JPH06260926A - Level shift circuit for logical signal - Google Patents

Level shift circuit for logical signal

Info

Publication number
JPH06260926A
JPH06260926A JP5043089A JP4308993A JPH06260926A JP H06260926 A JPH06260926 A JP H06260926A JP 5043089 A JP5043089 A JP 5043089A JP 4308993 A JP4308993 A JP 4308993A JP H06260926 A JPH06260926 A JP H06260926A
Authority
JP
Japan
Prior art keywords
mosfet
signal
level shift
shift circuit
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5043089A
Other languages
Japanese (ja)
Inventor
Isao Sano
功 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5043089A priority Critical patent/JPH06260926A/en
Publication of JPH06260926A publication Critical patent/JPH06260926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the delay time of a logical output signal and also to reduce the necessary area of a semiconductor chip in regard of a semiconductor integrated circuit. CONSTITUTION:A PMOS FET 1, a PMOS FET 2 and an NMOS FET 3 are connected in series between a positive power line VC and a negative power line VE of a high voltage system. Then a PMOS FET 4 and an NMOS FET 6 connected in series to each other are connected in parallel to those FET 1-3. Furthermore a PMOS FET 5 is connected in parallel to the FET 4. Then the connection point between the FET 2 and 3 is connected to the gate of the FET 6, and the connection point between the FET 4 and 6 is connected to the gate of the FET 3 respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は論理回路の出力段などで
低電圧系レベルの論理信号を出力の大きい高電圧系レベ
ルの論理信号にレベル変換する論理信号のレベルシフト
回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a logic signal level shift circuit for converting a low voltage system level logic signal into a high output high voltage system level logic signal in an output stage of a logic circuit.

【0002】[0002]

【従来の技術】表1および表2は、それぞれ例えば
「H」(正側ライン電圧VCC=5V),「L」(負側ラ
イン電圧VSS=0V)の低電圧系レベルの論理信号を、
例えば正側ライン電圧VCC=5V,負側ライン電圧VEE
=−20Vの高電圧系レベルにNOR変換する(通常、
マイナス電源変換と称される)論理信号の、あるいは正
側電源ライン電圧VDD=25V,負側電源ライン電圧V
SS=0Vの高電圧系レベルにNOR変換する(通常、プ
ラス電源変換と称される)論理信号のレベルシフト回路
の真理値表を示す。
2. Description of the Related Art Tables 1 and 2 show logic signals of low voltage system level, for example, "H" (positive side line voltage V CC = 5V) and "L" (negative side line voltage V SS = 0V). ,
For example, the positive side line voltage V CC = 5V, the negative side line voltage V EE
= NOR conversion to a high voltage level of -20V (usually
(Referred to as negative power supply conversion) of logic signal or positive power supply line voltage V DD = 25V, negative power supply line voltage V
The truth table of the level shift circuit of the logic signal which NOR-converts to the high voltage system level of SS = 0V (usually called plus power supply conversion) is shown.

【0003】[0003]

【表1】 [Table 1]

【0004】[0004]

【表2】 [Table 2]

【0005】図3および図4は、それぞれ論理信号のレ
ベルシフト回路の第1および第2の従来例を示す回路図
であり、図3は表1に対応したマイナス電源変換レベル
シフト回路、図4は表2に対応したプラス電源変換レベ
ルシフト回路を示す。図3において、このマイナス電源
変換レベルシフト回路は高電圧系の正側電源ラインVC
(電源ライン電圧VCC)と負側電源ラインVE (電源ラ
イン電圧VEE)との間にそれらのソース・ドレインおよ
びドレイン・ソースが直列に接続されたP MOSFE
T13およびN MOSFET14と、これら直列に接
続されたMOSFETに並列にそれらのソース・ドレイ
ンおよびドレイン・ソースが直列に接続されたP MO
SFET15およびN MOSFET16と、その出力
端子がP MOSFET13のゲートに接続されたNO
Rゲート17と、その入力端子がP MOSFET13
のゲートに、その出力端子がP MOSFET15のゲ
ートに接続されたインバータ18とからなり、P MO
SFET13のドレインはN MOSFET16のゲー
トに、P MOSFET15のドレインはN MOSF
ET14のゲートにそれぞれ接続され、NORゲート1
7の2個の入力端子はそれぞれ信号入力端子IN1およ
びIN2に接続され、P MOSFET15のドレイン
を信号出力端子OUT1に、P MOSFET13のド
レインは信号出力端子OUT2に接続されている。
FIGS. 3 and 4 are circuit diagrams showing first and second conventional examples of logic signal level shift circuits, respectively. FIG. 3 shows a minus power supply conversion level shift circuit corresponding to Table 1, and FIG. Shows a positive power supply conversion level shift circuit corresponding to Table 2. In FIG. 3, this negative power supply conversion level shift circuit is used for the high voltage system positive power supply line V C.
P MOSFE in which the source / drain and the drain / source are connected in series between the (power line voltage V CC ) and the negative power line V E (power line voltage V EE ).
T 13 and N MOSFET 14 and P MO having these source / drain and drain / source connected in series to these MOSFETs connected in series
SFET 15 and N MOSFET 16 and NO whose output terminal is connected to the gate of P MOSFET 13
R gate 17 and its input terminal are P MOSFET 13
And an inverter 18 whose output terminal is connected to the gate of the P MOSFET 15
The drain of SFET 13 is the gate of N MOSFET 16, and the drain of P MOSFET 15 is N MOSF.
NOR gate 1 connected to the gate of ET14
Two input terminals 7 are connected to the signal input terminals IN1 and IN2, respectively, and the drain of the P MOSFET 15 is connected to the signal output terminal OUT1 and the drain of the P MOSFET 13 is connected to the signal output terminal OUT2.

