JPH06239614A - Tl酸化物超電導体とその製法 - Google Patents

Tl酸化物超電導体とその製法

Info

Publication number
JPH06239614A
JPH06239614A JP5026710A JP2671093A JPH06239614A JP H06239614 A JPH06239614 A JP H06239614A JP 5026710 A JP5026710 A JP 5026710A JP 2671093 A JP2671093 A JP 2671093A JP H06239614 A JPH06239614 A JP H06239614A
Authority
JP
Japan
Prior art keywords
film
hkl
intensity
oxide superconductor
superconducting film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5026710A
Other languages
English (en)
Other versions
JPH07110767B2 (ja
Inventor
Takashi Yoshida
吉田  隆
Tsuneyuki Kanai
恒行 金井
Hiroyuki Akata
広幸 赤田
Yuichi Kamo
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP5026710A priority Critical patent/JPH07110767B2/ja
Publication of JPH06239614A publication Critical patent/JPH06239614A/ja
Publication of JPH07110767B2 publication Critical patent/JPH07110767B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

(57)【要約】 【構成】 無機基板上に膜厚5μm以上のTl系超電導
膜を形成した場合に、前記膜は(1)式および(2)式
で示される配向率(F)値が30%以上であることを特
徴とするTl酸化物超電導体。 【数4】 Pi=ΣI(00l)/ΣI(hkl) (1) F=(P0−P00)/(1−P00)×100 (2) 〔但し、I(00l)はX線回折により求めた(00l)面
の回折強度、I(hkl)はミラー指数h,k,lで表さ
れた(hkl)面の回折強度、PiはP0またはP0 0で、
0はX線回折により求めた配向粒子の強度比、P00
同じく非配向粒子の強度比を示す。〕 【効果】結晶粒間における接合部での超電導特性の低下
が改善されて臨界温度が高く、大面積成膜もできるの
で、磁気シールド、超電導コイル、アンテナ等に応用で
きる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、超電導コイル、磁気シ
−ルドなどに最適なTl酸化物超電導体とその製法に関
する。
【0002】
【従来の技術】1986年、臨界温度が高い銅酸化物系
のLa−Ba−Cu−Oペロブスカイト系構造の超電導
体が発見され(特開昭63−260853号公報等)、
その翌年、Y−Ba−Cu−O系(M.K.Wu,J.
R.Ashburn,C.J.Torng,Y.Q.Wand and
C.W.Chu:Phys.Rev.Lett.,58(198
7)908)が液体窒素を冷媒とすることができる臨界
温度が90K級の超電導体であることが発見された。
【0003】さらに、これよりも臨界温度が高いBi−
Sr−Ca−Cu−O系(Tc:110K,H.Maed
a,Y.Tanaka,M.Fukutomi and T.Asano:J
pn.J.Appl.Phys.27(1988)L209),
Tl−Ba−Ca−Cu−O系(Tc:120K,Z.
