JPH0465388A - Growing method for single crystal - Google Patents

Growing method for single crystal

Info

Publication number
JPH0465388A
JPH0465388A JP17411290A JP17411290A JPH0465388A JP H0465388 A JPH0465388 A JP H0465388A JP 17411290 A JP17411290 A JP 17411290A JP 17411290 A JP17411290 A JP 17411290A JP H0465388 A JPH0465388 A JP H0465388A
Authority
JP
Japan
Prior art keywords
single crystal
raw material
crystal
seed crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17411290A
Other languages
Japanese (ja)
Other versions
JPH0742196B2 (en
Inventor
Hiroyuki Ishibashi
浩之 石橋
Ichiji Shimizu
清水 一司
Masato Yoshida
誠人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP17411290A priority Critical patent/JPH0742196B2/en
Publication of JPH0465388A publication Critical patent/JPH0465388A/en
Publication of JPH0742196B2 publication Critical patent/JPH0742196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily obtain single crystal free from generation of a strain by regulating the composition of melt for a raw material to the composition of specified amount deviated from the stoichiometric composition of single crystal to be grown and performing growth of single crystal in a specified mode. CONSTITUTION:Metallic Ga and metallic As being a raw material and B2O3 being a sealer are introduced into a crucible made of boron nitride and heated. In this case, when the composition of the raw material is shown in Ga1-xAsx, X is 0.515(deviation for the whole is regulated to 3 mol%). The raw material is synthesized while holding the temp. constant at about 800 deg.C and thereafter the temp. is raised to melt the raw material. Seed crystal 2 is cut off from GaAs single crystal and held to a seed crystal holder 1. This seed crystal 2 is stuck on the surface of the melt 4 of GaAs for the raw material through a liquid sealer 3. The temp. of melt 4 is controlled and also while the seed crystal 2 is rotated, it is pulled up to grow single crystal 6. Before growth of single crystal 6 is completed, pulling-up of seed crystal 2 is midway stopped. Thereafter the temp. of the crucible is slowly controlled and successively growth of single crystal is performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ヒ化ガリウム、シリコンなどの半導体単結晶
、ゲルマニウム酸ビスマス、タングステン酸カドミウム
、タングステン酸亜鉛、ケイ酸ガドリニウム等の酸化物
単結晶の育成方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to semiconductor single crystals such as gallium arsenide and silicon, oxide single crystals such as bismuth germanate, cadmium tungstate, zinc tungstate, and gadolinium silicate. Regarding the training method.

(従来の技術) 高純度、高品質の単結晶の育成に適する方法として、チ
ョクラルスキー法がある。
(Prior Art) The Czochralski method is a method suitable for growing high-purity, high-quality single crystals.

チョクラルスキー法は第2図に示すようにるつぼ5中の
原料を高周波加熱等で融解したのち種結晶2を融液4に
接触させ、温度を制御しつつ回転しながら引き上げ、種
結晶につづく結晶を成長させる方法である。引き上げ中
は、通常結晶又はるつは系の重量変化を検出し、それを
電源にフィードバックして融液の温度を精密にコントロ
ールし、成長した単結晶6の直径を自動制御する方法が
とられている。
As shown in Figure 2, in the Czochralski method, the raw material in a crucible 5 is melted by high-frequency heating, etc., and then a seed crystal 2 is brought into contact with the melt 4, and pulled up while rotating while controlling the temperature, followed by the seed crystal. This is a method of growing crystals. During pulling, a method is usually used to detect changes in the weight of the crystal or melt system, feed it back to the power supply to precisely control the temperature of the melt, and automatically control the diameter of the grown single crystal 6. ing.

