, and on top of this, boron oxide 6 as a sealant is added. Next, after evacuating the inside of the container 1, the pressure is increased to several atmospheres with Ar gas, and the temperature of the heating heater 5 is gradually increased. After the boron oxide 6 placed on the raw material is melted, the pressure is increased to 30 atmospheres, and the temperature is further increased. death,
The raw materials were melted. A movable rod 9 is inserted from the top of the raw material melting diameter container 1.
was inserted, and the stirring plate 10 attached to its tip was kept immersed in the melt 3, and the susceptor 4 was rotated at a speed of 1 Orpm for 30 minutes. Thereafter, the movable rod 9 was pulled out of the melt 3, and the seed crystal 8 was brought into contact with the melt 3 by a predetermined operation to perform pulling growth of the crystal. As a result, it was confirmed that the temperature conditions when the seed crystal was brought into contact with the solution were stabilized in a short period of time. Without this treatment, it remained unstable even after several hours. For this reason, compared to the conventional method,
The time from melting the raw material to bringing the seed crystal into contact with the melt surface has been greatly shortened, and the ability to single-crystallize the growing crystal has also been improved.

以上実施例では、GaA m 1 ++ xPx混晶結
晶の成長を例に説明したが他のInAs1−xPxなど
の外、四元混晶結晶の成長にも適用出来ることは明らか
である。
In the above embodiments, the growth of a GaA m 1 ++ xPx mixed crystal was explained as an example, but it is clear that the present invention can also be applied to the growth of other quaternary mixed crystals such as InAs1-xPx.

〔発明の効果〕〔Effect of the invention〕

以上のように液体封止法を用いて融液より混晶結晶を引
上成長するに際し、本発明方法によれば結晶成長の時間
を大巾に短縮でき、又、安定した種付操作を行うことが
できる効果を有するものである。
As described above, when pulling and growing a mixed crystal from a melt using the liquid sealing method, the method of the present invention can greatly shorten the crystal growth time and also perform stable seeding operations. It has the effect that it can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の一実施例に用いる装置の断面図
、第2図は液体封止引上装置の断面図である。 1・・・高圧容器、2・・・PBNるつぼ、3・・・ふ
料融液、4・・・サセプター、5・・・加熱ヒーター、
6・・・封止用酸化硼素、7・・・引上用シャフト、8
・・・種結晶、9・・・可動棒、10・・・攪拌板。 第2図
FIG. 1 is a sectional view of an apparatus used in an embodiment of the method of the present invention, and FIG. 2 is a sectional view of a liquid-sealed pulling device. 1... High pressure container, 2... PBN crucible, 3... Feed melt, 4... Susceptor, 5... Heating heater,
6... Boron oxide for sealing, 7... Shaft for pulling, 8
... Seed crystal, 9... Movable rod, 10... Stirring plate. Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)液体封止引上法を用いてるつぼ中の融液より化合
物半導体混晶結晶を成長させる方法において、原料の溶
融後に一定時間以上攪拌板を融液中に挿入し、るつぼを
回転することにより融液を攪拌し、しかる後融液に種結
晶を接触させて引上成長を行うことを特徴とする化合物
半導体混晶結晶の成長方法。
(1) In a method of growing a compound semiconductor mixed crystal from a melt in a crucible using the liquid-sealed pulling method, a stirring plate is inserted into the melt for a certain period of time or more after the raw materials are melted, and the crucible is rotated. 1. A method for growing a compound semiconductor mixed crystal, which comprises stirring a melt and then bringing a seed crystal into contact with the melt to perform pulling growth.
JP28035385A 1985-12-13 1985-12-13 Growth of compound semiconductor mixed crystal Pending JPS62138393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28035385A JPS62138393A (en) 1985-12-13 1985-12-13 Growth of compound semiconductor mixed crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28035385A JPS62138393A (en) 1985-12-13 1985-12-13 Growth of compound semiconductor mixed crystal

Publications (1)

Publication Number Publication Date
JPS62138393A true JPS62138393A (en) 1987-06-22

Family

ID=17623818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28035385A Pending JPS62138393A (en) 1985-12-13 1985-12-13 Growth of compound semiconductor mixed crystal

Country Status (1)

Country Link
JP (1) JPS62138393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163093A (en) * 1991-12-10 1993-06-29 Nippon Mektron Ltd Method for growing single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163093A (en) * 1991-12-10 1993-06-29 Nippon Mektron Ltd Method for growing single crystal

Similar Documents

Publication Publication Date Title
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JPS62138393A (en) Growth of compound semiconductor mixed crystal
JPH11147785A (en) Production of single crystal
JPH01122998A (en) Production of cd zn te mixed crystal semiconductor
JPH06128096A (en) Production of compound semiconductor polycrystal
RU2818932C1 (en) Method of producing gallium arsenide (gaas) monocrystals
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2622274B2 (en) Single crystal growth method
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JP2690420B2 (en) Single crystal manufacturing equipment
JP2539841B2 (en) Crystal manufacturing method
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP2922039B2 (en) Single crystal growth method
JPH05319973A (en) Single crystal production unit
JPS63190794A (en) Method and device for producing single crystal
JP3627255B2 (en) III-V compound semiconductor single crystal growth method
JPS6153186A (en) Heater for resistance heating
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JP3200204B2 (en) Method for producing group III-V single crystal
JPH03252385A (en) Production of single crystal having high dissociation pressure
JPH0124760B2 (en)
JPH01226797A (en) Device for growing compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JPH07206584A (en) Production of compound semiconductor single crystal