Z.Shengand A.M.Hermann:Nature32
2(1988)55)が発見され、新しい超電導体の研
究は目覚いもがあった。
【0004】これらの超電導体の一般的な製法は、金属
酸化物,炭酸塩等の原料粉末を、混合,粉砕を繰返し、
空気中または酸素中あるいは還元雰囲気中において80
0〜1100℃で数分〜数百時間焼成すことにより得ら
れる。
【0005】しかし、Y−Ba−Cu−O、Bi−Sr
−Ca−Cu−O、Tl−Ba−Ca−Cu−O系に代
表される複合層状ペロブスカイト型の超電導体には、そ
れぞれ階層の異なる複数の構造を持ち、これらの特性も
また異なるものであった。
【0006】酸化物系超電導体の特徴として、その結晶
構造に由来する導電性の大きな異方性が挙げられる。そ
のために結晶粒方向が乱雑な超電導膜においては導電面
がつながることにより、零磁場の臨界電流密度が103
A/cm2以下となってしまう。また、結晶粒間に異相
が存在すると、それが弱接合(障壁)となり臨界電流密
度が低くなってしまい、超電導コイル等への利用上の大
きな課題であった。
【0007】そこで臨界電流密度を向上するため、超電
導膜の結晶粒の方向を揃え、結晶を部分的に溶融させて
結晶粒間の接合を向上することが考えられた。
【0008】例えば、Y系またはBi系超電導体では、
最適な熱処理の温度と時間を選択することにより、結晶
を部分的に溶融させることができた(Y系;M.Morit
a,M.Tanaka,S.Takebayashi,K.Kimura,
K.Miyamoto and K.Sawano:JJAP,Vol.
30,No.5A (1991)L813、Bi系;
J.Kase,N.Irisawa,T.Morimoto,K.Togan
o,D.R.Dietderichand H.Maeda:Appl.Phy
s.Lett.,56(10),(1990)L970)。
【0009】一方、Tl系は薄膜、例えば、D.G.N
augle,P.S.Wang andX.Y.Shao:J.App
l.Phys.68(3),1 August 1990 L1
399で証明されているような2μm程度の薄膜におい
て、結晶粒は基板面より成長するため配向率Fは80%
以上と高く、それに伴い臨界電流密度も高い値を示す。
しかし、膜厚が5μm以上の膜やシース材等の場合は、
結晶粒の成長方向が乱雑になることが報告されている
(T.Goto and C.Yamaoka:JJAP,Vol.2
9,No.9,September,1990,L1645)。
【0010】
【発明が解決しようとする課題】前記のように超電導膜
を実用化するためには、結晶を部分的に溶融して前記弱
接合を改善する必要がある。しかし、Y系またはBi系
に比べ臨界温度が高いTl系は、Tlが非常に蒸気圧が
高いため、870℃前後の液相生成温度でTlが蒸発し
て、超電導膜としての組成がずれてしまうと云う問題が
ある。
【0011】本発明の目的は、臨界温度が高く特に磁場
中での臨界電流密度の高いTl系超電導体とその製法を
提供することにある。
【0012】本発明の他の目的は、上記超電導体を用い
たデバイスを提供することにある。
【0013】
【課題を解決するための手段】上記課題を解決するた
め、本発明者らはさまざまな角度から検討を行い本発明
に到達した。本発明の要旨は次のとおりである。
【0014】(1) 無機基板上に膜厚5μm以上のT
l系超電導膜を形成した場合に、前記膜は下記の(1)
式および(2)式で示される配向率(F)値が30%以
上であるTl酸化物超電導体。
【0015】(2) 無機基板上に形成した厚さ5μm
以上のTl系超電導膜が、酸素またはTl蒸気の1気圧
よりも高い雰囲気中で熱処理するか、あるいは酸素また
はTl蒸気の1気圧よりも高い雰囲気中において熱処理
と加圧による圧密化処理とを1サイクル以上行うことに
より、下記の(1)式および(2)式で求められる配向
率(F)値が30%以上となるように上記処理を行うこ