(発明か解決しようとする課題) 上述のチョクラルスキー法は、円柱状の単結晶が得られ
製品の採取効率が良いものの、成長した単結晶の重量変
化等を測定し、るつぼの温度を強制的に変えて単結晶の
直径を制御しなければならず、単結晶内部に温度変化に
よる歪が発生し易いという問題があった。
(Problem to be solved by the invention) Although the above-mentioned Czochralski method yields a cylindrical single crystal and has good product collection efficiency, it does not measure the weight change of the grown single crystal and force the temperature of the crucible. The diameter of the single crystal must be controlled by changing the diameter of the single crystal, and there is a problem in that distortion is likely to occur inside the single crystal due to temperature changes.

又単結晶の製造に於いては、育成された単結晶をるつほ
から取り出す作業が容易であることが必要である。
In the production of single crystals, it is necessary that the grown single crystals be easily removed from the melting hole.

本発明は、単結晶内部に温度変化による歪の発生がない
単結晶が育成できると共に、るつぼからの取り出し作業
が容易な単結晶の育成方法を提供するものである。
The present invention provides a method for growing a single crystal in which a single crystal is not strained due to temperature changes inside the single crystal, and which is easy to remove from a crucible.

(課題を解決するための手段) 本発明は、るつぼ内の原料融液に種結晶を接触させ、種
結晶を引き上げながら種結晶につづく結晶を成長させる
単結晶の育成方法において、原料融液の組成を育成する
単結晶の化学量論組成から0.5〜5モル%ずらせた組
成とし、単結晶の育成が完了する前に種結晶の引き上げ
を途中で停止し、その後はるつぼの温度をゆるやかに制
御して単結晶の成長を引き続き行うようにしたものであ
る。
(Means for Solving the Problems) The present invention provides a method for growing a single crystal in which a seed crystal is brought into contact with a raw material melt in a crucible, and a crystal following the seed crystal is grown while pulling the seed crystal. The composition is shifted by 0.5 to 5 mol% from the stoichiometric composition of the single crystal to be grown, the pulling of the seed crystal is stopped midway before the growth of the single crystal is completed, and the temperature of the crucible is then gradually lowered. The single crystal growth is controlled to continue to grow.

本発明では、原料融液の組成を育成する単結晶の化学量
論組成から0.5〜5モル%(全体に対して)ずらせる
が、その値は原料の種類、単結晶の種類、単結晶の育成
条件、単結晶の成長方位、るつぼの直径等を勘案して決
められる。
In the present invention, the composition of the raw material melt is shifted by 0.5 to 5 mol% (with respect to the whole) from the stoichiometric composition of the single crystal to be grown, but the value varies depending on the type of raw material, the type of single crystal, and the stoichiometric composition of the single crystal to be grown. It is determined by taking into account the crystal growth conditions, single crystal growth direction, crucible diameter, etc.

本発明では、単結晶の育成が完了する前に種結晶の引き
上げを途中で停止するが、全体の融液の10〜20%が
単結晶として育成した段階で停止するのが好ましい。し
かし、原料の種類、単結晶の成長方位、るつぼの直径等
装置上の制約等を勘案して種結晶の引き上げを停止する
時期が決められる。
In the present invention, pulling of the seed crystal is stopped halfway before the growth of the single crystal is completed, but it is preferably stopped when 10 to 20% of the entire melt has grown as a single crystal. However, the timing to stop pulling the seed crystal is determined by taking into account the type of raw material, the growth direction of the single crystal, the diameter of the crucible, and other equipment restrictions.

種結晶の引き上げを停止した後は、るつぼの温度をゆる
やかに制御、例えば1時間に10〜200度の温度勾配
でるつぼの温度をゆるやかに冷却する等を行い単結晶の
成長を引き続き行う。
After stopping the pulling of the seed crystal, the temperature of the crucible is gently controlled, for example, the temperature of the crucible is slowly cooled with a temperature gradient of 10 to 200 degrees per hour, and the growth of the single crystal is continued.