【0006】このレベルシフト回路の動作は次の通りで
ある。今、信号入力端子IN1およびIN2にそれぞれ
低電圧系レベルのA=「H」(正側ライン電圧V
CCの),B=「H」(正側ライン電圧VCCの)の論理入
力信号が入力されたとすると、NORゲート17の出力
は「L」となるのでP MOSFET13はオンとな
る。この「L」の信号はインバータ18により「H」の
信号に変換されるのでP MOSFET15はオフとな
る。P MOSFET13がオン,P MOSFET1
5がオフとなると、N MOSFET16はオン,N
MOSFET14はオフとなる。従って信号出力端子O
UT1の論理出力信号Q=VEE,信号出力端子OUT2
の論理出力信号rQ=VCCの高電圧系レベルの論理信号
に変換される。また、A=「L」(負側ライン電圧VSS
の),B=「H」(正側ライン電圧VCCの)の論理入力
信号が入力されたときは、同様な手順の動作で論理出力
信号Q=V EE,rQ=VCCの、A=「H」,B=「L」
の論理入力信号のときは論理出力信号Q=VEE,rQ=
CCの、A=「L」,B=「L」の論理入力信号のとき
は論理出力信号Q=VCC,rQ=VEEの高電圧系レベル
の論理信号にそれぞれ変換される。
The operation of this level shift circuit is as follows.
is there. Now, to the signal input terminals IN1 and IN2 respectively
Low voltage system level A = “H” (positive side line voltage V
CC, B = “H” (positive side line voltage VCCLogical entry
If a force signal is input, the output of NOR gate 17
Is "L", the P MOSFET 13 is not turned on.
It This “L” signal is output from the “H” signal by the inverter 18.
Since it is converted into a signal, the P MOSFET 15 is turned off.
It P MOSFET 13 is on, P MOSFET 1
5 turns off, the N MOSFET 16 turns on and N
The MOSFET 14 is turned off. Therefore, the signal output terminal O
UT1 logic output signal Q = VEE, Signal output terminal OUT2
Output signal rQ = VCCHigh voltage system level logic signal
Is converted to. Further, A = “L” (negative side line voltage VSS
, B = “H” (positive side line voltage VCC) Logic input
When a signal is input, the logic output is performed in the same procedure.
Signal Q = V EE, RQ = VCC, A = “H”, B = “L”
Is a logical input signal, the logical output signal Q = VEE, RQ =
VCCOf A = “L” and B = “L” logic input signals
Is a logical output signal Q = VCC, RQ = VEEHigh voltage system level
Are converted to logic signals.

