JPH06268218A - 薄膜トランジスタの製造法 - Google Patents
薄膜トランジスタの製造法Info
- Publication number
- JPH06268218A JPH06268218A JP5373493A JP5373493A JPH06268218A JP H06268218 A JPH06268218 A JP H06268218A JP 5373493 A JP5373493 A JP 5373493A JP 5373493 A JP5373493 A JP 5373493A JP H06268218 A JPH06268218 A JP H06268218A
- Authority
- JP
- Japan
- Prior art keywords
- film
- electrode
- protective film
- liquid crystal
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Thin Film Transistor (AREA)
Abstract
(57)【要約】
【目的】薄膜トランジスタの電極の電蝕防止。
【構成】ドレイン電極、ソース電極またはゲート電極の
表面に陽極酸化や温水処理工程により形成された表面酸
化膜よりなる電極保護膜を形成し電極の電蝕を防止す
る。
表面に陽極酸化や温水処理工程により形成された表面酸
化膜よりなる電極保護膜を形成し電極の電蝕を防止す
る。
Description
【0001】
【産業上の利用分野】本発明は、薄膜トランジスタの製
造法に係り、特に、薄膜トランジスタを使用したアクテ
ィブ・マトリクス方式の液晶表示装置の製造法に関す
る。
造法に係り、特に、薄膜トランジスタを使用したアクテ
ィブ・マトリクス方式の液晶表示装置の製造法に関す
る。
【0002】
【従来の技術】アクティブ・マトリクス方式の液晶表示
装置は、マトリクス状に配列された複数の画素電極のそ
れぞれに対応して非線形素子(スイッチング素子)を設
けたものである。各画素における液晶は理論的には常時
駆動(デューティ比 1.0)されているので、時分割駆動
方式を採用している、いわゆる単純マトリクス方式と比
べてアクティブ方式はコントラストが良く、特にカラー
液晶表示装置では欠かせない技術となりつつある。スイ
ッチング素子として代表的なものとしては薄膜トランジ
スタ(TFT)がある。
装置は、マトリクス状に配列された複数の画素電極のそ
れぞれに対応して非線形素子(スイッチング素子)を設
けたものである。各画素における液晶は理論的には常時
駆動(デューティ比 1.0)されているので、時分割駆動
方式を採用している、いわゆる単純マトリクス方式と比
べてアクティブ方式はコントラストが良く、特にカラー
液晶表示装置では欠かせない技術となりつつある。スイ
ッチング素子として代表的なものとしては薄膜トランジ
スタ(TFT)がある。
【0003】なお、薄膜トランジスタを使用したアクテ
ィブ・マトリクス方式の液晶表示装置は、例えば特開昭
63−309921号公報や、「冗長構成を採用した1
2.5型アクティブ・マトリクス方式カラー液晶ディスプ
レイ」、日経エレクトロニクス、頁193〜210、1986年12
月15日、日経マグロウヒル社発行、で知られている。
ィブ・マトリクス方式の液晶表示装置は、例えば特開昭
63−309921号公報や、「冗長構成を採用した1
2.5型アクティブ・マトリクス方式カラー液晶ディスプ
レイ」、日経エレクトロニクス、頁193〜210、1986年12
月15日、日経マグロウヒル社発行、で知られている。
【0004】従来薄膜トランジスタの電極(ソース、ド
レイン、ゲート)にはアルミ(Al)等の金属膜が使わ
れている。しかし、これらの電極は、電圧が印加される
ため液晶や空気に触れると電蝕を起こし、長時間経過す
ると導通不良を起こす問題があった。
レイン、ゲート)にはアルミ(Al)等の金属膜が使わ
れている。しかし、これらの電極は、電圧が印加される
ため液晶や空気に触れると電蝕を起こし、長時間経過す
ると導通不良を起こす問題があった。
【0005】
【発明が解決しようとする課題】上記電蝕の問題は、電
極の表面を絶縁体の保護膜で覆うことにより対策され
る。保護膜には、一般にプラズマCVD装置で形成した
酸化シリコン(SiO2)膜や窒化シリコン(SiN)
膜が使われる。しかしプラズマCVD装置で形成した保
護膜で電蝕を防止するには、例えば窒化シリコン膜の場
合、8000Å以上の膜厚を要する。8000Å以上の
厚膜をプラズマCVD装置で成膜する場合スループット
が悪くなる問題があり、従来アクティブ・マトリクス方
式の液晶表示装置を量産する上で障害と成っていた。ま
た図3に示すごとく保護膜PSV1が画素電極ITO1
を覆っている構造の液晶表示装置では、保護膜を厚くす
ることは、液晶層LCに印加される電界を弱めることに
なり、いわゆる電圧の利用効率を悪化させる結果になっ
ていた。
極の表面を絶縁体の保護膜で覆うことにより対策され
る。保護膜には、一般にプラズマCVD装置で形成した
酸化シリコン(SiO2)膜や窒化シリコン(SiN)
膜が使われる。しかしプラズマCVD装置で形成した保
護膜で電蝕を防止するには、例えば窒化シリコン膜の場
合、8000Å以上の膜厚を要する。8000Å以上の
厚膜をプラズマCVD装置で成膜する場合スループット
が悪くなる問題があり、従来アクティブ・マトリクス方
式の液晶表示装置を量産する上で障害と成っていた。ま
た図3に示すごとく保護膜PSV1が画素電極ITO1
を覆っている構造の液晶表示装置では、保護膜を厚くす
ることは、液晶層LCに印加される電界を弱めることに
なり、いわゆる電圧の利用効率を悪化させる結果になっ
ていた。
【0006】
【課題を解決するための手段】図1に示すようにソース
電極SD1、ドレイン電極SD2に、陽極酸化あるいは
温水処理等により、電極保護膜PSV3を形成した。
電極SD1、ドレイン電極SD2に、陽極酸化あるいは
温水処理等により、電極保護膜PSV3を形成した。
【0007】
【作用】ソース電極SD1、ドレイン電極SD2が電極
保護膜PSV3で保護されているので電蝕を防止するこ
とができる。
保護膜PSV3で保護されているので電蝕を防止するこ
とができる。
【0008】
【実施例】本発明、本発明の更に他の目的及び本発明の
更に他の特徴は図面を参照した以下の説明から明らかと
なるであろう。
更に他の特徴は図面を参照した以下の説明から明らかと
なるであろう。
【0009】《アクティブ・マトリクス液晶表示装置》
以下、アクティブ・マトリクス方式のカラー液晶表示装
置にこの発明を適用した実施例を説明する。なお、以下
説明する図面で、同一機能を有するものは同一符号を付
け、その繰り返しの説明は省略する。
以下、アクティブ・マトリクス方式のカラー液晶表示装
置にこの発明を適用した実施例を説明する。なお、以下
説明する図面で、同一機能を有するものは同一符号を付
け、その繰り返しの説明は省略する。
【0010】《マトリクス部の概要》図1は本発明を適
用した薄膜トランジスタの一実施例を示した図であり、
図2は図1に示した薄膜トランジスタを適用したアクテ
ィブ・マトリクス方式カラー液晶表示装置の一画素とそ
の周辺を示す平面図、図3は図2の3−3切断線におけ
る断面を示す図、図4は図2の4−4切断線における断
面図である。
用した薄膜トランジスタの一実施例を示した図であり、
図2は図1に示した薄膜トランジスタを適用したアクテ
ィブ・マトリクス方式カラー液晶表示装置の一画素とそ
の周辺を示す平面図、図3は図2の3−3切断線におけ
る断面を示す図、図4は図2の4−4切断線における断
面図である。
【0011】図2に示すように、各画素は隣接する2本
の走査信号線(ゲート信号線または水平信号線)GL
と、隣接する2本の映像信号線(ドレイン信号線または
垂直信号線)DLとの交差領域内(4本の信号線で囲ま
れた領域内)に配置されている。各画素は薄膜トランジ
スタTFT、透明画素電極ITO1および保持容量素子
Caddを含む。走査信号線GLは図では左右方向に延在
し、上下方向に複数本配置されている。映像信号線DL
は上下方向に延在し、左右方向に複数本配置されてい
る。
の走査信号線(ゲート信号線または水平信号線)GL
と、隣接する2本の映像信号線(ドレイン信号線または
垂直信号線)DLとの交差領域内(4本の信号線で囲ま
れた領域内)に配置されている。各画素は薄膜トランジ
スタTFT、透明画素電極ITO1および保持容量素子
Caddを含む。走査信号線GLは図では左右方向に延在
し、上下方向に複数本配置されている。映像信号線DL
は上下方向に延在し、左右方向に複数本配置されてい
る。
【0012】図3に示すように、液晶層LCを基準にし
て下部透明ガラス基板SUB1側には薄膜トランジスタ
TFTおよび透明画素電極ITO1が形成され、上部透
明ガラス基板SUB2側にはカラーフィルタFIL、遮
光用ブラックマトリクスパターンBMが形成されてい
る。透明ガラス基板SUB1、SUB2の両面にはディ
ップ処理等によって形成された酸化シリコン膜SIOが
設けられている。
て下部透明ガラス基板SUB1側には薄膜トランジスタ
TFTおよび透明画素電極ITO1が形成され、上部透
明ガラス基板SUB2側にはカラーフィルタFIL、遮
光用ブラックマトリクスパターンBMが形成されてい
る。透明ガラス基板SUB1、SUB2の両面にはディ
ップ処理等によって形成された酸化シリコン膜SIOが
設けられている。
【0013】上部透明ガラス基板SUB2の内側(液晶
LC側)の表面には、遮光膜BM、カラーフィルタFI
L、保護膜PSV2、共通透明画素電極ITO2(CO
M)および上部配向膜ORI2が順次積層して設けられ
ている。
LC側)の表面には、遮光膜BM、カラーフィルタFI
L、保護膜PSV2、共通透明画素電極ITO2(CO
M)および上部配向膜ORI2が順次積層して設けられ
ている。
【0014】《マトリクス周辺の概要》図5は上下のガ
ラス基板SUB1,SUB2を含む表示パネルPNLの
マトリクス(AR)周辺の要部平面を、図6はその周辺
部を更に誇張した平面を、図7は図5及び図6のパネル
左上角部に対応するシール部SL付近の拡大平面を示す
図である。また、図8は図3の断面を中央にして、左側
に図7の8a−8a切断線における断面を、右側に映像
信号駆動回路が接続されるべき外部接続端子DTM付近
の断面を示す図である。同様に図9は、左側に走査回路
が接続されるべき外部接続端子GTM付近の断面を、右
側に外部接続端子が無いところのシール部付近の断面を
示す図である。
ラス基板SUB1,SUB2を含む表示パネルPNLの
マトリクス(AR)周辺の要部平面を、図6はその周辺
部を更に誇張した平面を、図7は図5及び図6のパネル
左上角部に対応するシール部SL付近の拡大平面を示す
図である。また、図8は図3の断面を中央にして、左側
に図7の8a−8a切断線における断面を、右側に映像
信号駆動回路が接続されるべき外部接続端子DTM付近
の断面を示す図である。同様に図9は、左側に走査回路
が接続されるべき外部接続端子GTM付近の断面を、右
側に外部接続端子が無いところのシール部付近の断面を
示す図である。
【0015】このパネルの製造では、小さいサイズであ
ればスループット向上のため1枚のガラス基板で複数個
分のデバイスを同時に加工してから分割し、大きいサイ
ズであれば製造設備の共用のためどの品種でも標準化さ
れた大きさのガラス基板を加工してから各品種に合った
サイズに小さくし、いずれの場合も一通りの工程を経て
からガラスを切断する。図5〜図7は後者の例を示すも
ので、図5、図6の両図とも上下基板SUB1,SUB
2の切断後を、図7は切断前を表しており、LNは両基
板の切断前の縁を、CT1とCT2はそれぞれ基板SU