種結晶を引き上げるとはるつぼの移動に対して相対的に
種結晶を引き上げることを意味し、また種結晶の引き上
げを停止するとは、るつほの移動に対して相対的に種結
晶を停止することを意味する。
Pulling up the seed crystal means pulling up the seed crystal relative to the movement of the crucible, and stopping pulling the seed crystal means stopping the seed crystal relative to the movement of the crucible. It means that.

種結晶を引き上げている時は、種結晶及び/又はるつほ
を回転していても良い。種結晶をるつほに対して相対的
に回転するのが好ましい。
While pulling the seed crystal, the seed crystal and/or the rutsuho may be rotated. Preferably, the seed crystal is rotated relative to the base.

種結晶の引き上げを停止した後、育成した単結晶がるつ
ぼ壁に達するまでは、種結晶をるつほに対して相対的に
回転してもよく、回転を停止してもよい。育成した単結
晶がるつぼ壁に達した後は、種結晶をるつぼに対して相
対的に回転できなくなるが、種結晶とるつぼを同方向、
同回転速度で回転しても良い。
After stopping the pulling of the seed crystal, the seed crystal may be rotated relative to the crucible until the grown single crystal reaches the crucible wall, or the rotation may be stopped. After the grown single crystal reaches the crucible wall, the seed crystal cannot be rotated relative to the crucible, but the seed crystal and crucible can be moved in the same direction.
They may rotate at the same rotation speed.

種結晶の引き上げ停止後は、成長単結晶部分をるつぼ壁
まで到達させ、さらに全ての融液を単結晶化させること
が円柱状の単結晶が得られ製品の採取効率が良いので望
ましい。
After stopping the pulling of the seed crystal, it is desirable to allow the growing single crystal portion to reach the crucible wall and to further monocrystallize all of the melt, since a cylindrical single crystal can be obtained and the product collection efficiency is high.

(作用) 原料融液の組成を育成する単結晶の化学量論組成からず
らせたものとしておけば、単結晶化の最終段階で単結晶
の周りに過剰組成に当る原料の一部が析出し、るつぼと
の接触による応力の発生が弱められ、このため単結晶を
るつぼから容易に取り出せ、単結晶やるつぼが割れるの
を防ぐものと考えられる。
(Function) If the composition of the raw material melt is shifted from the stoichiometric composition of the single crystal to be grown, a part of the raw material corresponding to the excess composition will precipitate around the single crystal in the final stage of single crystallization. It is believed that the generation of stress due to contact with the crucible is weakened, which allows the single crystal to be easily removed from the crucible and prevents the single crystal and the crucible from cracking.

又本発明に於いては、種結晶の引き上げ停止後は、単結
晶直径を制御する必要はなく、強制的に融液温度を変化
させる必要がないので、単結晶内部に温度変化による歪
の発生がないと考えられる。
In addition, in the present invention, after the pulling of the seed crystal is stopped, there is no need to control the diameter of the single crystal, and there is no need to forcefully change the temperature of the melt. It is thought that there is no.

実施例 第1図は、本発明の一実施例を説明するための単結晶の
育成状況の時間的変化を模式的に示した断面図である。
Embodiment FIG. 1 is a cross-sectional view schematically showing temporal changes in the growth situation of a single crystal for explaining an embodiment of the present invention.

以下第1図を使用して本発明の一実施例を説明する。An embodiment of the present invention will be described below using FIG.

原料であるGa金属を500g、 A s金属を570
g。
500g of Ga metal and 570g of As metal as raw materials
g.