【0007】また、図4においてこのプラス電源変換レ
ベルシフト回路は、高電圧系の正側電源ラインVD (電
源ライン電圧VDD)と負側電源ラインVS (電源ライン
電圧VSS)との間にそれらのソース・ドレインおよびド
レイン・ソースが直列に接続されたP MOSFET1
9およびN MOSFET20と、これら直列に接続さ
れたMOSFETに並列にそられのソース・ドレインお
よびドレイン・ソースが直列に接続されたP MOSF
ET21およびN MOSFET22と、その出力端子
がN MOSFET20のゲートに接続されたNORゲ
ート23と、その入力端子がN MOSFET20のゲ
ートにその出力端子がN MOSFET22のゲートに
接続されたインバータ24とからなり、N MOSFE
T20のドレインはP MOSFET21のゲートにN
MOSFET22のドレインをP MOSFET19
のゲートにそれぞれ接続され、NORゲート23の入力
端子は信号入力端子IN1およびIN2に接続され、N
MOSFET22のドレインは信号出力端子OUT1
に、N MOSFET20のドレインを信号出力端子O
UT2に接続されている。
Further, in FIG. 4, the positive power supply conversion level shift circuit has a positive power supply line V D (power supply line voltage V DD ) and a negative power supply line V S (power supply line voltage V SS ) of a high voltage system. P MOSFET 1 in which the source / drain and the drain / source are connected in series between
9 and an N MOSFET 20, and a P MOSF in which the source / drain and the drain / source of the MOSFET connected in series are connected in series.
ET21 and N MOSFET 22, an NOR gate 23 whose output terminal is connected to the gate of N MOSFET 20, an inverter 24 whose input terminal is connected to the gate of N MOSFET 20 and whose output terminal is connected to the gate of N MOSFET 22, N MOSFE
The drain of T20 is N to the gate of P MOSFET 21.
The drain of the MOSFET 22 is connected to the P MOSFET 19
Of the NOR gate 23, and the input terminal of the NOR gate 23 is connected to the signal input terminals IN1 and IN2.
The drain of the MOSFET 22 is a signal output terminal OUT1.
The drain of the N MOSFET 20 to the signal output terminal O
It is connected to UT2.

【0008】このレベルシフト回路の動作は次の通りで
ある。今、信号入力端子IN1およびIN2に、それぞ
れ低電圧系レベルのA=「H」(正側ライン電圧V
CCの),B=「H」(正側ライン電圧VCCの)の論理入
力信号が入力されたとすると、NORゲート23の出力
は「L」となるのでN MOSFET20はオフとな
る。この「L」の信号はインバータ24により「H」の
信号に変換されるのでN MOSFET22はオンとな
る。N MOSFET20がオフ,N MOSFET2
2がオンとなると、P MOSFET19はオン,P
MOSFET21はオフとなる。従って信号出力端子O
UT1の論理出力信号Q=VSS,信号出力端子OUT2
の論理出力信号rQ=VDDの高電圧系レベルの論理信号
に変換される。また、A=「L」(負側ライン電圧VSS
の),B=「H」(正側ライン電圧VCCの)の論理入力
信号が入力されたとすると、同様な手順の動作で論理出
力信号Q=VSS,rQ=VDDの、A=「H」,B=
「L」の論理入力信号のときは論理出力信号Q=VSS
rQ=VDDの、A=「L」,B=「L」の論理入力信号
のときは論理出力信号Q=VDD,rQ=VSSの高電圧系
レベルの論理信号に変換される。
The operation of this level shift circuit is as follows. Now, to the signal input terminals IN1 and IN2, the low voltage system level A = “H” (the positive side line voltage V
Assuming that a logic input signal of CC ) and B = “H” (of positive side line voltage V CC ) is input, the output of the NOR gate 23 becomes “L”, and the N MOSFET 20 is turned off. Since this "L" signal is converted into an "H" signal by the inverter 24, the N MOSFET 22 is turned on. N MOSFET 20 is off, N MOSFET 2
2 is turned on, the P MOSFET 19 is turned on and P MOSFET 19 is turned on.
The MOSFET 21 is turned off. Therefore, the signal output terminal O
UT1 logic output signal Q = V SS , signal output terminal OUT2
Is converted into a logic signal of a high voltage system level of rQ = V DD . Further, A = “L” (negative side line voltage V SS
, B = “H” (of positive side line voltage V CC ), a logic output signal Q = V SS , rQ = V DD , A = “ H ”, B =
When the logic input signal is “L”, the logic output signal Q = V SS ,
When rQ = V DD , A = “L” and B = “L”, the logic input signal is converted into a logic signal of high voltage system of logic output signal Q = V DD , rQ = V SS .

【0009】[0009]

【発明が解決しようとする課題】前述のレベルシフト回
路はNORゲートおよびインバータを用いているため、
論理出力信号の遅延時間が長くなる、あるいは半導体集
積回路として形成したとき、これらNORゲートあるい
はインバータによって半導体チップの所要面積が大きく
なる問題がある。
Since the level shift circuit described above uses the NOR gate and the inverter,
There is a problem that the delay time of the logic output signal becomes long, or when formed as a semiconductor integrated circuit, the required area of the semiconductor chip becomes large due to these NOR gates or inverters.

【0010】本発明の目的はこれら問題点を解決し、論
理出力信号の遅延時間を短縮し、かつ半導体集積回路と
して形成したときの半導体チップの所要面積の小さい論
理信号のレベルシフト回路を提供することにある。
An object of the present invention is to solve these problems, to provide a logic signal level shift circuit which reduces the delay time of a logic output signal and has a small area required for a semiconductor chip when formed as a semiconductor integrated circuit. Especially.