とを特徴とするTl酸化物超電導体の製法。
【0016】
【数3】 Pi=ΣI(00l)/ΣI(hkl) (1) F=(P0−P00)/(1−P00)×100 (2) 〔但し、I(00l)はX線回折により求めた(00l)面
の回折強度、I(hkl)はミラー指数h,k,lで表さ
れた(hkl)面の回折強度、PiはP0またはP0 0で、
0はX線回折により求めた配向粒子の強度比、P00
同じく非配向粒子の強度比を示す。〕 上記により実用化に耐え得る磁場中での臨界電流密度の
酸化物系超電導体を提供することができた。
【0017】本発明の超電導体は、酸化物系材料からな
る原料組成物を溶射法やドクター・ブレード塗布法、ス
パッタ法、蒸着法などの成膜法が用いられる。特に、基
材に直接スプレーする溶射法やドクター・ブレードによ
る塗布法が厚膜を形成する上で有効である。
【0018】原料である酸化物系材料の合成方法として
は、各成分が均質に混合できれば、混合法には特に制限
はない。その一例として固体の酸化物系材料を直接混合
し、粉砕する方法がある。
【0019】上記の混合粉末は、そのまゝかまたはペレ
ット状に成形して500℃以上で焼成することにより合
成することができる。その際の雰囲気としては酸素、空
気、アルゴン、窒素等目的に応じて選ばれる。また、こ
のような焼成により合成する場合、焼成体を再粉砕,再
混合を繰返すことによって、均質で体積率の高い、特性
の優れた原料粉末を得ることができる。
【0020】上記超電導材料が(Tl,Pb,Sr,C
a,Cu,O),(Tl,Ba,Ca,Cu,O)また
は(Tl,Ba,Sr,Ca,Cu,O)から選ばれ
る。
【0021】上記の原料粉末を用い、無機基板上に厚さ
5μm以上の膜状(または板状)の前駆体をCVD、プ
ラズマ溶射などの厚膜形成法によ成膜する。その際、成
膜条件としては、酸化物系材料の組成と、形成された前
駆体膜の組成に差異が生じなければ、特に制限されな
い。前記無機基板はAg、Au、Ni基合金(例えばハ
ステロイ)またはイットリア安定化ジルコニア(YS
Z)、MgO、アルミナ等のセラミックスで形成され
る。
【0022】また、上記前駆体膜を酸化Tl雰囲気中,
850℃以下で焼成すことにより超電導特性を向上する
ことができる。その際、膜中のTl量が目的組成となる
ように熱処理条件を制御してTlの導入を図る。なお、
Tl元素は、+3価で、イオン半径が0.95Åと云う
状態で存在している。なお、前記熱処理はレーザ光また
は赤外光で結晶の一部を溶融することにある。
【0023】こうして作製したTl酸化物超電導膜は、
厚さ5μm以上で、前記配向率Fの値を30%以上とす
ることができる。
【0024】上記Tl酸化物超電導体を、配線、磁気シ
ールド、アンテナ等に利用することにより、高性能な超
電導応用装置の実用化が可能となる。
【0025】
【作用】前記前駆体を酸素またはTl蒸気の1気圧以下
の雰囲気中で、レーザまたは赤外線で熱処理(溶融処
理)、または、酸素またはTl蒸気の1気圧以下の雰囲
気中で熱処理とプレス、圧延などの圧密化処理とを1サ
イクル以上行う処理では、下記の式(4)の反応よりも
式(3)の反応が優先し、Tl元素は1価、イオン半径
1.57〜1.60Åとなる。
【0026】
【化1】Tl23 → Tl2O+O2 (3) Tl23 ← Tl2O+O2 (4) この場合のTl元素はイオン半径が大きいために超電導
体構造が形成されない。即ち、Tlを3価の状態で存在
させながら結晶粒を揃えることが重要である。
【0027】酸素またはTl蒸気の1気圧よりも高い雰
囲気中でレーザまたは赤外線で熱処理、または、酸素ま
たはTl蒸気の1気圧よりも高い雰囲気中で熱処理とプ
レス,圧延など10t/cm2以上の圧密化処理を1サ
イクル以上行うことにより、上記の反応は式(4)の方
が優先して起り、Tlは+3価の状態で超電導体の結晶
構造を形成する。
【0028】上記超電導体は加熱(結晶の一部溶融)あ