B1,SUB2の切断すべき位置を示す。いずれの場合
も、完成状態では外部接続端子群Tg,Td(添字略)
が存在する(図で上下辺と左辺の)部分はそれらを露出
するように上側基板SUB2の大きさが下側基板SUB
1よりも内側に制限されている。端子群Tg,Tdはそ
れぞれ後述する走査回路接続用端子GTM、映像信号回
路接続用端子DTMとそれらの引出配線部を集積回路チ
ップCHIが搭載されたテープキャリアパッケージTC
P(図18、図19)の単位に複数本まとめて名付けた
ものである。各群のマトリクス部から外部接続端子部に
至るまでの引出配線は、両端に近づくにつれ傾斜してい
る。これは、パッケージTCPの配列ピッチ及び各パッ
ケージTCPにおける接続端子ピッチに表示パネルPN
Lの端子DTM,GTMを合わせるためである。
ればスループット向上のため1枚のガラス基板で複数個
分のデバイスを同時に加工してから分割し、大きいサイ
ズであれば製造設備の共用のためどの品種でも標準化さ
れた大きさのガラス基板を加工してから各品種に合った
サイズに小さくし、いずれの場合も一通りの工程を経て
からガラスを切断する。図5〜図7は後者の例を示すも
ので、図5、図6の両図とも上下基板SUB1,SUB
2の切断後を、図7は切断前を表しており、LNは両基
板の切断前の縁を、CT1とCT2はそれぞれ基板SU
B1,SUB2の切断すべき位置を示す。いずれの場合
も、完成状態では外部接続端子群Tg,Td(添字略)
が存在する(図で上下辺と左辺の)部分はそれらを露出
するように上側基板SUB2の大きさが下側基板SUB
1よりも内側に制限されている。端子群Tg,Tdはそ
れぞれ後述する走査回路接続用端子GTM、映像信号回
路接続用端子DTMとそれらの引出配線部を集積回路チ
ップCHIが搭載されたテープキャリアパッケージTC
P(図18、図19)の単位に複数本まとめて名付けた
ものである。各群のマトリクス部から外部接続端子部に
至るまでの引出配線は、両端に近づくにつれ傾斜してい
る。これは、パッケージTCPの配列ピッチ及び各パッ
ケージTCPにおける接続端子ピッチに表示パネルPN
Lの端子DTM,GTMを合わせるためである。
【0016】透明ガラス基板SUB1、SUB2の間に
はその縁に沿って、液晶封入口INJを除き、液晶LC
を封止するようにシールパターンSLが形成される。シ
ール材は例えばエポキシ樹脂から成る。上部透明ガラス
基板SUB2側の共通透明画素電極ITO2は、少なく
とも一箇所において、本実施例ではパネルの4角で銀ペ
ースト材AGPによって下部透明ガラス基板SUB1側
に形成されたその引出配線INTに接続されている。こ
の引出配線INTは後述するゲート端子GTM、ドレイ
ン端子DTMと同一製造工程で形成される。
はその縁に沿って、液晶封入口INJを除き、液晶LC
を封止するようにシールパターンSLが形成される。シ
ール材は例えばエポキシ樹脂から成る。上部透明ガラス
基板SUB2側の共通透明画素電極ITO2は、少なく
とも一箇所において、本実施例ではパネルの4角で銀ペ
ースト材AGPによって下部透明ガラス基板SUB1側
に形成されたその引出配線INTに接続されている。こ
の引出配線INTは後述するゲート端子GTM、ドレイ
ン端子DTMと同一製造工程で形成される。
【0017】配向膜ORI1、ORI2、透明画素電極
ITO1、共通透明画素電極ITO2、それぞれの層
は、シールパターンSLの内側に形成される。偏光板P
OL1、POL2はそれぞれ下部透明ガラス基板SUB
1、上部透明ガラス基板SUB2の外側の表面に形成さ
れている。液晶LCは液晶分子の向きを設定する下部配
向膜ORI1と上部配向膜ORI2との間でシールパタ
ーンSLで仕切られた領域に封入されている。下部配向
膜ORI1は下部透明ガラス基板SUB1側の保護膜P
SV1の上部に形成される。
ITO1、共通透明画素電極ITO2、それぞれの層
は、シールパターンSLの内側に形成される。偏光板P
OL1、POL2はそれぞれ下部透明ガラス基板SUB
1、上部透明ガラス基板SUB2の外側の表面に形成さ
れている。液晶LCは液晶分子の向きを設定する下部配
向膜ORI1と上部配向膜ORI2との間でシールパタ
ーンSLで仕切られた領域に封入されている。下部配向
膜ORI1は下部透明ガラス基板SUB1側の保護膜P
SV1の上部に形成される。
【0018】この液晶表示装置は、下部透明ガラス基板
SUB1側、上部透明ガラス基板SUB2側で別個に種
々の層を積み重ね、シールパターンSLを基板SUB2
側に形成し、下部透明ガラス基板SUB1と上部透明ガ
ラス基板SUB2とを重ね合わせ、シール材SLの開口
部INJから液晶LCを注入し、注入口INJをエポキ
シ樹脂などで封止し、上下基板を切断することによって
組み立てられる。
SUB1側、上部透明ガラス基板SUB2側で別個に種
々の層を積み重ね、シールパターンSLを基板SUB2
側に形成し、下部透明ガラス基板SUB1と上部透明ガ
ラス基板SUB2とを重ね合わせ、シール材SLの開口
部INJから液晶LCを注入し、注入口INJをエポキ
シ樹脂などで封止し、上下基板を切断することによって
組み立てられる。
【0019】《薄膜トランジスタTFT》次に、図1、
図2、図3に戻り、TFT基板SUB1側の構成を詳し
く説明する。
図2、図3に戻り、TFT基板SUB1側の構成を詳し
く説明する。
【0020】薄膜トランジスタTFTは、ゲート電極G
Tに正のバイアスを印加すると、ソース−ドレイン間の
チャネル抵抗が小さくなり、バイアスを零にすると、チ
ャネル抵抗は大きくなるように動作する。
Tに正のバイアスを印加すると、ソース−ドレイン間の
チャネル抵抗が小さくなり、バイアスを零にすると、チ
ャネル抵抗は大きくなるように動作する。
【0021】各画素には複数(2つ)の薄膜トランジス
タTFT1、TFT2が冗長して設けられる。薄膜トラ
ンジスタTFT1、TFT2のそれぞれは、実質的に同
一サイズ(チャネル長、チャネル幅が同じ)で構成さ
れ、ゲート電極GT、ゲート絶縁膜GI、i型(真性、
intrinsic、導電型決定不純物がドープされていない)
非晶質シリコン(Si)からなるi型半導体層AS、一
対のソース電極SD1、ドレイン電極SD2を有す。な
お、ソース、ドレインは本来その間のバイアス極性によ
って決まるもので、この液晶表示装置の回路ではその極
性は動作中反転するので、ソース、ドレインは動作中入
れ替わると理解されたい。しかし、以下の説明では、便
宜上一方をソース、他方をドレインと固定して表現す
る。
タTFT1、TFT2が冗長して設けられる。薄膜トラ
ンジスタTFT1、TFT2のそれぞれは、実質的に同
一サイズ(チャネル長、チャネル幅が同じ)で構成さ
れ、ゲート電極GT、ゲート絶縁膜GI、i型(真性、
intrinsic、導電型決定不純物がドープされていない)
非晶質シリコン(Si)からなるi型半導体層AS、一
対のソース電極SD1、ドレイン電極SD2を有す。な
お、ソース、ドレインは本来その間のバイアス極性によ
って決まるもので、この液晶表示装置の回路ではその極
性は動作中反転するので、ソース、ドレインは動作中入
れ替わると理解されたい。しかし、以下の説明では、便
宜上一方をソース、他方をドレインと固定して表現す
る。
【0022】《ゲート電極GT》ゲート電極GTは走査
信号線GLから垂直方向に突出する形状で構成されてい
る(T字形状に分岐されている)。ゲート電極GTは薄
膜トランジスタTFT1、TFT2のそれぞれの能動領
域を越えるよう突出している。薄膜トランジスタTFT
1、TFT2のそれぞれのゲート電極GTは、一体に
(共通のゲート電極として)構成されており、走査信号
線GLに連続して形成されている。本例では、ゲート電
極GTは、単層の第2導電膜g2で形成されている。第
2導電膜g2としては例えばスパッタで形成されたアル
ミニウム(Al)膜が用いられ、その上にはAlの陽極
酸化膜AOFが設けられている。
信号線GLから垂直方向に突出する形状で構成されてい
る(T字形状に分岐されている)。ゲート電極GTは薄
膜トランジスタTFT1、TFT2のそれぞれの能動領
域を越えるよう突出している。薄膜トランジスタTFT
1、TFT2のそれぞれのゲート電極GTは、一体に
(共通のゲート電極として)構成されており、走査信号
線GLに連続して形成されている。本例では、ゲート電
極GTは、単層の第2導電膜g2で形成されている。第
2導電膜g2としては例えばスパッタで形成されたアル
ミニウム(Al)膜が用いられ、その上にはAlの陽極
酸化膜AOFが設けられている。
【0023】このゲート電極GTはi型半導体層ASを
完全に覆うよう(下方からみて)それより大き目に形成
され、i型半導体層ASに外光やバックライト光が当た
らないよう工夫されている。
完全に覆うよう(下方からみて)それより大き目に形成
され、i型半導体層ASに外光やバックライト光が当た
らないよう工夫されている。
【0024】《走査信号線GL》走査信号線GLは第2
導電膜g2で構成されている。この走査信号線GLの第
2導電膜g2はゲート電極GTの第2導電膜g2と同一
製造工程で形成され、かつ一体に構成されている。ま
た、走査信号線GL上にもAlの陽極酸化膜AOFが設
けられている。
導電膜g2で構成されている。この走査信号線GLの第
2導電膜g2はゲート電極GTの第2導電膜g2と同一
製造工程で形成され、かつ一体に構成されている。ま
た、走査信号線GL上にもAlの陽極酸化膜AOFが設
けられている。
【0025】《絶縁膜GI》絶縁膜GIは、薄膜トラン
ジスタTFT1、TFT2において、ゲート電極GTと
共に半導体層ASに電界を与えるためのゲート絶縁膜と
して使用される。絶縁膜GIはゲート電極GTおよび走
査信号線GLの上層に形成されている。絶縁膜GIとし
ては例えばプラズマCVDで形成された窒化シリコン膜
が選ばれ、1200〜2700Åの厚さに(本実施例で
は、2000Å程度)形成される。ゲート絶縁膜GIは
図7に示すように、マトリクス部ARの全体を囲むよう
に形成され、周辺部は外部接続端子DTM,GTMを露
出するよう除去されている。絶縁膜GIは走査信号線G
Lと映像信号線DLの電気的絶縁にも寄与している。
ジスタTFT1、TFT2において、ゲート電極GTと
共に半導体層ASに電界を与えるためのゲート絶縁膜と
して使用される。絶縁膜GIはゲート電極GTおよび走
査信号線GLの上層に形成されている。絶縁膜GIとし
ては例えばプラズマCVDで形成された窒化シリコン膜
が選ばれ、1200〜2700Åの厚さに(本実施例で
は、2000Å程度)形成される。ゲート絶縁膜GIは
図7に示すように、マトリクス部ARの全体を囲むよう
に形成され、周辺部は外部接続端子DTM,GTMを露
出するよう除去されている。絶縁膜GIは走査信号線G
Lと映像信号線DLの電気的絶縁にも寄与している。
【0026】《i型半導体層AS》i型半導体層AS
は、本例では薄膜トランジスタTFT1、TFT2のそ
れぞれに独立した島となるよう形成され、非晶質シリコ
ンで、200〜2200Åの厚さに(本実施例では、2
000Å程度の膜厚)で形成される。層d0はオーミッ
クコンタクト用のリン(P)をドープしたN(+)型非晶
質シリコン半導体層であり、下側にi型半導体層ASが
存在し、上側に導電層d2(d3)が存在するところの
みに残されている。
は、本例では薄膜トランジスタTFT1、TFT2のそ
れぞれに独立した島となるよう形成され、非晶質シリコ
ンで、200〜2200Åの厚さに(本実施例では、2
000Å程度の膜厚)で形成される。層d0はオーミッ
クコンタクト用のリン(P)をドープしたN(+)型非晶
質シリコン半導体層であり、下側にi型半導体層ASが
存在し、上側に導電層d2(d3)が存在するところの
みに残されている。
【0027】i型半導体層ASは走査信号線GLと映像