【0011】[0011]

【課題を解決するための手段】前述の目的を達成するた
めに、本発明の論理信号のレベルシフト回路は高電圧系
の正側電源ラインと負側電源ラインとの間にそれらの主
端子が直列に接続された第1のP MOSFET,第2
のP MOSFETおよび第1のN MOSFETと、
これら直列に接続されたMOSFETに並列にそられの
主端子が直列に接続された第3のP MOSFETおよ
び第2のN MOSFETと、前記第3のP MOSF
ETの主端子にその主端子が並列に接続された第4のP
MOSFETとからなり、前記第3のP MOSFE
Tの主端子と前記第2のN MOSFETの主端子の接
続点を前記第1のN MOSFETのゲートに接続し、
前記第2のP MOSFETの主端子と第1のN MO
SFETの主端子の接続点を前記第2のN MOSFE
Tのゲートに接続するようにする。あるいは高電圧系の
正側電源ラインと負側電源ラインとの間にそれらの主端
子が直列に接続された第1のP MOSFET,第1の
N MOSFETおよび第2のN MOSFETと、こ
れら直列に接続されたMOSFETに並列にそれらの主
端子が直列に接続された第2のP MOSFETおよび
第3のN MOSFETと、前記第3のN MOSFE
Tの主端子にその主端子が並列に接続された第4のN
MOSFETとからなり、前記第2のP MOSFET
の主端子と前記第3のP MOSFETの主端子の接続
点を前記第1のP MOSFETのゲートに接続し、前
記第1のP MOSFETと前記第1のN MOSFE
Tの接続点を前記第2のP MOSFETのゲートに接
続するようにする。更に半導体集積回路として形成す
る。
In order to achieve the above-mentioned object, a logic signal level shift circuit according to the present invention has a main terminal between a positive power supply line and a negative power supply line of a high voltage system. First P-MOSFET, second connected in series
A P MOSFET and a first N MOSFET,
A third P-MOSFET and a second N-MOSFET whose main terminals are connected in series to these MOSFETs connected in series, and the third P-MOSF
A fourth P having its main terminal connected in parallel to the main terminal of ET
And a third P-MOSFE
The connection point between the main terminal of T and the main terminal of the second N MOSFET is connected to the gate of the first N MOSFET,
The main terminal of the second P MOSFET and the first N MO
The connection point of the main terminals of the SFET is connected to the second N-MOSFE.
Connect to the gate of T. Alternatively, a first P MOSFET, a first N MOSFET, and a second N MOSFET whose main terminals are connected in series between a high-voltage power supply line and a negative power supply line, and these are connected in series. A second P MOSFET and a third N MOSFET whose main terminals are connected in series to the connected MOSFET in parallel, and the third N MOSFET.
A fourth N having its main terminal connected in parallel to the main terminal of T
And a second P-MOSFET
A main terminal of the first P MOSFET and a main terminal of the third P MOSFET are connected to the gate of the first P MOSFET, and the first P MOSFET and the first N MOSFET are connected.
The connection point of T is connected to the gate of the second P MOSFET. Further, it is formed as a semiconductor integrated circuit.

【0012】[0012]

【作用】請求項1あるいは2記載の本発明の論理信号の
レベルシフト回路においては、いずれも低電圧系の論理
信号あるいはこの論理信号の反転信号によって高電圧系
ラインに接続されたMOSFETを直接駆動するように
したので、従来のNORゲートおよびインバータを用い
るものに比して、入力段数が減少し出力遅延時間が著る
しく短縮される。また、半導体チップの所要面積の大き
いこれらNORゲートおよびインバータを廃止してMO
SFETだけで回路を構成したので、半導体集積回路と
して形成したとき半導体チップの所要面積の小さい論理
信号のレベルシフト回路となる。
In any of the logic signal level shift circuits according to the present invention, the MOSFET connected to the high voltage system line is directly driven by the low voltage system logic signal or the inversion signal of this logic signal. As a result, the number of input stages is reduced and the output delay time is remarkably shortened as compared with the conventional NOR gate and inverter. In addition, the NOR gate and the inverter, which require a large area of the semiconductor chip, are eliminated and the MO is removed.
Since the circuit is composed of only SFETs, when it is formed as a semiconductor integrated circuit, it becomes a level shift circuit for logic signals that requires a small area of a semiconductor chip.