るいは加圧されることにより、結晶粒の成長方向が揃
い、その配向率F値は30%以上となる。このF値の向
上に伴い臨界電流密度(Jc)も向上し、実用的な磁場
中での臨界電流密度を得ることができる。
【0029】
【実施例】以下、本発明を実施例に基づき具体的に説明
する。
【0030】〔実施例1〕酸化物系超電導膜の溶射粉末
原料として、BaO、SrO、CaO、CuOを出発原
料とし、それぞれモル比でBa:Sr:Ca:Cu=
1.6:0.4:2.0:3.0になるよう配合し、これに
AgOを全体の2wt%になるように添加した。これを
メノウ製乳鉢からなるライカイ機で20分ほど混合粉砕
した。
【0031】この混合粉を磁性体アルミナルツボに採
り、大気中900℃,20時間焼成する。室温まで放冷
後、ふるいにより粒度調整を行い目的の溶射粉末を得
た。
【0032】上記溶射粉末を用い、大気中プラズマ溶射
装置にてAg基板上に膜厚50μm程度の溶射膜を形成
した。溶射条件は、出力:50kW、プラズマ電流:8
00A、溶射時間:200分で、プラズマガスにArガ
ス、2次ガスとして水素ガスを用いた。
【0033】次いで、上記の溶射膜を810℃,20時
間、酸化Tl雰囲気中で熱処理を行った。
【0034】こうして得られた溶射膜の化学組成をIC
Pにより分析した結果、Tl:Ba:Sr:Ca:Cu
=2.0:1.6:0.4:2.0:3.0であった。
【0035】次に、20t/cm2でプレスして圧密化
し、その後、1.3気圧の酸化Tl雰囲気中で810
℃,50時間の熱処理を1回行った。
【0036】得られた超電導膜の配向性をX線回折より
求めた配向率と、ポール,フィギア測定により求めた半
値幅の値を表1に示す。
【0037】
【表1】
【0038】また、超電導特性(臨界電流密度)を測定
するため、超電導膜の表面にインジウムハンダにより測
定端子を接続し、液体窒素を冷媒として4端子直流法に
より電流−電圧を測定した。端子間電圧1μV/cmと
したときの電流値(臨界電流:Ic)より液体窒素温度
における臨界電流密度(Jc)を求めた。その結果を、
図1および表2に示した。
【0039】
【表2】
【0040】さらにまた、図2に超電導膜表面の結晶粒
子のSEM写真(1000倍)を示す。大きな板状の結
晶粒が生成しており、該結晶粒子は部分溶融しているこ
とが分かる。なお、図2に基づき結晶粒の生成状態を模
式的に示すと図3のように示すことができる。
【0041】また、超電導体の緻密性は90%以上と高
く、断面SEM−EDXの結果、結晶粒は基板面に平行
に成長しており、結晶粒間には非超電導相は認められな
かった。
【0042】〔比較例1〕酸化物系超電導膜の溶射粉末
原料として、実施例1と同じ組成の溶射粉末を用い、実
施例1と同様にAg基板上に膜厚50μm程度の溶射膜
を形成した。
【0043】次いで50t/cm2でプレスし、830
℃,20時間の熱処理行った。該溶射膜のICP分析に
よる化学組成は、Tl:Ba:Sr:Ca:Cu=2.
0:1.6:0.4:2.0:3.0であった。
【0044】超電導膜のポール、フィギア測定による配
向性を表1に示す。また、4端子直流法で測定した臨界
電流密度(Jc)は、77K、0TにおいてJc=80
0A/cm2、1TにおいてJc=100A/cm2を示
した。
【0045】SEMによる表面の結晶粒の成長方向は乱
雑で、また、超電導体の緻密性は75%以下と低く、断
面SEM−EDXによれば、結晶粒間には非超電導相が
存在しており、超電導電流パスを遮断している。
【0046】〔実施例2〕酸化物系超電導膜の溶射粉末
原料として、PbO、BaO、SrO、CaO、CuO
を出発原料とし、それぞれモル比でPb:Ba:Sr:
Ca:Cu=0.7:0.4:1.6:2.0:3.0にな
るように混合し、これにAgOを全体の2wt%になる
ように添加した。これを実施例1と同様に目的の溶射粉
末を得た。
【0047】上記の溶射粉末を用い、実施例1と同様に