信号線DLとの交差部(クロスオーバ部)の両者間にも
設けられている。この交差部のi型半導体層ASは交差
部における走査信号線GLと映像信号線DLとの短絡を
低減する。
信号線DLとの交差部(クロスオーバ部)の両者間にも
設けられている。この交差部のi型半導体層ASは交差
部における走査信号線GLと映像信号線DLとの短絡を
低減する。
【0028】《透明画素電極ITO1》透明画素電極I
TO1は液晶表示部の画素電極の一方を構成する。
TO1は液晶表示部の画素電極の一方を構成する。
【0029】透明画素電極ITO1は薄膜トランジスタ
TFT1のソース電極SD1および薄膜トランジスタT
FT2のソース電極SD1の両方に接続されている。こ
のため、薄膜トランジスタTFT1、TFT2のうちの
1つに欠陥が発生しても、その欠陥が副作用をもたらす
場合はレーザ光等によって適切な箇所を切断し、そうで
ない場合は他方の薄膜トランジスタが正常に動作してい
るので放置すれば良い。透明画素電極ITO1は第1導
電膜d1によって構成されており、この第1導電膜d1
はスパッタリングで形成された透明導電膜(Indium-Tin
-Oxide ITO:ネサ膜)からなり、1000〜200
0Åの厚さに(本実施例では、1400Å程度の膜厚)
形成される。
TFT1のソース電極SD1および薄膜トランジスタT
FT2のソース電極SD1の両方に接続されている。こ
のため、薄膜トランジスタTFT1、TFT2のうちの
1つに欠陥が発生しても、その欠陥が副作用をもたらす
場合はレーザ光等によって適切な箇所を切断し、そうで
ない場合は他方の薄膜トランジスタが正常に動作してい
るので放置すれば良い。透明画素電極ITO1は第1導
電膜d1によって構成されており、この第1導電膜d1
はスパッタリングで形成された透明導電膜(Indium-Tin
-Oxide ITO:ネサ膜)からなり、1000〜200
0Åの厚さに(本実施例では、1400Å程度の膜厚)
形成される。
【0030】《ソース電極SD1、ドレイン電極SD
2》ソース電極SD1、ドレイン電極SD2のそれぞれ
は、N(+)型半導体層d0に接触する第2導電膜d2と
その上に形成された第3導電膜d3とから構成されてい
る。
2》ソース電極SD1、ドレイン電極SD2のそれぞれ
は、N(+)型半導体層d0に接触する第2導電膜d2と
その上に形成された第3導電膜d3とから構成されてい
る。
【0031】第2導電膜d2はスパッタで形成したクロ
ム(Cr)膜を用い、500〜1000Åの厚さに(本
実施例では、600Å程度)で形成される。Cr膜は膜
厚を厚く形成するとストレスが大きくなるので、200
0Å程度の膜厚を越えない範囲で形成する。Cr膜はN
(+)型半導体層d0との接着性を良好にし、第3導電膜
d3のAlがN(+)型半導体層d0に拡散することを防
止する(いわゆるバリア層の)目的で使用される。第2
導電膜d2として、Cr膜の他に高融点金属(Mo、T
i、Ta、W)膜、高融点金属シリサイド(MoS
i2、TiSi2、TaSi2、WSi2)膜を用いてもよ
い。
ム(Cr)膜を用い、500〜1000Åの厚さに(本
実施例では、600Å程度)で形成される。Cr膜は膜
厚を厚く形成するとストレスが大きくなるので、200
0Å程度の膜厚を越えない範囲で形成する。Cr膜はN
(+)型半導体層d0との接着性を良好にし、第3導電膜
d3のAlがN(+)型半導体層d0に拡散することを防
止する(いわゆるバリア層の)目的で使用される。第2
導電膜d2として、Cr膜の他に高融点金属(Mo、T
i、Ta、W)膜、高融点金属シリサイド(MoS
i2、TiSi2、TaSi2、WSi2)膜を用いてもよ
い。
【0032】第3導電膜d3はAlのスパッタリングで
3000〜5000Åの厚さに(本実施例では、400
0Å程度)形成される。Al膜はCr膜に比べてストレ
スが小さく、厚い膜厚に形成することが可能で、ソース
電極SD1、ドレイン電極SD2および映像信号線DL
の抵抗値を低減したり、ゲート電極GTやi型半導体層
ASに起因する段差乗り越えを確実にする(ステップカ
バーレッジを良くする)働きがある。
3000〜5000Åの厚さに(本実施例では、400
0Å程度)形成される。Al膜はCr膜に比べてストレ
スが小さく、厚い膜厚に形成することが可能で、ソース
電極SD1、ドレイン電極SD2および映像信号線DL
の抵抗値を低減したり、ゲート電極GTやi型半導体層
ASに起因する段差乗り越えを確実にする(ステップカ
バーレッジを良くする)働きがある。
【0033】第2導電膜d2の端部及び第3導電膜d3
の表面にはそれらの電極の表面酸化膜より成る電極保護
膜PSV3が設けられている。電極保護膜PSV3の膜
厚は、第2導電膜d2の端部及び第3導電膜d3の表面
の電蝕を防止する為に十分な厚さであれば良く、本実施
例では1000Åである。
の表面にはそれらの電極の表面酸化膜より成る電極保護
膜PSV3が設けられている。電極保護膜PSV3の膜
厚は、第2導電膜d2の端部及び第3導電膜d3の表面
の電蝕を防止する為に十分な厚さであれば良く、本実施
例では1000Åである。
【0034】第2導電膜d2、第3導電膜d3を同じマ
スクパターンでパターニングした後、同じマスクを用い
て、あるいは第2導電膜d2、第3導電膜d3をマスク
として、N(+)型半導体層d0が除去される。つまり、
i型半導体層AS上に残っていたN(+)型半導体層d0
は第2導電膜d2、第3導電膜d3以外の部分がセルフ
アラインで除去される。このとき、N(+)型半導体層d
0はその厚さ分は全て除去されるようエッチングされる
ので、i型半導体層ASも若干その表面部分がエッチン
グされるが、その程度はエッチング時間で制御すればよ
い。その後マスクを除去した後第2導電膜d2の端部及
び第3導電膜d3の表面を酸化し電極保護膜PSV3を
形成する。
スクパターンでパターニングした後、同じマスクを用い
て、あるいは第2導電膜d2、第3導電膜d3をマスク
として、N(+)型半導体層d0が除去される。つまり、
i型半導体層AS上に残っていたN(+)型半導体層d0
は第2導電膜d2、第3導電膜d3以外の部分がセルフ
アラインで除去される。このとき、N(+)型半導体層d
0はその厚さ分は全て除去されるようエッチングされる
ので、i型半導体層ASも若干その表面部分がエッチン
グされるが、その程度はエッチング時間で制御すればよ
い。その後マスクを除去した後第2導電膜d2の端部及
び第3導電膜d3の表面を酸化し電極保護膜PSV3を
形成する。
【0035】《映像信号線DL》映像信号線DLはソー
ス電極SD1、ドレイン電極SD2と同層の第2導電膜
d2、第3導電膜d3で構成されている。また映像信号
線DLの表面にも電極保護膜(PSV3)が形成されて
いる。
ス電極SD1、ドレイン電極SD2と同層の第2導電膜
d2、第3導電膜d3で構成されている。また映像信号
線DLの表面にも電極保護膜(PSV3)が形成されて
いる。
【0036】《保護膜PSV1》薄膜トランジスタTF
Tおよび透明画素電極ITO1上には保護膜PSV1が
設けられている。保護膜PSV1は主に薄膜トランジス
タTFTを湿気等から保護するために形成されており、
透明性が高くしかも耐湿性の良いものを使用する。保護
膜PSV1はたとえばプラズマCVD装置で形成した酸
化シリコン膜や窒化シリコン膜で形成する。膜厚は、電
蝕の問題がない分、薄く形成すること(8000Å以
下)が可能であり、例えば3000Å程度にする。
Tおよび透明画素電極ITO1上には保護膜PSV1が
設けられている。保護膜PSV1は主に薄膜トランジス
タTFTを湿気等から保護するために形成されており、
透明性が高くしかも耐湿性の良いものを使用する。保護
膜PSV1はたとえばプラズマCVD装置で形成した酸
化シリコン膜や窒化シリコン膜で形成する。膜厚は、電
蝕の問題がない分、薄く形成すること(8000Å以
下)が可能であり、例えば3000Å程度にする。
【0037】保護膜PSV1は図7に示すように、マト
リクス部ARの全体を囲むように形成され、周辺部は外
部接続端子DTM,GTMを露出するよう除去され、ま
た上基板側SUB2の共通電極COMを下側基板SUB
1の外部接続端子接続用引出配線INTに銀ペーストA
GPで接続する部分も除去されている。保護膜PSV1
とゲート絶縁膜GIの厚さ関係に関しては、前者は保護
効果を考え厚くされ、後者はトランジスタの相互コンダ
クタンスgmを薄くされる。従って図7に示すように、
保護効果の高い保護膜PSV1は周辺部もできるだけ広
い範囲に亘って保護するようゲート絶縁膜GIよりも大
きく形成されている。
リクス部ARの全体を囲むように形成され、周辺部は外
部接続端子DTM,GTMを露出するよう除去され、ま
た上基板側SUB2の共通電極COMを下側基板SUB
1の外部接続端子接続用引出配線INTに銀ペーストA
GPで接続する部分も除去されている。保護膜PSV1
とゲート絶縁膜GIの厚さ関係に関しては、前者は保護
効果を考え厚くされ、後者はトランジスタの相互コンダ
クタンスgmを薄くされる。従って図7に示すように、
保護効果の高い保護膜PSV1は周辺部もできるだけ広
い範囲に亘って保護するようゲート絶縁膜GIよりも大
きく形成されている。
【0038】《遮光膜BM》上部透明ガラス基板SUB
2側には、外部光又はバックライト光がi型半導体層A
Sに入射しないよう遮光膜BMが設けられている。図2
に示す遮光膜BMの閉じた多角形の輪郭線は、その内側
が遮光膜BMが形成されない開口を示している。遮光膜
BMは光に対する遮蔽性が高いたとえばアルミニウム膜
やクロム膜等で形成されており、本実施例ではクロム膜
がスパッタリングで1300Å程度の厚さに形成され
る。
2側には、外部光又はバックライト光がi型半導体層A
Sに入射しないよう遮光膜BMが設けられている。図2
に示す遮光膜BMの閉じた多角形の輪郭線は、その内側
が遮光膜BMが形成されない開口を示している。遮光膜
BMは光に対する遮蔽性が高いたとえばアルミニウム膜
やクロム膜等で形成されており、本実施例ではクロム膜
がスパッタリングで1300Å程度の厚さに形成され
る。
【0039】従って、薄膜トランジスタTFT1、TF
T2のi型半導体層ASは上下にある遮光膜BMおよび
大き目のゲート電極GTによってサンドイッチにされ、
外部の自然光やバックライト光が当たらなくなる。遮光
膜BMは各画素の周囲に格子状に形成され(いわゆるブ
ラックマトリクス)、この格子で1画素の有効表示領域
が仕切られている。従って、各画素の輪郭が遮光膜BM
によってはっきりとし、コントラストが向上する。つま
り、遮光膜BMはi型半導体層ASに対する遮光とブラ
ックマトリクスとの2つの機能をもつ。
T2のi型半導体層ASは上下にある遮光膜BMおよび
大き目のゲート電極GTによってサンドイッチにされ、
外部の自然光やバックライト光が当たらなくなる。遮光
膜BMは各画素の周囲に格子状に形成され(いわゆるブ
ラックマトリクス)、この格子で1画素の有効表示領域
が仕切られている。従って、各画素の輪郭が遮光膜BM
によってはっきりとし、コントラストが向上する。つま
り、遮光膜BMはi型半導体層ASに対する遮光とブラ
ックマトリクスとの2つの機能をもつ。
【0040】透明画素電極ITO1のラビング方向の根
本側のエッジ部分(図2右下部分)も遮光膜BMによっ
て遮光されているので、上記部分にドメインが発生した
としても、ドメインが見えないので、表示特性が劣化す
ることはない。
本側のエッジ部分(図2右下部分)も遮光膜BMによっ
て遮光されているので、上記部分にドメインが発生した
としても、ドメインが見えないので、表示特性が劣化す
ることはない。
【0041】遮光膜BMは図6に示すように周辺部にも
額縁状に形成され、そのパターンはドット状に複数の開