【0013】[0013]

【実施例】図1および図2はそれぞれ本発明の論理信号
のレベルシフト回路の第1および第2の実施例を示す回
路図であり、図1はマイナス電源変換レベルシフト回
路、図2はプラス電源変換レベルシフト回路を示す。図
1において、このマイナス電源変換レベルシフト回路
は、高電圧系の正側電源ラインVC (電源ライン電圧V
CC)と負側電源ラインVE (電源ライン電圧VEE)との
間にそられのソース・ドレイン,ソース・ドレインおよ
びドレイン・ソースが直列に接続されたP MOSFE
T1,P MOSFET2およびN MOSFET3
と、これら直列に接続されたMOSFETに並列にそれ
らのソース・ドレインおよびドレイン・ソースが直列に
接続されたP MOSFET4およびN MOSFET
6と、そのソース・ドレインがそれぞれP MOSFE
T4のソース・ドレインに接続されたP MOSFET
5とからなり、P MOSFET2のドレインとN M
OSFET3のドレインの接続点はN MOSFET6
のゲートに、P MOSFET4のドレインとN MO
SFET6のドレインの接続点はN MOSFET3の
ゲートにそれぞれ接続され、P MOSFET1のゲー
トは信号入力端子IN1に、P MOSFET2のゲー
トを信号入力端子IN2に、P MOSFET4のゲー
トは信号入力端子IN3に、P MOSFET5のゲー
トは信号入力端子IN4に接続され、N MOSFET
3のドレインは信号出力端子OUT1に、N MOSF
ET6のドレインは信号出力端子OUT2にそれぞれ接
続されている。
1 and 2 show the logic signals of the present invention.
Of the first and second embodiments of the level shift circuit of
It is a road map, and Fig. 1 shows the negative power conversion level shift circuit.
2 shows a positive power supply conversion level shift circuit. Figure
1, the minus power supply conversion level shift circuit
Is the positive power supply line V of the high voltage systemC(Power line voltage V
CC) And the negative power supply line VE(Power line voltage VEE) With
Source / drain, source / drain and
P-MOSFE with drain and source connected in series
T1, P MOSFET2 and N MOSFET3
And in parallel with these series connected MOSFETs
Source / drain and drain / source in series
Connected P MOSFET 4 and N MOSFET
6 and its source and drain are P-MOSFE
P MOSFET connected to the source / drain of T4
5, the drain of P MOSFET 2 and N M
The connection point of the drain of OSFET3 is N MOSFET6
The drain of the P MOSFET 4 and the N MO
The connection point of the drain of SFET6 is N MOSFET3
The gate of P MOSFET 1 is connected to each gate.
Is connected to the signal input terminal IN1 by the gate of P MOSFET2.
To the signal input terminal IN2 and the gate of the P MOSFET 4
Is connected to the signal input terminal IN3 and the gate of the P MOSFET5.
Is connected to the signal input terminal IN4, and is connected to the N MOSFET
The drain of 3 is connected to the signal output terminal OUT1,
The drain of ET6 is connected to the signal output terminal OUT2.
Has been continued.

【0014】このレベルシフト回路の動作は次の通りで
ある。今信号入力端子IN1およびIN2にそれぞれ低
電圧系レベルのA=「H」(正側ライン電圧VCCの),
B=「H」(正側ライン電圧VCCの)の論理入力信号を
入力し、信号入力端子IN3およびIN4にそれぞれ前
記論理入力信号AあるいはBの反転信号のrAあるいは
rBを入力すると、P MOSFET1およびP MO
SFET2はオフし、P MOSFET4およびP M
OSFET5はオンする。P MOSFET1およびP
MOSFET2のオフによりN MOSFET6はオ
フとなり、PMOSFET4およびP MOSFET5
のオンによりN MOSFET3はオンとなる。従って
信号出力端子OUT1の論理出力信号Q=VEE,信号出
力端子OUT2の論理出力信号rQ=VCCの高電圧系レ
ベルの論理信号に変換される。また、A=「L」(負側
ライン電圧VSSの),B=「H」(正側ライン電圧VCC
の)の論理入力信号が入力されたときは、同様な手順の
動作で論理出力信号Q=VEE,rQ=VCCの、A=
「H」,B=「L」の論理入力信号のときは論理出力信
号Q=VEE,rQ=VCCの、A=「L」,B=「L」の
論理入力信号のときは論理出力信号Q=VCC,rQ=V
EEの高電圧系レベルの論理信号にそれぞれ変換される。
The operation of this level shift circuit is as follows. Now, to the signal input terminals IN1 and IN2, A = “H” (of the positive line voltage V CC ) of the low voltage system level,
When a logic input signal of B = “H” (of positive side line voltage V CC ) is input and rA or rB of the inverted signal of the logic input signal A or B is input to the signal input terminals IN3 and IN4, respectively, P MOSFET1 And P MO
SFET2 turns off, P MOSFET4 and P M
OSFET5 is turned on. P MOSFET1 and P
When the MOSFET 2 is turned off, the N MOSFET 6 is turned off, and the P MOSFET 4 and the P MOSFET 5 are
Is turned on, the N MOSFET 3 is turned on. Therefore, the logic output signal Q = V EE of the signal output terminal OUT1 and the logic output signal rQ = V CC of the signal output terminal OUT2 are converted into logic signals of the high voltage system level. Further, A = “L” (of the negative side line voltage V SS ), B = “H” (the positive side line voltage V CC)
When the logic input signal of () is input, the logic output signal Q = V EE , rQ = V CC , A =
Logic output signals Q = V EE and rQ = V CC when the logic input signals are “H” and B = “L”, and logic outputs when the logic input signals are A = “L” and B = “L” Signal Q = V CC , rQ = V
Converted to high-voltage level logic signal of EE .