Ag基板上に膜厚50μm程度の溶射膜を形成した。次
いで、この溶射膜を840℃,20時間酸化Tl雰囲気
中で熱処理を行った。該溶射膜のICP分析による化学
組成は、Tl:Pb:Ba:Sr:Ca:Cu=0.
5:0.5:0.4:1.6:2.0:3.0であった。
【0048】次に、20t/cm2でプレスし、840
℃,50時間の熱処理を行い、さらに、1.5気圧の酸
化Tl雰囲気中で840℃,70時間の熱処理を行っ
た。
【0049】超電導膜のポール、フィギア測定による配
向性を表1に示す。また、4端子直流法で測定した臨界
電流密度(Jc)を表2に示す。
【0050】また、超電導体の緻密性は90%以上と高
く、断面SEM−EDXによる結晶粒は基板面に平行成
長しており、結晶粒間には非超電導相は認められなかっ
た。
【0051】〔実施例3〕ドクターブレード法により酸
化物系超電導膜を作製するため、Tl23、BaO、S
rO、CaO、CuOを出発原料とし、それぞれモル比
でBa:Sr:Ca:Cu=2.0:1.6:0.4:2.
0:3.0になるように混合し、これにAgOを2wt
%添加し、有機バインダを混合して20分程攪拌し前駆
体を作製した。
【0052】この前駆体をAg基板上に、焼成後の膜厚
が30μm程度となるようドクターブレードを用いて塗
布し。該厚膜を1.1気圧の酸化Tl雰囲気中で810
℃,50時間の熱処理を行った。
【0053】超電導膜のポール、フィギア測定による配
向性を表1に示す。また、4端子直流法で測定した臨界
電流密度(Jc)を表2に示す。
【0054】〔実施例4〕実施例1の溶射粉末を用い、
実施例1と同様にして溶射膜を形成した。該溶射膜のI
CP分析による化学組成は、Tl:Ba:Sr:Ca:
Cu=2.0:1.6:0.4:2.0:3.0であった。
【0055】次に、上記溶射膜を酸素雰囲気1.2気圧
中でレーザ処理を行った。レーザ処理条件は、レーザ
源:Nd−YAGレーザ、出力:100W、レーザ照射
幅:0.2mm×30mm、照射速度:103mm/時で
ある。
【0056】超電導膜のポール、フィギアによる配向性
を表1に示す。また、4端子直流法で測定した臨界電流
密度(Jc)を表2に示す。
【0057】〔比較例2〕溶射粉末原料として、実施例
1と同じ組成の溶射粉末を用い、同様にしてAg基板上
に膜厚50μm程度の溶射膜を形成した。
【0058】該溶射膜のICP分析による化学組成は、
Tl:Ba:Sr:Ca:Cu=2.0:1.6:0.
4:2.0:3.0であった。
【0059】次に、これを酸素雰囲気0.2気圧中でレ
ーザ処理を行った。なお、レーザ処理条件は、実施例4
と同じである。該溶射膜のICP分析による化学組成
は、Tl:Ba:Sr:Ca:Cu=0.1:1.6:
0.4:2.0:3.0であり、超電導特性は示さなかっ
た。
【0060】〔実施例5〕酸化物系超電導膜原料とし
て、Tl23、PbO、BaO、SrO、CaO、Cu
Oを、それぞれモル比でBa:Sr:Ca:Cu=0.
5:0.5:0.4:1.6:2.0:3.0となるように
混合し、これにAgOを2wt%添加し、有機バインダ
を配合して20分程攪拌し前駆体を作製した。
【0061】この前駆体をAg基板上に、焼成後の膜厚
が30μm程度となるようドクターブレードを用いて塗
布した。該膜を1.2気圧の酸化Tl雰囲気中でレーザ
処理を行った。レーザ処理条件は、レーザ源:CO2
ーザ、出力:100W、レーザ照射幅:0.2mm×3
0mm、照射速度:5×102mm/時で行った。
【0062】超電導膜のポール、フィギア測定による配
向性を表1に示す。また、4端子直流法で測定した臨界
電流密度(Jc)を表2に示す。
【0063】上記各実施例で得た超電導膜は優れた超電
導特性を示すことが分かる。
【0064】
【発明の効果】本発明によれば,Tl酸化物超電導体の
結晶粒間における接合部での超電導特性の低下を改善す
ることができる。また、該超電導体は、臨界温度が高