口を設けた図2に示すマトリクス部のパターンと連続し
て形成されている。周辺部の遮光膜BMは図6〜図9に
示すように、シール部SLの外側に延長され、パソコン
等の実装機に起因する反射光等の漏れ光がマトリクス部
に入り込むのを防いでいる。他方、この遮光膜BMは基
板SUB2の縁よりも約0.3〜1.0mm程内側に留
められ、基板SUB2の切断領域を避けて形成されてい
る。
額縁状に形成され、そのパターンはドット状に複数の開
口を設けた図2に示すマトリクス部のパターンと連続し
て形成されている。周辺部の遮光膜BMは図6〜図9に
示すように、シール部SLの外側に延長され、パソコン
等の実装機に起因する反射光等の漏れ光がマトリクス部
に入り込むのを防いでいる。他方、この遮光膜BMは基
板SUB2の縁よりも約0.3〜1.0mm程内側に留
められ、基板SUB2の切断領域を避けて形成されてい
る。
【0042】《カラーフィルタFIL》カラーフィルタ
FILは画素に対向する位置に赤、緑、青の繰り返しで
ストライプ状に形成される。カラーフィルタFILは透
明画素電極ITO1の全てを覆うように大き目に形成さ
れ、遮光膜BMはカラーフィルタFILおよび透明画素
電極ITO1のエッジ部分と重なるよう透明画素電極I
TO1の周縁部より内側に形成されている。
FILは画素に対向する位置に赤、緑、青の繰り返しで
ストライプ状に形成される。カラーフィルタFILは透
明画素電極ITO1の全てを覆うように大き目に形成さ
れ、遮光膜BMはカラーフィルタFILおよび透明画素
電極ITO1のエッジ部分と重なるよう透明画素電極I
TO1の周縁部より内側に形成されている。
【0043】カラーフィルタFILは次のように形成す
ることができる。まず、上部透明ガラス基板SUB2の
表面にアクリル系樹脂等の染色基材を形成し、フォトリ
ソグラフィ技術で赤色フィルタ形成領域以外の染色基材
を除去する。この後、染色基材を赤色染料で染め、固着
処理を施し、赤色フィルタRを形成する。つぎに、同様
な工程を施すことによって、緑色フィルタG、青色フィ
ルタBを順次形成する。
ることができる。まず、上部透明ガラス基板SUB2の
表面にアクリル系樹脂等の染色基材を形成し、フォトリ
ソグラフィ技術で赤色フィルタ形成領域以外の染色基材
を除去する。この後、染色基材を赤色染料で染め、固着
処理を施し、赤色フィルタRを形成する。つぎに、同様
な工程を施すことによって、緑色フィルタG、青色フィ
ルタBを順次形成する。
【0044】《保護膜PSV2》保護膜PSV2はカラ
ーフィルタFILの染料が液晶LCに漏れることを防止
するために設けられている。保護膜PSV2はたとえば
アクリル樹脂、エポキシ樹脂等の透明樹脂材料で形成さ
れている。
ーフィルタFILの染料が液晶LCに漏れることを防止
するために設けられている。保護膜PSV2はたとえば
アクリル樹脂、エポキシ樹脂等の透明樹脂材料で形成さ
れている。
【0045】《共通透明画素電極ITO2》共通透明画
素電極ITO2は、下部透明ガラス基板SUB1側に画
素ごとに設けられた透明画素電極ITO1に対向し、液
晶LCの光学的な状態は各画素電極ITO1と共通透明
画素電極ITO2との間の電位差(電界)に応答して変
化する。この共通透明画素電極ITO2にはコモン電圧
Vcomが印加されるように構成されている。本実施例で
は、コモン電圧Vcomは映像信号線DLに印加される最
小レベルの駆動電圧Vdminと最大レベルの駆動電圧V
dmaxとの中間直流電位に設定されるが、映像信号駆動
回路で使用される集積回路の電源電圧を約半分に低減し
たい場合は、交流電圧を印加すれば良い。なお、共通透
明画素電極ITO2の平面形状は図6、図7を参照され
たい。
素電極ITO2は、下部透明ガラス基板SUB1側に画
素ごとに設けられた透明画素電極ITO1に対向し、液
晶LCの光学的な状態は各画素電極ITO1と共通透明
画素電極ITO2との間の電位差(電界)に応答して変
化する。この共通透明画素電極ITO2にはコモン電圧
Vcomが印加されるように構成されている。本実施例で
は、コモン電圧Vcomは映像信号線DLに印加される最
小レベルの駆動電圧Vdminと最大レベルの駆動電圧V
dmaxとの中間直流電位に設定されるが、映像信号駆動
回路で使用される集積回路の電源電圧を約半分に低減し
たい場合は、交流電圧を印加すれば良い。なお、共通透
明画素電極ITO2の平面形状は図6、図7を参照され
たい。
【0046】《保持容量素子Caddの構造》透明画素電
極ITO1は、薄膜トランジスタTFTと接続される端
部と反対側の端部において、隣りの走査信号線GLと重
なるように形成されている。この重ね合わせは、図4か
らも明らかなように、透明画素電極ITO1を一方の電
極PL2とし、隣りの走査信号線GLを他方の電極PL
1とする保持容量素子(静電容量素子)Caddを構成す
る。この保持容量素子Caddの誘電体膜は、薄膜トラン
ジスタTFTのゲート絶縁膜として使用される絶縁膜G
Iおよび陽極酸化膜AOFで構成されている。
極ITO1は、薄膜トランジスタTFTと接続される端
部と反対側の端部において、隣りの走査信号線GLと重
なるように形成されている。この重ね合わせは、図4か
らも明らかなように、透明画素電極ITO1を一方の電
極PL2とし、隣りの走査信号線GLを他方の電極PL
1とする保持容量素子(静電容量素子)Caddを構成す
る。この保持容量素子Caddの誘電体膜は、薄膜トラン
ジスタTFTのゲート絶縁膜として使用される絶縁膜G
Iおよび陽極酸化膜AOFで構成されている。
【0047】保持容量素子Caddは走査信号線GLの第
2導電膜g2の幅を広げた部分に形成されている。な
お、映像信号線DLと交差する部分の第2導電膜g2は
映像信号線DLとの短絡の確率を小さくするため細くさ
れている。
2導電膜g2の幅を広げた部分に形成されている。な
お、映像信号線DLと交差する部分の第2導電膜g2は
映像信号線DLとの短絡の確率を小さくするため細くさ
れている。
【0048】保持容量素子Caddの電極PL1の段差部
において透明画素電極ITO1が断線しても、その段差
をまたがるように形成された第2導電膜d2および第3
導電膜d3で構成された島領域によってその不良は補償
される。
において透明画素電極ITO1が断線しても、その段差
をまたがるように形成された第2導電膜d2および第3
導電膜d3で構成された島領域によってその不良は補償
される。
【0049】《ゲート端子部》図10は表示マトリクス
の走査信号線GLからその外部接続端子GTMまでの接
続構造を示す図であり、(A)は平面であり(B)は
(A)のB−B切断線における断面を示している。な
お、同図は図7下方付近に対応し、斜め配線の部分は便
宜状一直線状で表した。
の走査信号線GLからその外部接続端子GTMまでの接
続構造を示す図であり、(A)は平面であり(B)は
(A)のB−B切断線における断面を示している。な
お、同図は図7下方付近に対応し、斜め配線の部分は便
宜状一直線状で表した。
【0050】AOは写真処理用のマスクパターン、言い
換えれば選択的陽極酸化のホトレジストパターンであ
る。従って、このホトレジストは陽極酸化後除去され、
図に示すパターンAOは完成品としては残らないが、ゲ
ート配線GLには断面図に示すように酸化膜AOFが選
択的に形成されるのでその軌跡が残る。平面図におい
て、ホトレジストの境界線AOを基準にして左側はレジ
ストで覆い陽極酸化をしない領域、右側はレジストから
露出され陽極酸化される領域である。陽極酸化されたA
L層g2は表面にその酸化物Al2O3膜AOFが形成さ
れ下方の導電部は体積が減少する。勿論、陽極酸化はそ
の導電部が残るように適切な時間、電圧などを設定して
行われる。マスクパターンAOは走査線GLに単一の直
線では交差せず、クランク状に折れ曲がって交差させて
いる。
換えれば選択的陽極酸化のホトレジストパターンであ
る。従って、このホトレジストは陽極酸化後除去され、
図に示すパターンAOは完成品としては残らないが、ゲ
ート配線GLには断面図に示すように酸化膜AOFが選
択的に形成されるのでその軌跡が残る。平面図におい
て、ホトレジストの境界線AOを基準にして左側はレジ
ストで覆い陽極酸化をしない領域、右側はレジストから
露出され陽極酸化される領域である。陽極酸化されたA
L層g2は表面にその酸化物Al2O3膜AOFが形成さ
れ下方の導電部は体積が減少する。勿論、陽極酸化はそ
の導電部が残るように適切な時間、電圧などを設定して
行われる。マスクパターンAOは走査線GLに単一の直
線では交差せず、クランク状に折れ曲がって交差させて
いる。
【0051】図中AL層g2は、判り易くするためハッ
チを施してあるが、陽極化成されない領域は櫛状にパタ
ーニングされている。これは、Al層の幅が広いと表面
にホイスカが発生するので、1本1本の幅は狭くし、そ
れらを複数本並列に束ねた構成とすることにより、ホイ
スカの発生を防ぎつつ、断線の確率や導電率の犠牲を最
低限に押さえる狙いである。従って、本例では櫛の根本
に相当する部分もマスクAOに沿ってずらしている。
チを施してあるが、陽極化成されない領域は櫛状にパタ
ーニングされている。これは、Al層の幅が広いと表面
にホイスカが発生するので、1本1本の幅は狭くし、そ
れらを複数本並列に束ねた構成とすることにより、ホイ
スカの発生を防ぎつつ、断線の確率や導電率の犠牲を最
低限に押さえる狙いである。従って、本例では櫛の根本
に相当する部分もマスクAOに沿ってずらしている。
【0052】ゲート端子GTMは酸化珪素SIO層と接
着性が良くAl等よりも耐電触性の高いCr層g1と、
更にその表面を保護し画素電極ITO1と同レベル(同
層、同時形成)の透明導電層d1とで構成されている。
なお、ゲート絶縁膜GI上及びその側面部に形成された
導電層d2及びd3は、導電層d3やd2のエッチング
時ピンホール等が原因で導電層g2やg1が一緒にエッ
チングされないようその領域をホトレジストで覆ってい
た結果として残っているものである。又、ゲート絶縁膜
GIを乗り越えて右方向に延長されたITO層d1は同
様な対策を更に万全とさせたものである。
着性が良くAl等よりも耐電触性の高いCr層g1と、
更にその表面を保護し画素電極ITO1と同レベル(同
層、同時形成)の透明導電層d1とで構成されている。
なお、ゲート絶縁膜GI上及びその側面部に形成された
導電層d2及びd3は、導電層d3やd2のエッチング
時ピンホール等が原因で導電層g2やg1が一緒にエッ
チングされないようその領域をホトレジストで覆ってい
た結果として残っているものである。又、ゲート絶縁膜
GIを乗り越えて右方向に延長されたITO層d1は同
様な対策を更に万全とさせたものである。
【0053】平面図において、ゲート絶縁膜GIはその
境界線よりも右側に、保護膜PSV1もその境界線より
も右側に形成されており、左端に位置する端子部GTM
はそれらから露出し外部回路との電気的接触ができるよ
うになっている。図では、ゲート線GLとゲート端子の
一つの対のみが示されているが、実際はこのような対が
図7に示すように上下に複数本並べられ端子群Tg(図
6、図7)が構成され、ゲート端子の左端は、製造過程
では、基板の切断領域CT1を越えて延長され配線SH
gによって短絡される。製造過程におけるこのような短
絡線SHgは陽極化成時の給電と、配向膜ORI1のラ
ビング時等の静電破壊防止に役立つ。
境界線よりも右側に、保護膜PSV1もその境界線より
も右側に形成されており、左端に位置する端子部GTM
はそれらから露出し外部回路との電気的接触ができるよ
うになっている。図では、ゲート線GLとゲート端子の
一つの対のみが示されているが、実際はこのような対が
図7に示すように上下に複数本並べられ端子群Tg(図
6、図7)が構成され、ゲート端子の左端は、製造過程