【0015】また、図2において、このプラス電源変換
レベルシフト回路は、高電圧系の正側電源ラインV
D (電源ライン電圧VDD)と負側電源ラインVS (電源
ライン電圧VSS)との間にそれらのソース・ドレイン,
ソース・ドレインおよびドレイン・ソースが直列に接続
されたP MOSFET10,N MOSFET11お
よびN MOSFET12と、これら直列に接続された
MOSFETに並列にそれらのソース・ドレインおよび
ドレイン・ソースが直列に接続されたP MOSFET
7およびN MOSFET9と、そのドレイン・ソース
がそれぞれ並列に接続されたN MOSFET8とから
なり、P MOSFET7のドレインとNMOSFET
8のドレインの接続点はP MOSFET10のゲート
にP MOSFET10のドレインとN MOSFET
8のドレインの接続点はP MOSFET7のゲートに
それぞれ接続され、N MOSFET8のゲートは信号
入力端子IN1に、N MOSFET9のゲートは信号
入力端子IN2に、P MOSFET11のゲートは信
号入力端子IN3に、P MOSFET12のゲートは
信号入力端子IN4のゲートに接続され、P MOSF
ET7のドレインは信号出力端子OUT1に、P MO
SFET10のドレインは信号出力端子OUT2にそれ
ぞれ接続されている。
Further, in FIG. 2, the positive power supply conversion level shift circuit has a high-voltage positive power supply line V.
Between the D (power supply line voltage V DD ) and the negative power supply line V S (power supply line voltage V SS ), their source and drain,
Source / drain and drain / source connected in series P MOSFET 10, N MOSFET 11 and N MOSFET 12, and P MOSFET in which the source / drain and drain / source are connected in series to these series connected MOSFETs.
7 and N MOSFET 9, and N MOSFET 8 whose drain and source are respectively connected in parallel, and the drain of P MOSFET 7 and the N MOSFET
The drain of 8 is connected to the drain of P MOSFET 10 and the N MOSFET at the gate of P MOSFET 10.
The drain of 8 is connected to the gate of the P MOSFET 7, the gate of the N MOSFET 8 is connected to the signal input terminal IN1, the gate of the N MOSFET 9 is connected to the signal input terminal IN2, the gate of the P MOSFET 11 is connected to the signal input terminal IN3, and The gate of the MOSFET 12 is connected to the gate of the signal input terminal IN4,
The drain of ET7 is connected to the signal output terminal OUT1 by P MO
The drains of the SFET 10 are connected to the signal output terminal OUT2, respectively.

【0016】このレベルシフト回路の動作は次の通りで
ある。今信号入力端子IN1およびIN2にそれぞれ低
電圧系レベルのA=「H」(正側ライン電圧VCCの)B
=「H」(正側ライン電圧VCCの)の論理入力信号を入
力し、信号入力端子IN3およびIN4にそれぞれ前記
論理入力信号AるあいはBの反転信号のrAあるいはr
Bを入力すると、N MOSFET8およびN MOS
FET9はオンし、NMOSFET11およびN MO
SFET12はオフする。N MOSFET8およびN
MOSFET9のオンによりP MOSFET10は
オンとなり、N MOSFET11およびN MOSF
ET12のオフによりP MOSFET7はオフとな
る。従って信号出力端子OUT1の論理出力信号Q=V
SS,信号出力端子OUT2の論理出力信号rQ=VDD
高電圧系レベルの論理信号に変換される。「A」=
「L」(負側ライン電圧VSSの),B=「H」(正側ラ
イン電圧VCCの)の論理入力信号が入力されたときは、
同様な手順の動作で論理出力信号Q=VSS,rQ=VDD
の、A=「H」,B=「L」の論理入力信号のときは論
理出力信号Q=VSS,rQ=VDDの、A=「L」,B=
「L」の論理入力信号のときは論理出力信号Q=VDD
rQ=VSSの高電圧系レベルの論理信号に変換される。
The operation of this level shift circuit is as follows. Now, the low voltage system level A = “H” (of the positive line voltage V CC ) B is applied to each of the signal input terminals IN1 and IN2.
= "H" (of positive side line voltage V CC ) of the logic input signal is input to the signal input terminals IN3 and IN4 when the logic input signal A is rA or r of the inverted signal of B.
Input B, N MOSFET 8 and N MOS
FET9 turns on, NMOSFET11 and NMO
The SFET 12 turns off. N MOSFET8 and N
When the MOSFET 9 is turned on, the P MOSFET 10 is turned on, and the N MOSFET 11 and the N MOSF are turned on.
When ET12 is turned off, P MOSFET 7 is turned off. Therefore, the logical output signal Q = V of the signal output terminal OUT1
SS , the logic output signal of the signal output terminal OUT2 is converted to a high voltage system logic signal of rQ = V DD . "A" =
When a logical input signal of "L" (for negative side line voltage V SS ) and B = "H" (for positive side line voltage V CC ) is input,
By the operation of the same procedure, the logical output signals Q = V SS , rQ = V DD
When A = “H” and B = “L”, the logic output signal Q = V SS , rQ = V DD , A = “L”, B =
When the logical input signal is “L”, the logical output signal Q = V DD ,
It is converted into a high voltage system level logic signal of rQ = V SS .

【0017】[0017]

【発明の効果】本発明により論理出力信号の遅延時間が
小さく、かつ半導体集積回路として形成したとき半導体
チップの所要面積の小さい論理信号のレベルシフト回路
が得られるので、出力段の出力の大きい論理回路、例え
ば液晶ドライバーなどでその効果が極めて大きい。
According to the present invention, a logic signal level shift circuit having a small delay time of a logic output signal and a small required area of a semiconductor chip when formed as a semiconductor integrated circuit can be obtained. The effect is extremely large in a circuit such as a liquid crystal driver.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の論理信号のレベルシフト回路の第1の
実施例を示す回路図
FIG. 1 is a circuit diagram showing a first embodiment of a logic signal level shift circuit of the present invention.

【図2】本発明の論理信号のレベルシフト回路の第2の
実施例を示す回路図
FIG. 2 is a circuit diagram showing a second embodiment of a logic signal level shift circuit of the present invention.

【図3】論理信号のレベルシフト回路の第1の従来例を
示す回路図
FIG. 3 is a circuit diagram showing a first conventional example of a logic signal level shift circuit.

【図4】論理信号のレベルシフト回路の第2の従来例を
示す回路図
FIG. 4 is a circuit diagram showing a second conventional example of a logic signal level shift circuit.

【符号の説明】[Explanation of symbols]

1 P MOSFET(第1の) 2 P MOSFET(第2の) 3 N MOSFET(第1の) 4 P MOSFET(第3の) 5 P MOSFET(第4の) 6 N MOSFET(第2の) 7 P MOSFET(第2の) 8 N MOSFET(第4の) 9 N MOSFET(第3の) 10 P MOSFET(第1の) 11 N MOSFET(第1の) 12 N MOSFET(第2の) 1 P MOSFET (first) 2 P MOSFET (second) 3 N MOSFET (first) 4 P MOSFET (third) 5 P MOSFET (fourth) 6 N MOSFET (second) 7 P MOSFET (second) 8 N MOSFET (fourth) 9 N MOSFET (third) 10 P MOSFET (first) 11 N MOSFET (first) 12 N MOSFET (second)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】低電圧系レベルの論理信号を高電圧系レベ
ルの論理信号に変換する論理信号のレベルシフト回路で
あって、高電圧系の正側電源ラインと負側電源ラインと
の間にそれらの主端子が直列に接続された第1のP M
OSFET,第2のP MOSFETおよび第1のN
MOSFETと、これら直列に接続されたMOSFET
に並列にそられの主端子が直列に接続された第3のP
MOSFETおよび第2のN MOSFETと、前記第
3のP MOSFETの主端子にその主端子が並列に接
続された第4のP MOSFETとからなり、前記第3
のP MOSFETの主端子と前記第2のN MOSF
ETの主端子の接続点を前記第1のN MOSFETの
ゲートに接続し、前記第2のP MOSFETの主端子
と第1のN MOSFETの主端子の接続点を前記第2
のN MOSFETのゲートに接続したことを特徴とす
る論理信号のレベルシフト回路。
1. A logic signal level shift circuit for converting a logic signal of a low voltage system level into a logic signal of a high voltage system level, the circuit being provided between a positive side power source line and a negative side power source line of a high voltage system. A first P M whose main terminals are connected in series
OSFET, second P MOSFET and first N MOSFET
MOSFET and MOSFET connected in series
A third P whose main terminals are connected in parallel with each other in series.
A MOSFET and a second N MOSFET, and a fourth P MOSFET in which a main terminal of the third P MOSFET is connected in parallel to a main terminal of the third P MOSFET.
Main terminal of the P MOSFET and the second NMOSF
The connection point of the main terminal of ET is connected to the gate of the first N MOSFET, and the connection point of the main terminal of the second P MOSFET and the main terminal of the first N MOSFET is connected to the second
A level shift circuit for logic signals, characterized in that the level shift circuit is connected to the gate of the N MOSFET.
【請求項2】低電圧系レベルの論理信号を高電圧系レベ
ルの論理信号に変換する論理信号のレベルシフト回路で
あって、高電圧系の正側電源ラインと負側電源ラインと
の間にそれらの主端子が直列に接続された第1のP M
OSFET,第1のN MOSFETおよび第2のN
MOSFETと、これら直列に接続されたMOSFET
に並列にそれらの主端子が直列に接続された第2のP
MOSFETおよび第3のN MOSFETと、前記第
3のN MOSFETの主端子にその主端子が並列に接
続された第4のN MOSFETとからなり、前記第2
のP MOSFETの主端子と前記第3のP MOSF
ETの主端子の接続点を前記第1のP MOSFETの
ゲートに接続し、前記第1のP MOSFETと前記第
1のN MOSFETの接続点を前記第2のP MOS
FETのゲートに接続したことを特徴とする論理信号の
レベルシフト回路
2. A logic signal level shift circuit for converting a low voltage system level logic signal into a high voltage system level logic signal, wherein the high voltage system level shift circuit is provided between a high voltage system positive side power supply line and a negative side power supply line. A first P M whose main terminals are connected in series
OSFET, first N MOSFET and second N MOSFET
MOSFET and MOSFET connected in series
A second P whose main terminals are connected in series in parallel with
A MOSFET and a third N MOSFET, and a fourth N MOSFET whose main terminal is connected in parallel to the main terminal of the third N MOSFET.
Main terminal of the P MOSFET and the third P MOSF
The connection point of the main terminal of ET is connected to the gate of the first P MOSFET, and the connection point of the first P MOSFET and the first N MOSFET is connected to the second P MOS.
Logic signal level shift circuit characterized by being connected to the gate of an FET
【請求項3】半導体集積回路として形成されることを特
徴とする請求項1あるいは2記載の論理信号のレベルシ
フト回路。
3. The logic signal level shift circuit according to claim 1, wherein the level shift circuit is formed as a semiconductor integrated circuit.
JP5043089A 1993-03-04 1993-03-04 Level shift circuit for logical signal Pending JPH06260926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5043089A JPH06260926A (en) 1993-03-04 1993-03-04 Level shift circuit for logical signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5043089A JPH06260926A (en) 1993-03-04 1993-03-04 Level shift circuit for logical signal

Publications (1)

Publication Number Publication Date
JPH06260926A true JPH06260926A (en) 1994-09-16

Family

ID=12654120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043089A Pending JPH06260926A (en) 1993-03-04 1993-03-04 Level shift circuit for logical signal

Country Status (1)

Country Link
JP (1) JPH06260926A (en)

Similar Documents

Publication Publication Date Title
JPH035692B2 (en)
JPH01284115A (en) Logical circuit
JPH0637624A (en) Level conversion circuit
JP2752839B2 (en) Composite logic circuit
US6535017B1 (en) CMOS ECL input buffer
JP4048232B2 (en) Level shift circuit
JPH06260926A (en) Level shift circuit for logical signal
JPS6169212A (en) Switching circuit
JPH0779150A (en) Semiconductor integrated circuit
JP2544815B2 (en) Level shift circuit
JPH02186826A (en) Level shifter
JPS62208715A (en) Semiconductor integrated circuit
SU1129739A1 (en) Converter of voltage levels based on complementary insulated-gate field-effect transistors
SU1140245A1 (en) Amplifier-conditioner of output signals of read-only storages based on metal-oxide-semiconductor transistors
KR930004717Y1 (en) High speed cmos dynamic buffer circuit
JPH11195977A (en) Path transistor circuit
SU1149399A1 (en) Former with three output states
JPH0537343A (en) Bidirectional buffer
JP2550942B2 (en) CMOS type logic integrated circuit
JPH0431630Y2 (en)
JPH0774556A (en) Differential cmos logic circuit
JPH0774620A (en) Buffer circuit
JP2655912B2 (en) Semiconductor integrated circuit
JPH08116252A (en) Exclusive or circuit and not circuit for exclusive or
JPS61113319A (en) Holding circuit