封止剤であるB203を300g直径100mmの窒化
ホウ素製るつぼに入れ加熱した。この場合原料の組成は
Ga+−xAsxで示すときX=0.515 (全体に
対してのずれは3モル%)である。800°Cで温度を
一定に保ち原料を合成し、その後温度を上げて原料を融
かした。第1図(a)で示したように種結晶保持具1で
保持したGaAs単結晶から切り出した種結晶2をB2
03 の液体封止剤3を通してGaAsの原料融液4の
表面に付着した。第1図(b)で示したように原料融液
4の温度を制御するとともに種結晶2を回転しながら引
き上げ、単結晶6を成長させた。そして成長した単結晶
の直径が第1図(C)で示したように約70mmになっ
た所で種結晶2の引き上げと回転を停止した。その後ゆ
るやかに温度を下げ、第1図(d)に示したように成長
した単結晶はるつぼ内壁に到達した。
300 g of B203 as a sealant was placed in a boron nitride crucible with a diameter of 100 mm and heated. In this case, the composition of the raw material, expressed as Ga+-xAsx, is X=0.515 (the deviation with respect to the whole is 3 mol%). The raw materials were synthesized while keeping the temperature constant at 800°C, and then the temperature was raised to melt the raw materials. As shown in FIG. 1(a), the seed crystal 2 cut out from the GaAs single crystal held by the seed crystal holder 1 is placed on B2.
It adhered to the surface of the GaAs raw material melt 4 through the liquid sealant 3 of 0.03. As shown in FIG. 1(b), the temperature of the raw material melt 4 was controlled and the seed crystal 2 was pulled up while rotating to grow a single crystal 6. The pulling and rotation of the seed crystal 2 was stopped when the diameter of the grown single crystal reached approximately 70 mm as shown in FIG. 1(C). Thereafter, the temperature was slowly lowered, and the grown single crystal reached the inner wall of the crucible as shown in FIG. 1(d).

さらに、ゆるやかに温度を下げ、全ての原料を結晶化し
た。その後室温まで除冷し、育成した単結晶を取り出し
たところ第1図(e)に示したように単結晶とるつほの
界面にAs金属の析出物7があることが認められた。得
られたGaAs単結晶は、直径94mmで歪の少ない、
割れの無い良質な単結晶であった。またるつほからの単
結晶の取り出しは容易でるつほが割れることがなかった
Furthermore, the temperature was gradually lowered to crystallize all the raw materials. Thereafter, the single crystal was slowly cooled to room temperature and the grown single crystal was taken out. As shown in FIG. 1(e), it was found that As metal precipitates 7 were present at the interface between the single crystal and the crystal. The obtained GaAs single crystal has a diameter of 94 mm and low distortion.
It was a high quality single crystal with no cracks. Moreover, it was easy to take out the single crystal from the rutsuho, and the rutsuho did not break.

上述の実施例は液体封止剤を使用する場合でについての
ものであるか、本発明は、液体封止剤を必要としない単
結晶の育成の場合にも適応できる。
Although the embodiments described above are for the case where a liquid sealant is used, the present invention can also be applied to the case of growing a single crystal that does not require a liquid sealant.

上述の実施例ではるつほを固定して単結晶を育成したが
、るつほを移動する場合にも本発明は適応できる。
In the above-described embodiment, the single crystal was grown by fixing the rutsuho, but the present invention can also be applied to cases where the rutsuho is moved.

またるつほの断面形状は必すしも円形でなくてもよく、
所望の単結晶断面形状に応して矩形、正方形、楕円形な
との形状のるつほを使用することができる。
Also, the cross-sectional shape of the rutsuho does not necessarily have to be circular,
Depending on the desired cross-sectional shape of the single crystal, rectangular, square, or elliptical crucibles can be used.

(発明の効果) 本発明の単結晶の育成方法によれば、単結晶をるつぼか
ら取り出す際に、単結晶やるつぼを割ることなく、容易
に単結晶を取り出すことができる。
(Effects of the Invention) According to the method for growing a single crystal of the present invention, when taking out a single crystal from a crucible, the single crystal can be easily taken out without breaking the single crystal or the crucible.

さらに本発明の単結晶の育成方法によれば、育成中の温
度変化をゆるやかにすることができ、温度変化による歪
の発生を制御することができる。
Furthermore, according to the method for growing a single crystal of the present invention, temperature changes during growth can be made gentler, and the occurrence of strain due to temperature changes can be controlled.

またチョクラルスキー法に比べて、同じ直径のるつぼか
ら直径の大きな単結晶を容易に得ることかできる。
Furthermore, compared to the Czochralski method, it is easier to obtain a single crystal with a larger diameter from a crucible of the same diameter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の方法を示す簡略断面図
、第2図は従来の方法を示す断面図である。 符号の説明 1 種結晶保持具   2 種結晶 4 原料融液     5 るっは 6 成長した単結晶  7 析出物 (a) (b) (c) (d) (e) 析出物 第2図 第1図
FIGS. 1(a) to 1(e) are simplified sectional views showing the method of the present invention, and FIG. 2 is a sectional view showing the conventional method. Explanation of symbols 1 Seed crystal holder 2 Seed crystal 4 Raw material melt 5 Rukka 6 Grown single crystal 7 Precipitate (a) (b) (c) (d) (e) Precipitate Fig. 2 Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 1、るつぼ内の原料融液に種結晶を接触させ、種結晶を
引き上げながら種結晶につづく結晶を成長させる単結晶
の育成方法において、原料融液の組成を育成する単結晶
の化学量論組成から0.5〜5モル%ずらせた組成とし
、単結晶の育成が完了する前に種結晶の引き上げを途中
で停止し、その後はるつぼの温度をゆるやかに制御して
単結晶の成長を引き続き行うことを特徴とする単結晶の
育成方法。
1. In a single crystal growth method in which a seed crystal is brought into contact with a raw material melt in a crucible and a crystal following the seed crystal is grown while pulling the seed crystal, the composition of the raw material melt is determined by the stoichiometric composition of the single crystal to be grown. The composition is shifted by 0.5 to 5 mol% from A method for growing single crystals characterized by the following.
JP17411290A 1990-06-29 1990-06-29 Single crystal growth method Expired - Lifetime JPH0742196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17411290A JPH0742196B2 (en) 1990-06-29 1990-06-29 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17411290A JPH0742196B2 (en) 1990-06-29 1990-06-29 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPH0465388A true JPH0465388A (en) 1992-03-02
JPH0742196B2 JPH0742196B2 (en) 1995-05-10

Family

ID=15972854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17411290A Expired - Lifetime JPH0742196B2 (en) 1990-06-29 1990-06-29 Single crystal growth method

Country Status (1)

Country Link
JP (1) JPH0742196B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150524A (en) * 2014-07-14 2014-11-19 河南师范大学 Preparation method of zinc oxide visible-light-induced photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150524A (en) * 2014-07-14 2014-11-19 河南师范大学 Preparation method of zinc oxide visible-light-induced photocatalyst

Also Published As

Publication number Publication date
JPH0742196B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JPH0465388A (en) Growing method for single crystal
JPH0465387A (en) Growing method for single crystal
JP2622274B2 (en) Single crystal growth method
JP3885245B2 (en) Single crystal pulling method
JPH0465389A (en) Growing method for single crystal
JPH07330482A (en) Method and apparatus for growing single crystal
JP2814657B2 (en) Method for growing compound semiconductor single crystal
JPH09309791A (en) Method for producing semiconducting single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JPH03193689A (en) Production of compound semiconductor crystal
JP2781857B2 (en) Single crystal manufacturing method
JP3200204B2 (en) Method for producing group III-V single crystal
JPS6385082A (en) Method for growing single crystal and apparatus thereof
JPS63295498A (en) Production of single-crystal of group iii-v compound semiconductor
TW202305198A (en) Method for producing silicon monocrystal
JPH10338594A (en) Apparatus for growing single crystal by pulling up method
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPH10279399A (en) Production of single crystal
JP2001106597A (en) Method and device for producing single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPS63319286A (en) Method for growing single crystal
JPH06263581A (en) Production of single crystal