く、大面積にも成膜することができるので、磁気シール
ド、超電導コイル、アンテナ等に応用することができ
る。
【図面の簡単な説明】
【図1】実施例1の超電導膜の磁場と臨界電流密度(J
c)との関係を示すグラフである。
【図2】実施例1の超電導膜表面の結晶粒子のSEM写
真である。
【図3】図2の超電導膜表面の結晶粒子の形成状態を示
す模式図である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA B 9276−4M (72)発明者 赤田 広幸 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 無機基板上に膜厚5μm以上のTl系超
    電導膜を形成した場合に、前記膜は(1)式および
    (2)式で示される配向率(F)値が30%以上である
    ことを特徴とするTl酸化物超電導体。 【数1】 Pi=ΣI(00l)/ΣI(hkl) (1) F=(P0−P00)/(1−P00)×100 (2) 〔但し、I(00l)はX線回折により求めた(00l)面
    の回折強度、I(hkl)はミラー指数h,k,lで表さ
    れた(hkl)面の回折強度、PiはP0またはP0 0で、
    0はX線回折により求めた配向粒子の強度比、P00
    同じく非配向粒子の強度比を示す。〕
  2. 【請求項2】 前記無機基板がAg、Au、Ni基合金
    またはセラミックで構成され、前Tl系超電導膜が(T
    l,Pb,Sr,Ca,Cu,O),(Tl,Ba,C
    a,Cu,O)または(Tl,Ba,Sr,Ca,C
    u,O)で構成される請求項1に記載のTl酸化物超電
    導体。
  3. 【請求項3】 無機基板上に形成した厚さ5μm以上の
    Tl系超電導膜が、酸素またはTl蒸気の1気圧よりも
    高い雰囲気中で熱処理するか、あるいは酸素またはTl
    蒸気の1気圧よりも高い雰囲気中において熱処理と加圧
    による圧密化処理とを1サイクル以上行うことにより、
    (1)式および(2)式で求められる配向率(F)値が
    30%以上となるように上記の処理を行うことを特徴と
    するTl酸化物超電導体の製法。 【数2】 Pi=ΣI(00l)/ΣI(hkl) (1) F=(P0−P00)/(1−P00)×100 (2) 〔但し、I(00l)はX線回折により求めた(00l)面
    の回折強度、I(hkl)はミラー指数h,k,lで表さ
    れた(hkl)面の回折強度、PiはP0またはP0 0で、
    0はX線回折により求めた配向粒子の強度比、P00
    同じく非配向粒子の強度比を示す。〕
  4. 【請求項4】 前記無機基板がAg、Au、Ni基合金
    またはセラミックで構成され、前記Tl系超電導膜が
    (Tl,Pb,Sr,Ca,Cu,O),(Tl,B
    a,Ca,Cu,O)または(Tl,Ba,Sr,C
    a,Cu,O)で構成される請求項3に記載のTl酸化
    物超電導体の製法。
  5. 【請求項5】 前記熱処理がレーザ光または赤外光で前
    記膜の結晶の一部を溶融する請求項3または4に記載の
    Tl酸化物超電導体の製法。
JP5026710A 1993-02-16 1993-02-16 Tl酸化物超電導体の製法 Expired - Fee Related JPH07110767B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5026710A JPH07110767B2 (ja) 1993-02-16 1993-02-16 Tl酸化物超電導体の製法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5026710A JPH07110767B2 (ja) 1993-02-16 1993-02-16 Tl酸化物超電導体の製法