では、基板の切断領域CT1を越えて延長され配線SH
gによって短絡される。製造過程におけるこのような短
絡線SHgは陽極化成時の給電と、配向膜ORI1のラ
ビング時等の静電破壊防止に役立つ。
【0054】《ドレイン端子DTM》図11は映像信号
線DLからその外部接続端子DTMまでの接続を示す図
であり、(A)はその平面を示し、(B)は(A)のB
−B切断線における断面を示す。なお、同図は図7右上
付近に対応し、図面の向きは便宜上変えてあるが右端方
向が基板SUB1の上端部(又は下端部)に該当する。
線DLからその外部接続端子DTMまでの接続を示す図
であり、(A)はその平面を示し、(B)は(A)のB
−B切断線における断面を示す。なお、同図は図7右上
付近に対応し、図面の向きは便宜上変えてあるが右端方
向が基板SUB1の上端部(又は下端部)に該当する。
【0055】TSTdは検査端子でありここには外部回
路は接続されないが、プローブ針等を接触できるよう配
線部より幅が広げられている。同様に、ドレイン端子D
TMも外部回路との接続ができるよう配線部より幅が広
げられている。検査端子TSTdと外部接続ドレイン端
子DTMは上下方向に千鳥状に複数交互に配列され、検
査端子TSTdは図に示すとおり基板SUB1の端部に
到達することなく終端しているが、ドレイン端子DTM
は、図7に示すように端子群Td(添字省略)を構成し
基板SUB1の切断線CT1を越えて更に延長され、製
造過程中は静電破壊防止のためその全てが互いに配線S
Hdによって短絡される。検査端子TSTdが存在する
映像信号線DLのマトリクスを挟んで反対側にはドレイ
ン接続端子が接続され、逆にドレイン接続端子DTMが
存在する映像信号線DLのマトリクスを挟んで反対側に
は検査端子が接続される。
路は接続されないが、プローブ針等を接触できるよう配
線部より幅が広げられている。同様に、ドレイン端子D
TMも外部回路との接続ができるよう配線部より幅が広
げられている。検査端子TSTdと外部接続ドレイン端
子DTMは上下方向に千鳥状に複数交互に配列され、検
査端子TSTdは図に示すとおり基板SUB1の端部に
到達することなく終端しているが、ドレイン端子DTM
は、図7に示すように端子群Td(添字省略)を構成し
基板SUB1の切断線CT1を越えて更に延長され、製
造過程中は静電破壊防止のためその全てが互いに配線S
Hdによって短絡される。検査端子TSTdが存在する
映像信号線DLのマトリクスを挟んで反対側にはドレイ
ン接続端子が接続され、逆にドレイン接続端子DTMが
存在する映像信号線DLのマトリクスを挟んで反対側に
は検査端子が接続される。
【0056】ドレイン接続端子DTMは前述したゲート
端子GTMと同様な理由でCr層g1及びITO層d1
の2層で形成されており、ゲート絶縁膜GIを除去した
部分で映像信号線DLと接続されている。ゲート絶縁膜
GIの端部上に形成された半導体層ASはゲート絶縁膜
GIの縁をテーパ状にエッチングするためのものであ
る。端子DTM上では外部回路との接続を行うため保護
膜PSV1は勿論のこと取り除かれている。AOは前述
した陽極酸化マスクでありその境界線はマトリクス全体
をを大きく囲むように形成され、図ではその境界線から
左側がマスクで覆われるが、この図で覆われない部分に
は層g2が存在しないのでこのパターンは直接は関係し
ない。
端子GTMと同様な理由でCr層g1及びITO層d1
の2層で形成されており、ゲート絶縁膜GIを除去した
部分で映像信号線DLと接続されている。ゲート絶縁膜
GIの端部上に形成された半導体層ASはゲート絶縁膜
GIの縁をテーパ状にエッチングするためのものであ
る。端子DTM上では外部回路との接続を行うため保護
膜PSV1は勿論のこと取り除かれている。AOは前述
した陽極酸化マスクでありその境界線はマトリクス全体
をを大きく囲むように形成され、図ではその境界線から
左側がマスクで覆われるが、この図で覆われない部分に
は層g2が存在しないのでこのパターンは直接は関係し
ない。
【0057】マトリクス部からドレイン端子部DTMま
での引出配線は図8の(C)部にも示されるように、ド
レイン端子部DTMと同じレベルの層d1,g1のすぐ
上に映像信号線DLと同じレベルの層d2,d3がシー
ルパターンSLの途中まで積層された構造になっている
が、これは断線の確率を最小限に押さえ、電触し易いA
l層d3を保護膜PSV1やシールパターンSLででき
るだけ保護する狙いである。
での引出配線は図8の(C)部にも示されるように、ド
レイン端子部DTMと同じレベルの層d1,g1のすぐ
上に映像信号線DLと同じレベルの層d2,d3がシー
ルパターンSLの途中まで積層された構造になっている
が、これは断線の確率を最小限に押さえ、電触し易いA
l層d3を保護膜PSV1やシールパターンSLででき
るだけ保護する狙いである。
【0058】《表示装置全体等価回路》表示マトリクス
部の等価回路とその周辺回路の結線図を図12に示す。
同図は回路図ではあるが、実際の幾何学的配置に対応し
て描かれている。ARは複数の画素を二次元状に配列し
たマトリクス・アレイである。
部の等価回路とその周辺回路の結線図を図12に示す。
同図は回路図ではあるが、実際の幾何学的配置に対応し
て描かれている。ARは複数の画素を二次元状に配列し
たマトリクス・アレイである。
【0059】図中、Xは映像信号線DLを意味し、添字
G、BおよびRがそれぞれ緑、青および赤画素に対応し
て付加されている。Yは走査信号線GLを意味し、添字
1,2,3,…,endは走査タイミングの順序に従って
付加されている。
G、BおよびRがそれぞれ緑、青および赤画素に対応し
て付加されている。Yは走査信号線GLを意味し、添字
1,2,3,…,endは走査タイミングの順序に従って
付加されている。
【0060】映像信号線X(添字省略)は交互に上側
(または奇数)映像信号駆動回路He、下側(または偶
数)映像信号駆動回路Hoに接続されている。
(または奇数)映像信号駆動回路He、下側(または偶
数)映像信号駆動回路Hoに接続されている。
【0061】走査信号線Y(添字省略)は垂直走査回路
Vに接続されている。
Vに接続されている。
【0062】SUPは1つの電圧源から複数の分圧した
安定化された電圧源を得るための電源回路やホスト(上
位演算処理装置)からのCRT(陰極線管)用の情報を
TFT液晶表示装置用の情報に交換する回路を含む回路
である。
安定化された電圧源を得るための電源回路やホスト(上
位演算処理装置)からのCRT(陰極線管)用の情報を
TFT液晶表示装置用の情報に交換する回路を含む回路
である。
【0063】《保持容量素子Caddの働き》保持容量素
子Caddは、薄膜トランジスタTFTがスイッチングす
るとき、中点電位(画素電極電位)Vlcに対するゲート
電位変化ΔVgの影響を低減するように働く。この様子
を式で表すと、次のようになる。
子Caddは、薄膜トランジスタTFTがスイッチングす
るとき、中点電位(画素電極電位)Vlcに対するゲート
電位変化ΔVgの影響を低減するように働く。この様子
を式で表すと、次のようになる。
【0064】 ΔVlc={Cgs/(Cgs+Cadd+Cpix)}×ΔVg ここで、Cgsは薄膜トランジスタTFTのゲート電極G
Tとソース電極SD1との間に形成される寄生容量、C
pixは透明画素電極ITO1(PIX)と共通透明画素
電極ITO2(COM)との間に形成される容量、ΔV
lcはΔVgによる画素電極電位の変化分を表わす。この
変化分ΔVlcは液晶LCに加わる直流成分の原因となる
が、保持容量Caddを大きくすればする程、その値を小
さくすることができる。また、保持容量素子Caddは放
電時間を長くする作用もあり、薄膜トランジスタTFT
がオフした後の映像情報を長く蓄積する。液晶LCに印
加される直流成分の低減は、液晶LCの寿命を向上し、
液晶表示画面の切り替え時に前の画像が残るいわゆる焼
き付きを低減することができる。
Tとソース電極SD1との間に形成される寄生容量、C
pixは透明画素電極ITO1(PIX)と共通透明画素
電極ITO2(COM)との間に形成される容量、ΔV
lcはΔVgによる画素電極電位の変化分を表わす。この
変化分ΔVlcは液晶LCに加わる直流成分の原因となる
が、保持容量Caddを大きくすればする程、その値を小
さくすることができる。また、保持容量素子Caddは放
電時間を長くする作用もあり、薄膜トランジスタTFT
がオフした後の映像情報を長く蓄積する。液晶LCに印
加される直流成分の低減は、液晶LCの寿命を向上し、
液晶表示画面の切り替え時に前の画像が残るいわゆる焼
き付きを低減することができる。
【0065】前述したように、ゲート電極GTはi型半
導体層ASを完全に覆うよう大きくされている分、ソー
ス電極SD1、ドレイン電極SD2とのオーバラップ面
積が増え、従って寄生容量Cgsが大きくなり、中点電位
Vlcはゲート(走査)信号Vgの影響を受け易くなると
いう逆効果が生じる。しかし、保持容量素子Caddを設
けることによりこのデメリットも解消することができ
る。
導体層ASを完全に覆うよう大きくされている分、ソー
ス電極SD1、ドレイン電極SD2とのオーバラップ面
積が増え、従って寄生容量Cgsが大きくなり、中点電位
Vlcはゲート(走査)信号Vgの影響を受け易くなると
いう逆効果が生じる。しかし、保持容量素子Caddを設
けることによりこのデメリットも解消することができ
る。
【0066】保持容量素子Caddの保持容量は、画素の
書込特性から、液晶容量Cpixに対して4〜8倍(4・C
pix<Cadd<8・Cpix)、寄生容量Cgsに対して8〜3
2倍(8・Cgs<Cadd<32・Cgs)程度の値に設定す
る。
書込特性から、液晶容量Cpixに対して4〜8倍(4・C
pix<Cadd<8・Cpix)、寄生容量Cgsに対して8〜3
2倍(8・Cgs<Cadd<32・Cgs)程度の値に設定す
る。
【0067】保持容量電極線としてのみ使用される初段
の走査信号線GL(Y0)は共通透明画素電極ITO2
(Vcom)と同じ電位にする。図7の例では、初段の走
査信号線は端子GT0、引出線INT、端子DT0及び
外部配線を通じて共通電極COMに短絡される。或い
は、初段の保持容量電極線Y0は最終段の走査信号線Ye
ndに接続、Vcom以外の直流電位点(交流接地点)に接
続するかまたは垂直走査回路Vから1つ余分に走査パル
スY0を受けるように接続してもよい。
の走査信号線GL(Y0)は共通透明画素電極ITO2
(Vcom)と同じ電位にする。図7の例では、初段の走
査信号線は端子GT0、引出線INT、端子DT0及び
外部配線を通じて共通電極COMに短絡される。或い
は、初段の保持容量電極線Y0は最終段の走査信号線Ye
ndに接続、Vcom以外の直流電位点(交流接地点)に接
続するかまたは垂直走査回路Vから1つ余分に走査パル
スY0を受けるように接続してもよい。
【0068】《製造方法》つぎに、上述した薄膜トラン
ジスタを液晶表示装置の基板SUB1側に形成する製造
方法について図13〜図15を参照して説明する。なお
同図において、中央の文字は工程名の略称であり、左側
は図3に示す画素部分、右側は図10に示すゲート端子
付近の断面形状でみた加工の流れを示す。工程Dを除き
工程A〜工程Iは各写真処理に対応して区分けしたもの
で、各工程のいずれの断面図も写真処理後の加工が終わ
りフォトレジストを除去した段階を示している。なお、
写真処理とは本説明ではフォトレジストの塗布からマス
クを使用した選択露光を経てそれを現像するまでの一連
の作業を示すものとし、繰返しの説明は避ける。以下区
分けした工程に従って、説明する。
ジスタを液晶表示装置の基板SUB1側に形成する製造
方法について図13〜図15を参照して説明する。なお
同図において、中央の文字は工程名の略称であり、左側
は図3に示す画素部分、右側は図10に示すゲート端子
付近の断面形状でみた加工の流れを示す。工程Dを除き
工程A〜工程Iは各写真処理に対応して区分けしたもの
で、各工程のいずれの断面図も写真処理後の加工が終わ
りフォトレジストを除去した段階を示している。なお、
写真処理とは本説明ではフォトレジストの塗布からマス
クを使用した選択露光を経てそれを現像するまでの一連
の作業を示すものとし、繰返しの説明は避ける。以下区
分けした工程に従って、説明する。
【0069】工程A、図13 7059ガラス(商品名)からなる下部透明ガラス基板
SUB1の両面に酸化シリコン膜SIOをディップ処理
により設けたのち、500℃、60分間のベークを行な
う。下部透明ガラス基板SUB1上に膜厚が1100Å
のクロムからなる第1導電膜g1をスパッタリングによ
り設け、写真処理後、エッチング液として硝酸第2セリ
ウムアンモニウム溶液で第1導電膜g1を選択的にエッ
チングする。それによって、ゲート端子GTM、ドレイ
ン端子DTM、ゲート端子GTMを接続する陽極酸化バ
スラインSHg、ドレイン端子DTMを短絡するバスラ
インSHd、陽極酸化バスラインSHgに接続された陽
極酸化パッド(図示せず)を形成する。
SUB1の両面に酸化シリコン膜SIOをディップ処理
により設けたのち、500℃、60分間のベークを行な
う。下部透明ガラス基板SUB1上に膜厚が1100Å
のクロムからなる第1導電膜g1をスパッタリングによ
り設け、写真処理後、エッチング液として硝酸第2セリ
ウムアンモニウム溶液で第1導電膜g1を選択的にエッ
チングする。それによって、ゲート端子GTM、ドレイ
ン端子DTM、ゲート端子GTMを接続する陽極酸化バ
スラインSHg、ドレイン端子DTMを短絡するバスラ
インSHd、陽極酸化バスラインSHgに接続された陽
極酸化パッド(図示せず)を形成する。
【0070】工程B、図13 膜厚が2800ÅのAl−Pd、Al−Si、Al−S
i−Ti、Al−Si−Cu等からなる第2導電膜g2
をスパッタリングにより設ける。写真処理後、リン酸と
硝酸と氷酢酸との混酸液で第2導電膜g2を選択的にエ
ッチングする。
i−Ti、Al−Si−Cu等からなる第2導電膜g2
をスパッタリングにより設ける。写真処理後、リン酸と
硝酸と氷酢酸との混酸液で第2導電膜g2を選択的にエ
ッチングする。
【0071】工程C、図13 写真処理後(前述した陽極酸化マスクAO形成後)、3
%酒石酸をアンモニアによりPH6.25±0.05に調
整した溶液をエチレングリコール液で1:9に稀釈した
液からなる陽極酸化液中に基板SUB1を浸漬し、化成
電流密度が0.5mA/cm2になるように調整する(定
電流化成)。次に所定のAl2O3膜厚が得られるのに必
要な化成電圧125Vに達するまで陽極酸化を行う。そ
の後この状態で数10分保持することが望ましい(定電
圧化成)。これは均一なAl2O3膜を得る上で大事なこ
とである。それによって、導電膜g2を陽極酸化され、
走査信号線GL、ゲート電極GTおよび電極PL1上に
膜厚が1800Åの陽極酸化膜AOFが形成される。
%酒石酸をアンモニアによりPH6.25±0.05に調
整した溶液をエチレングリコール液で1:9に稀釈した
液からなる陽極酸化液中に基板SUB1を浸漬し、化成
電流密度が0.5mA/cm2になるように調整する(定
電流化成)。次に所定のAl2O3膜厚が得られるのに必
要な化成電圧125Vに達するまで陽極酸化を行う。そ
の後この状態で数10分保持することが望ましい(定電
圧化成)。これは均一なAl2O3膜を得る上で大事なこ
とである。それによって、導電膜g2を陽極酸化され、
走査信号線GL、ゲート電極GTおよび電極PL1上に
膜厚が1800Åの陽極酸化膜AOFが形成される。
【0072】工程D、図14 プラズマCVD装置にアンモニアガス、シランガス、窒
素ガスを導入して、膜厚が2000Åの窒化Si膜を設
け、プラズマCVD装置にシランガス、水素ガスを導入
して、膜厚が2000Åのi型非晶質Si膜を設けたの
ち、プラズマCVD装置に水素ガス、ホスフィンガスを
導入して、膜厚が300ÅのN(+)型非晶質Si膜を設
ける。
素ガスを導入して、膜厚が2000Åの窒化Si膜を設
け、プラズマCVD装置にシランガス、水素ガスを導入
して、膜厚が2000Åのi型非晶質Si膜を設けたの
ち、プラズマCVD装置に水素ガス、ホスフィンガスを
導入して、膜厚が300ÅのN(+)型非晶質Si膜を設
ける。
【0073】工程E、図14 写真処理後、ドライエッチングガスとしてSF6、CC
l4を使用してN(+)型非晶質Si膜、i型非晶質Si
膜を選択的にエッチングすることにより、i型半導体層
ASの島を形成する。
l4を使用してN(+)型非晶質Si膜、i型非晶質Si
膜を選択的にエッチングすることにより、i型半導体層
ASの島を形成する。
【0074】工程F、図14 写真処理後、ドライエッチングガスとしてSF6を使用
して、窒化Si膜を選択的にエッチングする。
して、窒化Si膜を選択的にエッチングする。
【0075】工程G、図15 膜厚が1400ÅのITO膜からなる第1導電膜d1を
スパッタリングにより設ける。写真処理後、エッチング
液として塩酸と硝酸との混酸液で第1導電膜d1を選択
的にエッチングすることにより、ゲート端子GTM、ド
レイン端子DTMの最上層および透明画素電極ITO1
を形成する。
スパッタリングにより設ける。写真処理後、エッチング
液として塩酸と硝酸との混酸液で第1導電膜d1を選択
的にエッチングすることにより、ゲート端子GTM、ド
レイン端子DTMの最上層および透明画素電極ITO1
を形成する。
【0076】工程H、図15 膜厚が600ÅのCrからなる第2導電膜d2をスパッ
タリングにより設け、さらに膜厚が4000ÅのAl−
Pd、Al−Si、Al−Si−Ti、Al−Si−C
u等からなる第3導電膜d3をスパッタリングにより設
ける。写真処理後、第3導電膜d3を工程Bと同様な液
でエッチングし、第2導電膜d2を工程Aと同様な液で
エッチングし、映像信号線DL、ソース電極SD1、ド
レイン電極SD2を形成する。つぎに、ドライエッチン
グ装置にCCl4、SF6を導入して、N(+)型非晶質S
i膜をエッチングすることにより、ソースとドレイン間
のN(+)型半導体層d0を選択的に除去する。つぎに、
純水を70℃に温めた温水に基板SUB1を5分間程度
浸漬し温水処理をすることにより第2導電膜d2の端部
及び第3導電膜d3の表面にd2、d3の表面酸化膜よ
り成る電極保護膜PSV3を形成する。図23は温水処
理の浸漬時間とAl電極表面に形成される酸化膜の膜厚
との関係を示したグラフであり、70℃の温水に5分間
浸漬することにより約1000〜2000Åの酸化膜を
形成することができる。また、電極保護膜PSV3の形
成法は、上述の温水処理に限るものではなく、他にd
2、d3の陽極酸化により形成する方法もある。陽極酸
化によりPSV3を形成する場合はは工程Cで述べた陽
極酸化膜AOFと同様の方法が適用できる。
タリングにより設け、さらに膜厚が4000ÅのAl−
Pd、Al−Si、Al−Si−Ti、Al−Si−C
u等からなる第3導電膜d3をスパッタリングにより設
ける。写真処理後、第3導電膜d3を工程Bと同様な液
でエッチングし、第2導電膜d2を工程Aと同様な液で
エッチングし、映像信号線DL、ソース電極SD1、ド
レイン電極SD2を形成する。つぎに、ドライエッチン
グ装置にCCl4、SF6を導入して、N(+)型非晶質S
i膜をエッチングすることにより、ソースとドレイン間
のN(+)型半導体層d0を選択的に除去する。つぎに、
純水を70℃に温めた温水に基板SUB1を5分間程度
浸漬し温水処理をすることにより第2導電膜d2の端部
及び第3導電膜d3の表面にd2、d3の表面酸化膜よ
り成る電極保護膜PSV3を形成する。図23は温水処
理の浸漬時間とAl電極表面に形成される酸化膜の膜厚
との関係を示したグラフであり、70℃の温水に5分間
浸漬することにより約1000〜2000Åの酸化膜を
形成することができる。また、電極保護膜PSV3の形
成法は、上述の温水処理に限るものではなく、他にd
2、d3の陽極酸化により形成する方法もある。陽極酸
化によりPSV3を形成する場合はは工程Cで述べた陽
極酸化膜AOFと同様の方法が適用できる。
【0077】工程I、図15 プラズマCVD装置にアンモニアガス、シランガス、窒
素ガスを導入して、膜厚が3000Åの窒化Si膜を設
ける。写真処理後、ドライエッチングガスとしてSF6
を使用した写真蝕刻技術で窒化Si膜を選択的にエッチ
ングすることによって、保護膜PSV1を形成する。
素ガスを導入して、膜厚が3000Åの窒化Si膜を設
ける。写真処理後、ドライエッチングガスとしてSF6
を使用した写真蝕刻技術で窒化Si膜を選択的にエッチ
ングすることによって、保護膜PSV1を形成する。
【0078】《液晶表示モジュールの全体構成》図16
は、液晶表示モジュールMDLの各構成部品を示す分解
斜視図である。
は、液晶表示モジュールMDLの各構成部品を示す分解
斜視図である。
【0079】SHDは金属板から成る枠状のシールドケ
ース(メタルフレーム)、LCWその表示窓、PNLは
液晶表示パネル、SPBは光拡散板、MFRは中間フレ
ーム、BLはバックライト、BLSはバックライト支持
体、LCAは下側ケースであり、図に示すような上下の
配置関係で各部材が積み重ねられてモジュールMDLが
組み立てられる。
ース(メタルフレーム)、LCWその表示窓、PNLは
液晶表示パネル、SPBは光拡散板、MFRは中間フレ
ーム、BLはバックライト、BLSはバックライト支持
体、LCAは下側ケースであり、図に示すような上下の
配置関係で各部材が積み重ねられてモジュールMDLが
組み立てられる。
【0080】モジュールMDLは、シールドケースSH
Dに設けられた爪CLとフックFKによって全体が固定
されるようになっている。
Dに設けられた爪CLとフックFKによって全体が固定
されるようになっている。
【0081】中間フレームMFRは表示窓LCWに対応
する開口が設けられるように枠状に形成され、その枠部
分には拡散板SPB、バックライト支持体BLS並びに
各種回路部品の形状や厚みに応じた凹凸や、放熱用の開
口が設けられている。
する開口が設けられるように枠状に形成され、その枠部
分には拡散板SPB、バックライト支持体BLS並びに
各種回路部品の形状や厚みに応じた凹凸や、放熱用の開
口が設けられている。
【0082】下側ケースLCAはバックライト光の反射
体も兼ねており、効率のよい反射ができるよう、蛍光管
BLに対応して反射山RMが形成されている。
体も兼ねており、効率のよい反射ができるよう、蛍光管
BLに対応して反射山RMが形成されている。
【0083】《表示パネルPNLと駆動回路基板PCB
1》図17は、図5等に示した表示パネルPNLに映像
信号駆動回路He、Hoと垂直走査回路Vを接続した状
態を示す上面図である。
1》図17は、図5等に示した表示パネルPNLに映像
信号駆動回路He、Hoと垂直走査回路Vを接続した状
態を示す上面図である。
【0084】CHIは表示パネルPNLを駆動させる駆
動ICチップ(下側の3個は垂直走査回路側の駆動IC
チップ、左右の6個ずつは映像信号駆動回路側の駆動I
Cチップ)である。TCPは図18、図19で後述する
ように駆動用ICチップCHIがテープ・オートメイテ
ィド・ボンディング法(TAB)により実装されたテー
プキャリアパッケージ、PCB1は上記TCPやコンデ
ンサCDS等が実装された駆動回路基板で、3つに分割
されている。FGPはフレームグランドパッドであり、
シールドケースSHDに切り込んで設けられたバネ状の
破片FGが半田付けされる。FCは下側の駆動回路基板
PCB1と左側の駆動回路基板PCB1、および下側の
駆動回路基板PCB1と右側の駆動回路基板PCB1と
を電気的に接続するフラットケーブルである。フラット
ケーブルFCとしては図に示すように、複数のリード線
(りん青銅の素材にSn鍍金を施したもの)をストライ
プ状のポリエチレン層とポリビニルアルコール層とでサ
ンドイッチして支持したものを使用する。
動ICチップ(下側の3個は垂直走査回路側の駆動IC
チップ、左右の6個ずつは映像信号駆動回路側の駆動I
Cチップ)である。TCPは図18、図19で後述する
ように駆動用ICチップCHIがテープ・オートメイテ
ィド・ボンディング法(TAB)により実装されたテー
プキャリアパッケージ、PCB1は上記TCPやコンデ
ンサCDS等が実装された駆動回路基板で、3つに分割
されている。FGPはフレームグランドパッドであり、
シールドケースSHDに切り込んで設けられたバネ状の
破片FGが半田付けされる。FCは下側の駆動回路基板
PCB1と左側の駆動回路基板PCB1、および下側の
駆動回路基板PCB1と右側の駆動回路基板PCB1と
を電気的に接続するフラットケーブルである。フラット
ケーブルFCとしては図に示すように、複数のリード線
(りん青銅の素材にSn鍍金を施したもの)をストライ
プ状のポリエチレン層とポリビニルアルコール層とでサ
ンドイッチして支持したものを使用する。
【0085】《TCPの接続構造》図18は走査信号駆
動回路Vや映像信号駆動回路He,Hoを構成する、集
積回路チップCHIがフレキシブル配線基板に搭載され
たテープキャリアパッケージTCPの断面構造を示す図
であり、図19はそれを液晶表示パネルの、本例では映
像信号回路用端子DTMに接続した状態を示す要部断面
図である。
動回路Vや映像信号駆動回路He,Hoを構成する、集
積回路チップCHIがフレキシブル配線基板に搭載され
たテープキャリアパッケージTCPの断面構造を示す図
であり、図19はそれを液晶表示パネルの、本例では映
像信号回路用端子DTMに接続した状態を示す要部断面
図である。
【0086】同図において、TTBは集積回路CHIの
入力端子・配線部であり、TTMは集積回路CHIの出
力端子・配線部であり、例えばCuから成り、それぞれ
の内側の先端部(通称インナーリード)には集積回路C
HIのボンディングパッドPADがいわゆるフェースダ
ウンボンディング法により接続される。端子TTB,T
TMの外側の先端部(通称アウターリード)はそれぞれ
半導体集積回路チップCHIの入力及び出力に対応し、
半田付け等によりCRT/TFT変換回路・電源回路S
UPに、異方性導電膜ACFによって液晶表示パネルP
NLに接続される。パッケージTCPは、その先端部が
パネルPNL側の接続端子DTMを露出した保護膜PS
V1を覆うようにパネルに接続されており、従って、外
部接続端子DTM(GTM)は保護膜PSV1かパッケ
ージTCPの少なくとも一方で覆われるので電触に対し
て強くなる。
入力端子・配線部であり、TTMは集積回路CHIの出
力端子・配線部であり、例えばCuから成り、それぞれ
の内側の先端部(通称インナーリード)には集積回路C
HIのボンディングパッドPADがいわゆるフェースダ
ウンボンディング法により接続される。端子TTB,T
TMの外側の先端部(通称アウターリード)はそれぞれ
半導体集積回路チップCHIの入力及び出力に対応し、
半田付け等によりCRT/TFT変換回路・電源回路S
UPに、異方性導電膜ACFによって液晶表示パネルP
NLに接続される。パッケージTCPは、その先端部が
パネルPNL側の接続端子DTMを露出した保護膜PS
V1を覆うようにパネルに接続されており、従って、外
部接続端子DTM(GTM)は保護膜PSV1かパッケ
ージTCPの少なくとも一方で覆われるので電触に対し
て強くなる。
【0087】BF1はポリイミド等からなるベースフィ
ルムであり、SRSは半田付けの際半田が余計なところ
へつかないようにマスクするためのソルダレジスト膜で
ある。シールパターンSLの外側の上下ガラス基板の隙
間は洗浄後エポキシ樹脂EPX等により保護され、パッ
ケージTCPと上側基板SUB2の間には更にシリコー
ン樹脂SILが充填され保護が多重化されている。
ルムであり、SRSは半田付けの際半田が余計なところ
へつかないようにマスクするためのソルダレジスト膜で
ある。シールパターンSLの外側の上下ガラス基板の隙
間は洗浄後エポキシ樹脂EPX等により保護され、パッ
ケージTCPと上側基板SUB2の間には更にシリコー
ン樹脂SILが充填され保護が多重化されている。
【0088】《駆動回路基板PCB2》中間フレームM
FRに保持・収納される液晶表示部LCDの駆動回路基
板PCB2は、図20に示すように、L字形をしてお
り、IC、コンデンサ、抵抗等の電子部品が搭載されて
いる。この駆動回路基板PCB2には、1つの電圧源か
ら複数の分圧した安定化された電圧源を得るための電源
回路や、ホスト(上位演算処理装置)からのCRT(陰
極線管)用の情報をTFT液晶表示装置用の情報に変換
する回路を含む回路SUPが搭載されている。CJは外
部と接続される図示しないコネクタが接続されるコネク
タ接続部である。駆動回路基板PCB2とインバータ回
路基板PCB3とはバックライトケーブルにより中間フ
レームMFRに設けたコネクタ穴を介して電気的に接続
される。
FRに保持・収納される液晶表示部LCDの駆動回路基
板PCB2は、図20に示すように、L字形をしてお
り、IC、コンデンサ、抵抗等の電子部品が搭載されて
いる。この駆動回路基板PCB2には、1つの電圧源か
ら複数の分圧した安定化された電圧源を得るための電源
回路や、ホスト(上位演算処理装置)からのCRT(陰
極線管)用の情報をTFT液晶表示装置用の情報に変換
する回路を含む回路SUPが搭載されている。CJは外
部と接続される図示しないコネクタが接続されるコネク
タ接続部である。駆動回路基板PCB2とインバータ回
路基板PCB3とはバックライトケーブルにより中間フ
レームMFRに設けたコネクタ穴を介して電気的に接続
される。
【0089】駆動回路基板PCB1と駆動回路基板PC
B2とは折り曲げ可能なフラットケーブルFCにより電
気的に接続されている。組立て時、駆動回路基板PCB
2は、フラットケーブルFCを180°折り曲げることに
より駆動回路基板PCB1の裏側に重ねられ、中間フレ
ームMFRの所定の凹部に嵌合される。
B2とは折り曲げ可能なフラットケーブルFCにより電
気的に接続されている。組立て時、駆動回路基板PCB
2は、フラットケーブルFCを180°折り曲げることに
より駆動回路基板PCB1の裏側に重ねられ、中間フレ
ームMFRの所定の凹部に嵌合される。
【0090】以上本発明を図1に示す実施例をもとに説
明したが、本発明は図1に示す実施例に限定されるもの
ではなく、例えばゲート電極が半導体層よりも後に形成
される、いわゆる逆スタガ型の薄膜トランジスタにも適
用できる。なお、逆スタガ型の薄膜トランジスタの場合
にはゲート電極に電極保護膜PSV3を形成する。
明したが、本発明は図1に示す実施例に限定されるもの
ではなく、例えばゲート電極が半導体層よりも後に形成
される、いわゆる逆スタガ型の薄膜トランジスタにも適
用できる。なお、逆スタガ型の薄膜トランジスタの場合
にはゲート電極に電極保護膜PSV3を形成する。
【0091】本発明の他の実施例を図21に示す。図2
1の実施例は半導体層AS上に酸化シリコン膜や窒化シ
リコン膜等の絶縁膜より成るチャネル保護膜ESを形成
した例である。図21の実施例ではチャネル保護膜ES
により半導体層ASも保護されている為、保護膜PSV
1をさらに薄くすることが可能である。
1の実施例は半導体層AS上に酸化シリコン膜や窒化シ
リコン膜等の絶縁膜より成るチャネル保護膜ESを形成
した例である。図21の実施例ではチャネル保護膜ES
により半導体層ASも保護されている為、保護膜PSV
1をさらに薄くすることが可能である。
【0092】また図22に本発明のさらに他の実施例を
示す。図22の実施例は図21の実施例をさらに発展さ
せたものであり、電極保護膜PSV3及びチャネル保護
膜ES上に配向膜ORI1を直接形成した例である。図
22の実施例によれば画素電極上に保護膜PSV1が存
在しないので、その分電圧利用効率が増大する。
示す。図22の実施例は図21の実施例をさらに発展さ
せたものであり、電極保護膜PSV3及びチャネル保護
膜ES上に配向膜ORI1を直接形成した例である。図
22の実施例によれば画素電極上に保護膜PSV1が存
在しないので、その分電圧利用効率が増大する。
【0093】
【発明の効果】本発明によればドレイン電極、ソース電
極あるいはゲート電極が陽極酸化や温水処理により形成
された表面酸化膜よりなる電極保護膜で覆われているの
で電蝕を防止することが出来る。また、陽極酸化や温水
処理によりドレイン電極、ソース電極あるいはゲート電
極上に電極保護膜を選択的に形成するのでパターニング
が不要になり、工程数が削減される。また、電極保護膜
上に形成する保護膜は薄くすることが出来、成膜工程の
スループットが向上する。さらに、保護膜を薄くしたこ
とにより画素電極の電圧利用効率も向上する。また、ド
レイン電極、ソース電極上の保護膜にピンホールが開い
ていても、電極保護膜により電極が覆われているので、
その後の工程で断線を起こす心配がない。従って歩留も
向上する。また半導体層AS上に酸化シリコン膜や窒化
シリコン膜等の絶縁膜より成るチャネル保護膜ESを形
成した薄膜トランジスタに本発明を適用することによ
り、薄膜トランジスタが完全に保護されるのでその上の
保護膜が不要になり、工程数を減らすことが出来る。
極あるいはゲート電極が陽極酸化や温水処理により形成
された表面酸化膜よりなる電極保護膜で覆われているの
で電蝕を防止することが出来る。また、陽極酸化や温水
処理によりドレイン電極、ソース電極あるいはゲート電
極上に電極保護膜を選択的に形成するのでパターニング
が不要になり、工程数が削減される。また、電極保護膜
上に形成する保護膜は薄くすることが出来、成膜工程の
スループットが向上する。さらに、保護膜を薄くしたこ
とにより画素電極の電圧利用効率も向上する。また、ド
レイン電極、ソース電極上の保護膜にピンホールが開い
ていても、電極保護膜により電極が覆われているので、
その後の工程で断線を起こす心配がない。従って歩留も
向上する。また半導体層AS上に酸化シリコン膜や窒化
シリコン膜等の絶縁膜より成るチャネル保護膜ESを形
成した薄膜トランジスタに本発明を適用することによ
り、薄膜トランジスタが完全に保護されるのでその上の
保護膜が不要になり、工程数を減らすことが出来る。
【図1】本発明を適用した薄膜トランジスタの一実施例
である。
である。
【図2】この発明が適用されるアクティブ・マトリック
ス方式のカラー液晶表示装置の液晶表示部の一画素とそ
の周辺を示す要部平面図である。
ス方式のカラー液晶表示装置の液晶表示部の一画素とそ
の周辺を示す要部平面図である。
【図3】図2の3−3切断線における1画素とその周辺
を示す断面図である。
を示す断面図である。
【図4】図2の4−4切断線における付加容量Caddの
断面図である。
断面図である。
【図5】表示パネルのマトリクス周辺部の構成を説明す
るための平面図である。
るための平面図である。
【図6】図5の周辺部をやや誇張し更に具体的に説明す
るためのパネル平面図である。
るためのパネル平面図である。
【図7】上下基板の電気的接続部を含む表示パネルの角
部の拡大平面図である。
部の拡大平面図である。
【図8】マトリクスの画素部を中央に、両側にパネル角
付近と映像信号端子部付近を示す断面図である。
付近と映像信号端子部付近を示す断面図である。
【図9】左側に走査信号端子、右側に外部接続端子の無
いパネル縁部分を示す断面図である。
いパネル縁部分を示す断面図である。
【図10】ゲート端子GTMとゲート配線GLの接続部
近辺を示す平面と断面の図である。
近辺を示す平面と断面の図である。
【図11】ドレイン端子DTMと映像信号線DLとの接
続部付近を示す平面と断面の図である。
続部付近を示す平面と断面の図である。
【図12】アクティブ・マトリックス方式のカラー液晶
表示装置のマトリクス部とその周辺を含む回路図であ
る。
表示装置のマトリクス部とその周辺を含む回路図であ
る。
【図13】基板SUB1側の工程A〜Cの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
す画素部とゲート端子部の断面図のフローチャートであ
る。
【図14】基板SUB1側の工程D〜Fの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
す画素部とゲート端子部の断面図のフローチャートであ
る。
【図15】基板SUB1側の工程G〜Iの製造工程を示
す画素部とゲート端子部の断面図のフローチャートであ
る。
す画素部とゲート端子部の断面図のフローチャートであ
る。
【図16】液晶表示モジュールの分解斜視図である。
【図17】液晶表示パネルに周辺の駆動回路を実装した
状態を示す上面図である。
状態を示す上面図である。
【図18】駆動回路を構成する集積回路チップCHIが
フレキシブル配線基板に搭載されたテープキャリアパッ
ケージTCPの断面構造を示す図である。
フレキシブル配線基板に搭載されたテープキャリアパッ
ケージTCPの断面構造を示す図である。
【図19】テープキャリアパッケージTCPを液晶表示
パネルPNLの映像信号回路用端子DTMに接続した状
態を示す要部断面図である。
パネルPNLの映像信号回路用端子DTMに接続した状
態を示す要部断面図である。
【図20】周辺駆動回路基板PCB1(上面が見える)
と電源回路回路基板PCB2(下面が見える)との接続
状態を示す上面図である。
と電源回路回路基板PCB2(下面が見える)との接続
状態を示す上面図である。
【図21】本発明の他の実施例を示す図である。
【図22】本発明のさらに他の実施例を示す図である。
【図23】温水処理における、処理時間と酸化膜厚の関
係を示す図である。
係を示す図である。
SUB…透明ガラス基板、GL…走査信号線、DL…映
像信号線、GI…絶縁膜、GT…ゲート電極、AS…i
型半導体層、SD…ソース電極またはドレイン電極、P
SV1,2…保護膜、PSV3…電極保護膜、ES…チ
ャネル護膜、BM…遮光膜、LC…液晶、TFT…薄膜
トランジスタ、ITO…透明画素電極、g,d…導電
膜、Cadd…保持容量素子、AOF…陽極酸化膜、AO
…陽極酸化マスク、GTM…ゲート端子、DTM…ドレ
イン端子、SHD…シールドケース、PNL…液晶表示
パネル、SPB…光拡散板、MFR…中間フレーム、B
L…バックライト、BLS…バックライト支持体、LC
A…下側ケース、RM…バックライト光反射山、(以上
添字省略)。
像信号線、GI…絶縁膜、GT…ゲート電極、AS…i
型半導体層、SD…ソース電極またはドレイン電極、P
SV1,2…保護膜、PSV3…電極保護膜、ES…チ
ャネル護膜、BM…遮光膜、LC…液晶、TFT…薄膜
トランジスタ、ITO…透明画素電極、g,d…導電
膜、Cadd…保持容量素子、AOF…陽極酸化膜、AO
…陽極酸化マスク、GTM…ゲート端子、DTM…ドレ
イン端子、SHD…シールドケース、PNL…液晶表示
パネル、SPB…光拡散板、MFR…中間フレーム、B
L…バックライト、BLS…バックライト支持体、LC
A…下側ケース、RM…バックライト光反射山、(以上
添字省略)。
フロントページの続き (72)発明者 折付 良二 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 箭内 雅弘 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 廣島 實 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 香西 甲矢夫 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内 (72)発明者 堀井 寿一 千葉県茂原市早野3300番地 株式会社日立 製作所電子デバイス事業部内
Claims (4)
- 【請求項1】ゲート電極を形成する第1工程と、ゲート
絶縁膜を形成する第2工程と、半導体層を形成する第3
工程と、金属よりなるソース、ドレイン電極を形成する
第4工程と、上記ソース、ドレイン電極を保護する第1
の保護膜を形成する第5工程とを有する薄膜トランジス
タの製造法で、上記第5工程は上記第4工程の後に設け
られ、上記第1の保護膜は上記ソース、ドレイン電極を
形成する金属の表面を酸化して形成することを特徴とす
る薄膜トランジスタの製造法。 - 【請求項2】上記第1の保護膜は上記ソース、ドレイン
電極を形成する金属の表面を陽極酸化して形成すること
を特徴とする請求項第1項記載の薄膜トランジスタの製
造法。 - 【請求項3】上記第1の保護膜は上記ソース、ドレイン
電極を形成する金属の表面を温水により酸化して形成す
ることを特徴とする請求項第1項記載の薄膜トランジス
タの製造法。 - 【請求項4】上記第4工程は上記第3工程の後にあり、
上記第3工程と上記第4工程の間に第6工程を設け、上
記第6工程は上記半導体層を保護する第2の保護膜を形
成することを特徴とする請求項第1項記載の薄膜トラン
ジスタの製造法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5373493A JPH06268218A (ja) | 1993-03-15 | 1993-03-15 | 薄膜トランジスタの製造法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5373493A JPH06268218A (ja) | 1993-03-15 | 1993-03-15 | 薄膜トランジスタの製造法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06268218A true JPH06268218A (ja) | 1994-09-22 |
Family
ID=12951063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5373493A Pending JPH06268218A (ja) | 1993-03-15 | 1993-03-15 | 薄膜トランジスタの製造法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06268218A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5915172A (en) * | 1996-12-26 | 1999-06-22 | Mitsubishi Denki Kabushiki Kaisha | Method for manufacturing LCD and TFT |
US5999235A (en) * | 1996-12-17 | 1999-12-07 | Mitsubishi Denki Kabushiki Kaisha | Liquid crystal displaying apparatus and method of manufacturing TFT array |
US8431452B2 (en) | 2008-07-18 | 2013-04-30 | Beijing Boe Optoelectronics Technology Co., Ltd. | TFT-LCD array substrate and manufacturing method thereof |
JP2015026831A (ja) * | 2013-06-21 | 2015-02-05 | 株式会社半導体エネルギー研究所 | 半導体装置及びその作製方法 |
-
1993
- 1993-03-15 JP JP5373493A patent/JPH06268218A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5999235A (en) * | 1996-12-17 | 1999-12-07 | Mitsubishi Denki Kabushiki Kaisha | Liquid crystal displaying apparatus and method of manufacturing TFT array |
US5915172A (en) * | 1996-12-26 | 1999-06-22 | Mitsubishi Denki Kabushiki Kaisha | Method for manufacturing LCD and TFT |
US8431452B2 (en) | 2008-07-18 | 2013-04-30 | Beijing Boe Optoelectronics Technology Co., Ltd. | TFT-LCD array substrate and manufacturing method thereof |
JP2015026831A (ja) * | 2013-06-21 | 2015-02-05 | 株式会社半導体エネルギー研究所 | 半導体装置及びその作製方法 |
JP2019024124A (ja) * | 2013-06-21 | 2019-02-14 | 株式会社半導体エネルギー研究所 | 半導体装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3184853B2 (ja) | 液晶表示装置 | |
JPH06347827A (ja) | 液晶表示装置およびその製造方法 | |
JPH07146481A (ja) | 液晶表示基板 | |
JPH06102534A (ja) | 薄膜トランジスタアレイ | |
JPH06102536A (ja) | 薄膜トランジスタアレイ | |
JP3272848B2 (ja) | 液晶表示素子 | |
JPH0794744A (ja) | Misトランジスタ | |
JPH06250221A (ja) | 液晶表示基板の製造方法 | |
JPH06347825A (ja) | 液晶表示装置およびその製造方法 | |
JPH05232494A (ja) | 液晶表示装置 | |
JPH08190087A (ja) | 液晶表示パネル作製用透明絶縁基板およびその各種特性検査方法 | |
JPH06265922A (ja) | 液晶表示装置 | |
JP3311838B2 (ja) | 液晶表示装置 | |
JPH07333636A (ja) | 液晶表示装置 | |
JPH06268218A (ja) | 薄膜トランジスタの製造法 | |
JPH0792489A (ja) | 液晶表示装置 | |
JPH06258667A (ja) | 液晶表示装置 | |
JPH06308529A (ja) | 薄膜トランジスタ基板、液晶表示パネル及び液晶表示装置 | |
JPH06242465A (ja) | 液晶表示基板 | |
JPH06265919A (ja) | 液晶表示装置 | |
JPH0736052A (ja) | Al合金層を配線層として備える基板とその製造方法 | |
JPH06258666A (ja) | 液晶表示装置 | |
JPH07239478A (ja) | 半導体装置 | |
JPH06265934A (ja) | 液晶表示装置 | |
JPH0777706A (ja) | 薄膜トランジスタ基板、液晶表示パネルおよび液晶表示装置 |