Publications (2)

Publication Number Publication Date
JPH06239614A true JPH06239614A (ja) 1994-08-30
JPH07110767B2 JPH07110767B2 (ja) 1995-11-29

Family

ID=12200926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5026710A Expired - Fee Related JPH07110767B2 (ja) 1993-02-16 1993-02-16 Tl酸化物超電導体の製法

Country Status (1)

Country Link
JP (1) JPH07110767B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699710A2 (en) 1994-09-01 1996-03-06 Bridgestone Corporation Polymeric reticulated structure and method for making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025581A (ja) * 1988-06-24 1990-01-10 Matsushita Electric Ind Co Ltd 超伝導薄膜の製造方法
JPH02188426A (ja) * 1989-01-13 1990-07-24 Sumitomo Metal Ind Ltd 配向度の高い超伝導酸化物薄膜の製造方法
JPH03237094A (ja) * 1989-03-03 1991-10-22 Hitachi Ltd 酸化物高温超電導体、超電導線、それを用いたコイル、およびそれらの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025581A (ja) * 1988-06-24 1990-01-10 Matsushita Electric Ind Co Ltd 超伝導薄膜の製造方法
JPH02188426A (ja) * 1989-01-13 1990-07-24 Sumitomo Metal Ind Ltd 配向度の高い超伝導酸化物薄膜の製造方法
JPH03237094A (ja) * 1989-03-03 1991-10-22 Hitachi Ltd 酸化物高温超電導体、超電導線、それを用いたコイル、およびそれらの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699710A2 (en) 1994-09-01 1996-03-06 Bridgestone Corporation Polymeric reticulated structure and method for making

Also Published As

Publication number Publication date
JPH07110767B2 (ja) 1995-11-29

Similar Documents

Publication Publication Date Title
EP0330305B1 (en) High-temperature oxide superconductor
JP3089294B2 (ja) 超電導テープ材の製造方法
US6605569B2 (en) Mg-doped high-temperature superconductor having low superconducting anisotropy and method for producing the superconductor
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US5149687A (en) Method for making oriented bismuth and thallium superconductors comprising cold pressing at 700 MPa
JPH06239614A (ja) Tl酸化物超電導体とその製法
Tarascon et al. Preparation, structure and properties of the high Tc Bi-based and Y-based cuprates
JPH02167820A (ja) T1系複合酸化物超電導体薄膜の成膜方法
JP2975608B2 (ja) 絶縁性組成物
JP2850310B2 (ja) 超伝導性金属酸化物組成物及びその製造方法
US5079217A (en) Process for preparing homogenous superconductors by heating in a nitrogen dioxide containing atmosphere
US5378682A (en) Dense superconducting bodies with preferred orientation
Tachikawa et al. Structure and superconducting properties of oriented Bi-2212 oxide layer synthesized by a diffusion process
Zhu et al. Preparation of superconducting films of Bi Sr Ca Cu Oxides by in-situ melting. II
JP2803819B2 (ja) 酸化物超電導体の製造方法
JP2817170B2 (ja) 超電導材料の製造方法
JPH07206437A (ja) 超電導体およびその製造方法
EP0445138B1 (en) Process for preparing homogeneous high temperature superconductors
JP2971504B2 (ja) Bi基酸化物超電導体の製造方法
EP0489087A4 (en) Superconducting metal oxide compositions and processes for manufacture and use
Tsudo et al. Superconductivity of Bi Pb Sr Ca Cu O Ag systems
JP2698689B2 (ja) 酸化物超伝導材料およびその製造方法
JOINT PUBLICATIONS RESEARCH SERVICE ARLINGTON VA JPRS Report, Science & Technology, Japan, Powder Metallurgy Technology
TANAKA et al. Superconducting ceramics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees