JPH0621011B2 - Method for producing superconducting thin film and transfer material for producing the superconducting thin film - Google Patents

Method for producing superconducting thin film and transfer material for producing the superconducting thin film

Info

Publication number
JPH0621011B2
JPH0621011B2 JP62241766A JP24176687A JPH0621011B2 JP H0621011 B2 JPH0621011 B2 JP H0621011B2 JP 62241766 A JP62241766 A JP 62241766A JP 24176687 A JP24176687 A JP 24176687A JP H0621011 B2 JPH0621011 B2 JP H0621011B2
Authority
JP
Japan
Prior art keywords
superconducting
thin film
transfer layer
desired shape
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62241766A
Other languages
Japanese (ja)
Other versions
JPS6483654A (en
Inventor
滋夫 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reiko Co Ltd
Original Assignee
Reiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reiko Co Ltd filed Critical Reiko Co Ltd
Priority to JP62241766A priority Critical patent/JPH0621011B2/en
Publication of JPS6483654A publication Critical patent/JPS6483654A/en
Publication of JPH0621011B2 publication Critical patent/JPH0621011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、超電導性薄膜の製造法及びそれに使用する
超電導性薄膜製造用転写材に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a superconducting thin film and a transfer material for producing the superconducting thin film used therein.

(従来の技術) 従来、焼成によって超電導性となる非超電導性材料粉末
を練ったものをプレス成形して焼成し、所定の超電導性
物体を得る方法が知られている。
(Prior Art) Conventionally, there is known a method of obtaining a predetermined superconducting object by press-molding a material obtained by kneading a powder of a non-superconducting material which becomes superconducting by firing and firing it.

(発明が解決しようとする課題) しかし、従来の方法では、立体的な所望形状の超電導性
物体を得ることは出来たが、特に、焼成によって超電導
性となる非超電導性材料粉末がメタリック系材料でなく
セラミックス系材料であるときは、非超電導性材料粉末
の練り、プレス成形、焼成等の加工作業上困難な点が多
いことから、平面的な所望形状の超電導性物体、すなわ
ち、点、線、面又はシート等の所望形状の超電導性薄膜
を得ることは容易でなかった。
(Problems to be Solved by the Invention) However, in the conventional method, although a superconducting object having a desired three-dimensional shape could be obtained, in particular, a non-superconducting material powder which becomes superconducting by firing is a metallic material. However, when it is a ceramics-based material, there are many difficult points in processing work such as kneading, press molding, and firing of non-superconducting material powder. It was not easy to obtain a superconducting thin film having a desired shape such as a sheet, a surface or a sheet.

この発明は上記の欠点を除去し、点、線、面又はシート
等の所望形状の超電導性薄膜を極めて容易に得ることが
できる超電導性薄膜の製造法及びそれに使用する超電導
性薄膜製造用転写材を提供するものである。
The present invention eliminates the above-mentioned drawbacks and makes it possible to obtain a superconducting thin film having a desired shape such as a point, a line, a surface or a sheet very easily, and a method for producing a superconducting thin film, and a transfer material for producing the superconducting thin film. Is provided.

(問題点を解決するための手段) この発明は、焼成によって超電導性となる非超電導性材
料粉末を焼成によって分解消失する樹脂中に混入した塗
料をコートして、基材片面の全面に非超電導性転写層を
形成してなる超電導性薄膜製造用転写材を、非超電導性
転写層側が基板と接するように基板上に載置して、基材
側から金型等の所望形状の型で加熱加圧し、その後基材
を剥離して基板上に非超電導性転写層を前記型に対応し
た所望形状に転写し、さらにその後該所望形状の非超電
導性転写層を酸化雰囲気中で焼成することを特徴とする
超電導性薄膜の製造法である。
(Means for Solving Problems) The present invention is to coat a non-superconducting material mixed on a resin that decomposes and disappears non-superconducting material powder, which becomes superconducting by firing, with non-superconducting material on one surface of a substrate. The transfer material for forming a superconducting thin film, which has a conductive transfer layer, is placed on the substrate so that the non-superconducting transfer layer side is in contact with the substrate, and heated from the base material side with a mold of a desired shape such as a mold. Pressing, then peeling off the base material to transfer the non-superconducting transfer layer onto the substrate into a desired shape corresponding to the mold, and then firing the non-superconducting transfer layer having the desired shape in an oxidizing atmosphere. It is a method for producing a characteristic superconducting thin film.

また、この発明は、焼成によって超電導性となる非党電
導性材料粉末を焼成によって分解消失する樹脂中に混入
した塗料をコートして、基材片面の全面に非超電導性転
写層を形成してなることを特徴とする超電導性薄膜製造
用転写材である。
Further, according to the present invention, the non-superconducting transfer layer is formed on the entire surface of one side of the base material by coating the coating material mixed in the resin that decomposes and disappears the non-party conductive material powder that becomes superconducting by firing. Is a transfer material for producing a superconducting thin film.

焼成によって超電導性となる非超電導性材料粉末は、例
えば、Y−Ba−Cu−O系、La−Ba−Cu−O
系、La−Sr−Cu−O系、Ho−Ba−Cu−O系
等のセラミックス系の焼成によって超電導性となる非超
電導性材料粉末又はメタリック系の焼成によって超電導
性となる非超電導性材料粉末等、種々のものが使用出来
る。
The non-superconducting material powder which becomes superconducting by firing is, for example, Y-Ba-Cu-O system or La-Ba-Cu-O.
-Based, La-Sr-Cu-O-based, Ho-Ba-Cu-O-based, or other ceramic-based non-superconducting material powder that becomes superconducting by firing, or metallic-based non-superconducting material powder that becomes superconducting by firing Etc., various things can be used.

焼成によって超電導性となる非超電導性材料粉末は、そ
れが微細なほど、より緻密でより均一な超電導性薄膜
が、点、線、面又はシート等の所望形状で得られるの
で、できるだけ微細なものが好ましい。
The non-superconducting material powder that becomes superconducting by firing is as fine as possible because the finer the powder, the more dense and more uniform the superconducting thin film can be obtained in the desired shape such as dots, lines, planes or sheets. Is preferred.

焼成によって超電導性となる非超電導性材料粉末は、焼
成後に所定の組成になり超電導性となる材料の粉末であ
る。
The non-superconducting material powder which becomes superconducting by firing is a powder of a material which becomes superconducting by having a predetermined composition after firing.

焼成によって超電導性となる非超電導性材料粉末を混入
するところの、焼成によって分解消失する樹脂は、焼成
時に分解して無くなってしまう樹脂である。
The resin that decomposes and disappears by firing, in which the non-superconducting material powder that becomes superconducting by firing is mixed, is a resin that decomposes and disappears during firing.

焼成によって分解消失する樹脂は、具体的には、焼成の
条件等により選ばれるが、例えば、ブチラール樹脂系の
樹脂が挙げられる。
The resin that decomposes and disappears by firing is specifically selected depending on the firing conditions and the like, and examples thereof include butyral resin resins.

焼成によって超電導性となる非超電導性材料粉末を焼成
によって分解消失する樹脂中に混入して塗料とするに
は、焼成によって分解消失する樹脂中に焼成によって超
電導性となる非超電導性材料粉末を主成分として配合、
混練して塗料化する。
To mix the non-superconducting material powder that becomes superconducting by firing into the resin that decomposes and disappears by baking to form a paint, the non-superconducting material powder that becomes superconducting by baking in the resin that decomposes and disappears by baking Blended as an ingredient,
Knead into paint.

焼成によって超電導性となる非超電導性材料粉末を主成
分として配合、混練して塗料化する場合、使用する焼成
によって超電導性となる非超電導性材料粉末は、一種類
でもよく、また、二種類以上でもよい。
When a non-superconducting material powder that becomes superconducting by firing is blended as a main component and kneaded into a paint, the non-superconducting material powder that becomes superconducting by firing used may be one type, or two or more types. But it's okay.

焼成によって超電導性となる非超電導性材料粉末を焼成
によって分解消失する樹脂中に混入した塗料は、基材片
面の全面にコートして非超電導性転写層を形成し、超電
導性薄膜製造用転写材を得る。
A coating material mixed with a resin that decomposes and disappears non-superconducting material powder that becomes superconducting by firing, and forms a non-superconducting transfer layer by coating the entire surface of one side of the base material. To get

基材としては、プラスチックフイルム等が使用できる。As the base material, a plastic film or the like can be used.

基材が剥離性を有しているときはそのまま使用でき、ま
た、必要により表面に剥離層を形成したものを基材とし
て使用することも出来る。
When the substrate has releasability, it can be used as it is, and if necessary, a substrate having a release layer formed on the surface can be used as the substrate.

非超電導性転写層の厚さは特に問わず、具体的には、使
用する焼成によって超電導性となる非超電導性材料粉末
の種類、その使用量、粉末の大きさ、用途等による異な
る。
The thickness of the non-superconducting transfer layer is not particularly limited, and specifically, it varies depending on the kind of the non-superconducting material powder that becomes superconducting by firing used, the amount used, the size of the powder, the application, and the like.

非超電導性転写層の焼成によって超電導性となる非超電
導性材料粉末は、焼成により非超電導性材料粉末が反応
し融合しあい電気的導通になるものである。
The non-superconducting material powder, which becomes superconducting by firing the non-superconducting transfer layer, is a material which reacts and fuses with the non-superconducting material powder by firing to be electrically conductive.

超電導性薄膜製造用転写材は、非超電導性転写層側が基
板と接するように基板上に載置して、基材側から金型等
の所望形状の型で加熱加圧する。
The transfer material for producing a superconducting thin film is placed on the substrate such that the non-superconducting transfer layer side is in contact with the substrate, and is heated and pressed from the base material side with a die having a desired shape such as a die.

金型等の所望形状の型は、点、線、面又はシート等の所
望形状の型を使用する。
As a mold having a desired shape such as a mold, a mold having a desired shape such as a dot, a line, a surface or a sheet is used.

超電導性薄膜製造用転写材を載置する基板の表面は、平
面、曲面のいずれでもよい。
The surface of the substrate on which the transfer material for superconducting thin film production is placed may be a flat surface or a curved surface.

基板は、非超電導性転写層の焼成後に得られる超電導性
薄膜と一体としてそのまま残存させたい場合は、約10
00℃の焼成に耐える耐熱性の基板であることを要し、
これには、例えば、アルミナ、シリカ、ジルコニア等の
酸化物、窒化物、ホウ化物等のセラミックス系のものが
挙げられる。
When it is desired to leave the substrate as it is as a unit with the superconducting thin film obtained after firing the non-superconducting transfer layer, about 10
It needs to be a heat resistant substrate that can withstand firing at 00 ° C.
Examples thereof include ceramics such as oxides such as alumina, silica and zirconia, nitrides and borides.

また、基板は、非超電導性転写層の焼成後に得られる超
電導性薄膜と一体としてそのまま残存させる必要がない
場合は、例えば、適宜のプラスチックフイルム等のよう
に、焼成時に分解消失するものでもよく、基板としてこ
のようなものを使用したときは、焼成後には基板のない
超電導性薄膜のみが得られるものである。
Further, the substrate, if it is not necessary to remain as it is as a unit with the superconducting thin film obtained after firing of the non-superconducting transfer layer, for example, an appropriate plastic film or the like may be one that decomposes and disappears during firing, When such a material is used as the substrate, only a superconducting thin film having no substrate can be obtained after firing.

なお、後に説明するように、非超電導性転写層の焼成
は、所望形状の非超電導性転写層とこれを転写した基板
とを一体のままで焼成してもよく、また、所望形状の非
超電導性転写層をこれを転写した基板から剥離して、該
非超電導性転写層のみを焼成してもよいから、後者の場
合は、基板は、超電導性薄膜製造用転写材の基材側から
金型等の所望形状の型で加熱加圧する際の熱に耐えるも
のでありさえすればよい。
As will be described later, in baking the non-superconducting transfer layer, the non-superconducting transfer layer having a desired shape and the substrate on which the transfer is performed may be baked as they are, or the non-superconducting transfer layer having a desired shape may be baked. Since the non-superconducting transfer layer may be baked by peeling the conductive transfer layer from the transferred substrate, in the latter case, the substrate is a mold from the base material side of the transfer material for superconducting thin film production. It suffices as long as it can withstand the heat of heating and pressing with a mold having a desired shape such as.

超電導性薄膜製造用転写材を、非超電導性転写層側が基
板と接するように基板上に載置して、基材側から金型等
の所望形状の型で加熱加圧した後には、超電導性薄膜製
造用転写材の基材を剥離して、基板上に非超電導性転写
層を型に対応した所望形状に転写する。
After placing the transfer material for superconducting thin film production on the substrate so that the non-superconducting transfer layer side is in contact with the substrate and heating and pressurizing from the base material side with a mold of a desired shape such as a die, The base material of the transfer material for thin film production is peeled off, and the non-superconducting transfer layer is transferred onto the substrate into a desired shape corresponding to the mold.

基板上への型に対応した所望形状の非超電導性転写層の
転写は、一回の転写でもよいが、所望形状の非超電導性
転写層を一回転写した上にさらに所望形状の非超電導性
転写層を転写して非超電導性転写層を重ね合わせて、複
数回の転写で所望形状の非超電導性転写層を複数積層す
る転写としてもよく、このような複数回の転写とした場
合は、一回の転写の場合よりもさらに緻密で均一な超電
導性薄膜が得られるものである。
The transfer of the desired shape of the non-superconducting transfer layer corresponding to the mold onto the substrate may be performed once, but the desired shape of the non-superconducting transfer layer is transferred once and then the desired shape of the non-superconducting transfer layer is further transferred. The transfer layer may be transferred to overlap the non-superconducting transfer layers, and the transfer may be performed by stacking a plurality of non-superconducting transfer layers having a desired shape by a plurality of transfers, and in the case of such a plurality of transfers, It is possible to obtain a more dense and uniform superconducting thin film than in the case of one-time transfer.

転写後には、所望形状の非超電導性転写層を酸化雰囲気
中で焼成する。
After the transfer, the non-superconducting transfer layer having a desired shape is fired in an oxidizing atmosphere.

焼成は、酸化雰囲気中すなわち酸素中又は空気中で約1
000℃で焼成する。この場合、非超電導性転写層中の
樹脂の熱による分解消失をスムースにすすめる必要があ
る。
Firing is performed in an oxidizing atmosphere, that is, in oxygen or air in about 1
Bake at 000 ° C. In this case, it is necessary to smoothly promote the decomposition and disappearance of the resin in the non-superconducting transfer layer due to heat.

焼成は、所望形状の非超電導性転写層とこれを転写した
基板とを一体のままで焼成してもよく、また、所望形状
の非超電導性転写層をこれを転写した基板から剥離し
て、該非超電導性転写層のみを焼成してもよい。
The firing may be performed by firing the non-superconducting transfer layer having a desired shape and the substrate on which it is transferred as it is, or by peeling the non-superconducting transfer layer having a desired shape from the substrate on which it is transferred, Only the non-superconducting transfer layer may be baked.

焼成により、所望形状の非超電導性転写層は、超電導性
薄膜となる。すなわち、焼成により、点、線、面又はシ
ート等の所望形状の超電導性薄膜を得ることができる。
By firing, the non-superconducting transfer layer having a desired shape becomes a superconducting thin film. That is, by firing, a superconducting thin film having a desired shape such as dots, lines, planes or sheets can be obtained.

焼成後は、所望形状の非超電導性転写層とこれを積層し
た基板とを一体のままで焼成して基板が残存している場
合は、超電導性薄膜と基板とを一体としてそのまま使用
してもよく、必要によっては超電導性薄膜を基板から剥
離して超電導性薄膜のみを使用してもよい。
After firing, the non-superconducting transfer layer having a desired shape and the substrate on which the layer is laminated are fired as they are, and when the substrate remains, the superconducting thin film and the substrate can be used as they are as a unit. Of course, if necessary, the superconducting thin film may be peeled from the substrate and only the superconducting thin film may be used.

また、所望形状の非超電導性転写層のみを焼成した場合
又は焼成時に基板が分解消失して所望形状の超電導性薄
膜のみが得られた場合は、所望形状の超電導性薄膜はそ
のまま使用できる。
Further, when only the non-superconducting transfer layer having a desired shape is fired or when the substrate is decomposed and disappeared during firing to obtain only the superconducting thin film having the desired shape, the superconducting thin film having the desired shape can be used as it is.

(実施例) 実施例1 (1)下記の三成分からなるセラミックス系の焼成によ
って超電導性となる非超電導性材料粉末(酸化物系超電
導性材料粉末)を乳鉢で充分に撹拌、混合した。
(Example) Example 1 (1) Non-superconducting material powder (oxide type superconducting material powder) which becomes superconducting by firing of a ceramics-based material composed of the following three components was sufficiently stirred and mixed in a mortar.

酸化イットリウムY粉末約112.9g 炭酸バリウム BaCo粉末約394.7g 酸化第二銅 CuO 粉末約238.6g 次に、それらセラミックス系の焼成によって超電導性と
なる非超電導性材料粉末を、焼成によって分解消失する
ブチラール樹脂系の樹脂の中に1700PHR配合し
て、ボールミルで一昼夜混練し、セラミックス系の焼成
によって超電導性となる非超電導性材料粉末を焼成によ
って分解消失する樹脂中に混入した塗料を作製した。
Yttrium oxide Y 2 O 3 powder about 112.9 g Barium carbonate BaCo 3 powder about 394.7 g Cupric oxide CuO powder about 238.6 g Next, a non-superconducting material powder that becomes superconducting by firing of these ceramics is A paint in which 1700 PHR is blended into a butyral resin-based resin that decomposes and disappears by firing, kneaded for one day in a ball mill, and non-superconducting material powder that becomes superconducting by firing of a ceramics is mixed in the resin that decomposes and disappears by firing. Was produced.

この作製した塗料を、基材である厚さ25μmのポリエ
ステルフイルムの片面の全面に、バーコーターでコート
して21μmの厚さの非超電導性転写層を形成し、超電
導性薄膜製造用転写材を得た。
The prepared coating material is coated on a single surface of a polyester film having a thickness of 25 μm with a bar coater to form a non-superconducting transfer layer having a thickness of 21 μm. Obtained.

次いで、純度98%のアルミナグリーンシート(125
μmIC基板用)からなる耐熱性の基板の上に、非超電
導性転写層側がアルミナグリーンシートと接するように
超電導性薄膜製造用転写材を載置し、ポリエステルフイ
ルム側から所望形状の金型で加熱加圧し、その後ポリエ
ステルフイルムを剥離して、アルミナグリーンシート上
に3.5mm線幅の配線回路の非超電導性転写層を転写
した。
Next, an alumina green sheet with a purity of 98% (125
On the heat resistant substrate (for μm IC substrate), place the transfer material for superconducting thin film production so that the non-superconducting transfer layer side is in contact with the alumina green sheet, and heat it with a die of the desired shape from the polyester film side. After pressurizing, the polyester film was peeled off, and the non-superconducting transfer layer of the wiring circuit having a line width of 3.5 mm was transferred onto the alumina green sheet.

(2)次に、3.5mm線幅の配線回路の非超電導性転
写層をアルミナグリーンシートと一体のままで、実験室
の焼成炉中で920℃×5時間焼成し、その後200℃
まで徐々に冷却して、配線回路の超電導性薄膜を得た。
(2) Next, the non-superconducting transfer layer of the wiring circuit having a line width of 3.5 mm is baked together with the alumina green sheet in a laboratory baking furnace at 920 ° C. for 5 hours, and then at 200 ° C.
It was gradually cooled to a superconducting thin film of a wiring circuit.

得られた配線回路の超電導性薄膜は線幅2.8mm厚さ
15μmで、アルミナグリーシートにしっかりと密着し
ていた。
The superconducting thin film of the obtained wiring circuit had a line width of 2.8 mm and a thickness of 15 μm and was firmly adhered to the alumina green sheet.

(3)得られた配線回路の超電導性薄膜は、X線回析で
YBaCu7-8のヘロブスカイト構造であること
が確認できた。
(3) It was confirmed by X-ray diffraction that the superconducting thin film of the obtained wiring circuit had a YBa 2 Cu 3 O 7-8 herovskite structure.

電気抵抗は、室温測定では数Ω〜数十Ωであったが、液
体窒素温度での4端子法測定では電気抵抗は感じなく、
充分な超電導性を示していた。
The electric resistance was several Ω to several tens Ω in room temperature measurement, but no electric resistance was felt in the four-terminal method measurement at liquid nitrogen temperature,
It showed sufficient superconductivity.

マイスナー効果については、アルミナグリーンシートの
重量が大であることから、直接磁界中浮き上がり等は確
認しがたかった。
As for the Meissner effect, it was difficult to confirm the floating directly in the magnetic field due to the large weight of the alumina green sheet.

実施例2 (1)実施例1と同様の超電導性薄膜製造用転写材を使
用し、これの非超電導性転写層を、基板であるシリコン
樹脂を塗布したポリエステルフイルムに、実施例1と同
様にして転写し、その後、該転写した非超電導性転写層
をシリコン樹脂を塗布したポリエステルフイルムからゆ
るやかに剥離して、単独のすなわち基板のない3.5m
m線幅のフラットな線状の非超電導性転写層を得た。
Example 2 (1) The same transfer material for producing a superconducting thin film as in Example 1 was used, and the non-superconducting transfer layer was formed on a polyester film coated with a silicon resin as a substrate in the same manner as in Example 1. Transfer, and then the transferred non-superconducting transfer layer is gently peeled off from the polyester film coated with silicon resin to obtain a single 3.5 m film without a substrate.
A flat linear non-superconducting transfer layer having an m line width was obtained.

(2)次に、基板のない3.5mm線幅のフラットな線
状の非超電導性転写層を、実施例1と同様にして焼成、
冷却して、線状の超電導性薄膜を得た。
(2) Next, a flat linear non-superconducting transfer layer having a substrate-free 3.5 mm line width is fired in the same manner as in Example 1,
After cooling, a linear superconducting thin film was obtained.

得られた線状の超電導性薄膜は線幅3.0mm厚さ16
μmの線状で、少しカールしていた。
The obtained linear superconducting thin film has a line width of 3.0 mm and a thickness of 16
It had a linear shape of μm and was slightly curled.

(3)得られた線状の超電導性薄膜は、X線回析でYB
Cu7-8のヘロブスカイト構造であることが確
認できた。
(3) The obtained linear superconducting thin film was analyzed by X-ray diffraction to obtain YB.
It was confirmed that the structure was a herbskite structure of a 2 Cu 3 O 7-8 .

電気抵抗は、室温測定では数Ω〜数十Ωであったが、液
体窒素温度での4端子法測定では電気抵抗は感じなく、
充分な超電導性を示していた。
The electric resistance was several Ω to several tens Ω in room temperature measurement, but no electric resistance was felt in the four-terminal method measurement at liquid nitrogen temperature,
It showed sufficient superconductivity.

マイスナー効果については、液体窒素温度中で永久磁石
より軽く浮き上がり、このマイスナー効果から超電導性
であることが確認出来た。
Regarding the Meissner effect, it floated lighter than the permanent magnet at liquid nitrogen temperature, and it was confirmed from this Meissner effect that it was superconducting.

実施例3 (1)実施例2における転写を3回繰り返して行ない、
非超電導性転写層を三層に積層した非超電導性転写層と
して他は実施例2と同様にして、三層に積層した基板の
ない3.5mm線幅のフラットな線状の非超電導性転写
層を得た。
Example 3 (1) The transfer in Example 2 was repeated three times,
A non-superconducting transfer layer in which three layers of non-superconducting transfer layers are laminated is the same as in Example 2, and a flat linear non-superconducting transfer of 3.5 mm line width without a substrate in which three layers are laminated is performed. Layers were obtained.

(2)次に、三層に積層した基板のない3.5mm線幅
のフラットな線状の非超電導性転写層を、実施例1と同
様にして焼成、冷却して、線状の超電導性薄膜を得た。
(2) Next, a flat linear non-superconducting transfer layer having a line width of 3.5 mm and having no substrate laminated in three layers is baked and cooled in the same manner as in Example 1 to obtain linear superconductivity. A thin film was obtained.

得られた線状の超電導性薄膜は線幅3.0mm厚さ45
μmの線状で、少しカールしていた。
The resulting linear superconducting thin film has a line width of 3.0 mm and a thickness of 45.
It had a linear shape of μm and was slightly curled.

(3)得られた線状の超電導性薄膜は、X線回析でYB
Cu7-8のヘロブスカイト構造であることを確
認できた。
(3) The obtained linear superconducting thin film was analyzed by X-ray diffraction to obtain YB.
It was confirmed that the structure was a perovskite structure of a 2 Cu 3 O 7-8 .

電気抵抗は、室温測定では数Ω〜数十Ωであったが、液
体窒素温度での4端子法測定では電気抵抗は感じなく、
充分な超電導性を示していた。
The electric resistance was several Ω to several tens Ω in room temperature measurement, but no electric resistance was felt in the four-terminal method measurement at liquid nitrogen temperature,
It showed sufficient superconductivity.

マイスナー効果については、液体窒素温度中で永久磁石
より軽く浮き上がり、このマイスナー効果から超電導性
であることが確認出来た。
Regarding the Meissner effect, it floated lighter than the permanent magnet at liquid nitrogen temperature, and it was confirmed from this Meissner effect that it was superconducting.

(発明の効果) この発明は効果を有している。(Effects of the Invention) The present invention has effects.

(1)非超電導性転写層を基板上に、使用する型の形状
に対応した所望形状に転写し、その後該所望形状の非超
電導性転写層を酸化雰囲気中で焼成するものであるか
ら、平面的な所望形状の超電導性物体、すなわち、点、
線、面又はシート等の所望形状の超電導性薄膜を極めて
容易に得ることができる。
(1) A non-superconducting transfer layer is transferred onto a substrate into a desired shape corresponding to the shape of a mold to be used, and then the non-superconducting transfer layer having the desired shape is baked in an oxidizing atmosphere. A desired shape of superconducting object, that is, a point,
A superconducting thin film having a desired shape such as a line, a surface or a sheet can be obtained very easily.

(2)非超電導性転写層を使用する型の形状に対応した
所望形状に転写した後に焼成して超電導性薄膜を得るも
のであるから、所望形状の超電導性薄膜の製造と成形加
工とを同時に行なうことができ、そのため、超電導性薄
膜の製造及び成形加工の効率が非常によい。
(2) Since the non-superconducting transfer layer is transferred to a desired shape corresponding to the shape of the mold and then baked to obtain a superconducting thin film, the superconducting thin film having the desired shape can be manufactured and molded at the same time. It can be carried out, so that the manufacturing and forming process of the superconducting thin film is very efficient.

(3)非超電導性転写層を転写するものであるから、そ
の転写時の所望形状の型による加熱加圧により、非超電
導性転写層と基板との密着が非常に強固になる。
(3) Since the non-superconducting transfer layer is transferred, the non-superconducting transfer layer and the substrate are strongly adhered to each other by heating and pressing with a mold having a desired shape during the transfer.

(4)非超電導性転写層は焼成によって超電導性となる
非超電導性材料粉末を使用して形成するとともに、これ
の転写時には所望形状の型により加熱加圧されるので、
焼成後に得られる超電導性薄膜は非常に緻密で均一な構
造となり、超電導性薄膜の緻密性、均一性が非常に優れ
ている。
(4) The non-superconducting transfer layer is formed by using a non-superconducting material powder that becomes superconducting by firing, and is heated and pressed by a mold having a desired shape during the transfer,
The superconducting thin film obtained after firing has a very dense and uniform structure, and the superconducting thin film is very excellent in denseness and uniformity.

(5)得られる超電導性薄膜は、緻密性、均一性が非常
に優れているから、超電導性は安定であり、電気抵抗ゼ
ロや反磁性のマイスナー効果も容易に確認でき、また、
超電導性薄膜としての再現性も充分で、安定しつ再現出
来る。
(5) The obtained superconducting thin film has very excellent compactness and uniformity, so that the superconducting property is stable, zero electric resistance and diamagnetic Meissner effect can be easily confirmed.
It has sufficient reproducibility as a superconducting thin film and can be stably reproduced.

すなわち、この発明で得られる超電導性薄膜は、緻密
性、均一性、安定性、再現性が非常に優れていて、それ
らを併有しているものである。
That is, the superconducting thin film obtained by the present invention is very excellent in denseness, uniformity, stability and reproducibility, and has both of them.

(6)非超電導性転写層の転写は、基板の平面のみなら
ず曲面にもでき、また、適宜必要な部分や箇所にできる
から、非常に広範囲に超電導性薄膜が応用できる。
(6) The transfer of the non-superconducting transfer layer can be performed not only on the flat surface of the substrate but also on the curved surface, and can be applied to a necessary part or place as appropriate, so that the superconducting thin film can be applied to a very wide range.

(7)非超電導性転写層の厚さを自由にコントロール出
来るので、超電導性薄膜の応用開発や設計の自由度が高
い。
(7) Since the thickness of the non-superconducting transfer layer can be freely controlled, the degree of freedom in application development and design of the superconducting thin film is high.

(8)基板上への型に対応した所望形状の非超電導性転
写層の転写を、複数回の転写で所望形状の非超電導性転
写層を複数積層する転写とした場合は、一回の転写の場
合よりもさらに緻密で均一な超電導性薄膜が得られるの
で、緻密性、均一性、安定性、再現性が一回の転写の場
合よりもさらに優れた超電導性薄膜が得られる。
(8) When the transfer of the non-superconducting transfer layer having a desired shape corresponding to the mold on the substrate is a transfer in which a plurality of non-superconducting transfer layers having a desired shape are laminated by a plurality of transfers, one transfer is performed. Since a denser and more uniform superconducting thin film can be obtained than in the case of (1), a superconducting thin film which is more excellent in denseness, uniformity, stability and reproducibility than in the case of one-time transfer can be obtained.

(9)基板を選択することによって、焼成後には、単に
基板と一体の超電導性薄膜が得られるのみならず、焼成
後に超電導性薄膜を基板から剥離することもでき、ま
た、基板の材質によっては焼成時に基板を熱により分解
消失させて、基板のない超電導性薄膜のみからなる、
点、線、面又はシート等が得られる。
(9) By selecting the substrate, not only the superconducting thin film integrated with the substrate can be obtained after firing, but also the superconducting thin film can be peeled from the substrate after firing, and depending on the material of the substrate. The substrate is decomposed and disappeared by heat during firing, and consists of only superconducting thin film without substrate.
Points, lines, planes or sheets etc. are obtained.

(10)非超電導性転写層を基板から剥離して所望形状の
非超電導性転写層のみを焼成する場合は、基板のない超
電導性薄膜のみからなる、点、線、面又はシート等が得
られる。
(10) When the non-superconducting transfer layer is peeled off from the substrate and only the non-superconducting transfer layer having a desired shape is baked, a point, a line, a surface, a sheet, etc., which is made of only the superconducting thin film without the substrate, can be obtained. .

(11)この発明で得られる超電導性薄膜は、緻密性、均
一性、安定性、再現性が非常に優れているから、その応
用分野は広がり、この発明は、エレクトロニクス、医
療、計測、エネルギー等の多くの分野で使用される各種
の素子や機器の製造、加工に大きく貢献し、それらの応
用面をさらに拡大させることができるものである。
(11) The superconducting thin film obtained by the present invention is extremely excellent in denseness, uniformity, stability, and reproducibility, so that its application field is expanded, and the present invention is applied to electronics, medical treatment, measurement, energy, etc. It greatly contributes to the manufacture and processing of various elements and devices used in many fields, and their applications can be further expanded.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】焼成によって超電導性となる非超電導性材
料粉末を焼成によって分解消失する樹脂中に混入した塗
料をコートして、基材片面の全面に非超電導性転写層を
形成してなる超電導性薄膜製造用転写材を、非超電導性
転写層側が基板と接するように基板上に載置して、基材
側から金型等の所望形状の型で加熱加圧し、その後基材
を剥離して基板上に非超電導性転写層を前記型に対応し
た所望形状に転写し、さらにその後該所望形状の非超電
導性転写層を酸化雰囲気中で焼成することを特徴とする
超電導性薄膜の製造法。
1. A superconducting material in which a non-superconducting transfer layer is formed on the entire surface of one side of a base material by coating a coating material mixed with a resin which decomposes and disappears by firing the non-superconducting material powder which becomes superconducting by firing. The transfer material for producing a conductive thin film is placed on the substrate so that the non-superconducting transfer layer side is in contact with the substrate, heated and pressed from the base material side with a mold having a desired shape such as a mold, and then the base material is peeled off. Method for producing a superconducting thin film, characterized in that a non-superconducting transfer layer is transferred onto a substrate into a desired shape corresponding to the mold, and then the non-superconducting transfer layer having the desired shape is baked in an oxidizing atmosphere. .
【請求項2】基板上への型に対応した所望形状の非超電
導性転写層の転写が、複数回の転写で所望形状の非超電
導性転写層を複数積層する転写である請求項1記載の超
電導性薄膜の製造法。
2. The transfer of a non-superconducting transfer layer having a desired shape corresponding to a mold onto a substrate is a transfer in which a plurality of non-superconducting transfer layers having a desired shape are laminated by a plurality of transfers. Manufacturing method of superconducting thin film.
【請求項3】所望形状の非超電導性転写層の焼成が、所
望形状の非超電導性転写層とこれを転写した基板とを一
体のままで焼成するものである請求項1又は2記載の超
電導性薄膜の製造法。
3. The superconducting material according to claim 1, wherein the non-superconducting transfer layer having a desired shape is baked by integrally firing the non-superconducting transfer layer having a desired shape and the substrate onto which the transfer is made. Of thin film.
【請求項4】所望形状の非超電導性転写層の焼成が、所
望形状の非超電導性転写層をこれを転写した基板から剥
離して該非超電導性転写層のみを焼成するものである請
求項1又は2記載の超電導性薄膜の製造法。
4. The non-superconducting transfer layer having a desired shape is baked by peeling the non-superconducting transfer layer having a desired shape from the substrate onto which the non-superconducting transfer layer is transferred and baking only the non-superconducting transfer layer. Or the method for producing a superconducting thin film according to 2.
【請求項5】焼成によって超電導性となる非超電導性材
料粉末を焼成によって分解消失する樹脂中に混入した塗
料をコートして、基材片面の全面に非超電導性転写層を
形成してなることを特徴とする超電導性薄膜製造用転写
材。
5. A non-superconducting transfer layer is formed on the entire surface of one side of a base material by coating a coating material mixed with a resin which decomposes and disappears by firing the non-superconducting material powder which becomes superconducting by firing. A transfer material for producing a superconducting thin film, characterized by:
JP62241766A 1987-09-26 1987-09-26 Method for producing superconducting thin film and transfer material for producing the superconducting thin film Expired - Lifetime JPH0621011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62241766A JPH0621011B2 (en) 1987-09-26 1987-09-26 Method for producing superconducting thin film and transfer material for producing the superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62241766A JPH0621011B2 (en) 1987-09-26 1987-09-26 Method for producing superconducting thin film and transfer material for producing the superconducting thin film

Publications (2)

Publication Number Publication Date
JPS6483654A JPS6483654A (en) 1989-03-29
JPH0621011B2 true JPH0621011B2 (en) 1994-03-23

Family

ID=17079209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62241766A Expired - Lifetime JPH0621011B2 (en) 1987-09-26 1987-09-26 Method for producing superconducting thin film and transfer material for producing the superconducting thin film

Country Status (1)

Country Link
JP (1) JPH0621011B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269913A (en) * 1990-03-16 1991-12-02 Reiko Co Ltd Superconducting wire rod and manufacture thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106184A (en) * 1982-12-10 1984-06-19 三菱電機株式会社 Method of forming patter layer of electronic circuit board
JPS6156489A (en) * 1984-08-28 1986-03-22 東洋紡績株式会社 Method of producing thick film conductor circuit
JPS6225493A (en) * 1985-07-26 1987-02-03 古河電気工業株式会社 Manufacture of rotary pattern transfer film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
・昭和62年6月10日発行、日本経済新聞、「超電導薄膜」に関する記事・昭和62年4月22日発行、日本経済新聞、「超電導材利用のプリント基板開発」に関する記事・昭和62年8月12日発行、日刊工業新聞「超電導薄膜技術」に関する記事・昭和62年4月24日発行、日刊工業新聞、「超電導薄膜」に関する記事

Also Published As

Publication number Publication date
JPS6483654A (en) 1989-03-29

Similar Documents

Publication Publication Date Title
JPH0621011B2 (en) Method for producing superconducting thin film and transfer material for producing the superconducting thin film
JPH01131025A (en) Production of oxide based superconducting material
JP2737187B2 (en) Processing method of ceramics
JPS63271815A (en) Superconductive composite ceramic body and its manufacture
JP2523687B2 (en) Method of forming superconducting film pattern
JPH01109611A (en) Manufacture of superconductive material in pyrolysis method
JP2573256B2 (en) Manufacturing method of superconductor member
JP2757869B2 (en) Manufacturing method of superconducting ceramics
JPS6385056A (en) Manufacture of aluminum nitride base substrate
JPS63190133A (en) Aluminum nitride sintered compact and its production
JP2003069217A (en) Method for manufacturing circuit board
JPH01203258A (en) Production of oxide superconducting sintered body
EP0844677B1 (en) A novel ceramic substrate for bi-cuprate superconductors and a process for preparing the same
JPH02141460A (en) Production of thick film of oxide superconductor
JPH01100066A (en) Production of aluminum nitride sintered compact
JPH01126208A (en) Production of superconducting thin film
JPH02122596A (en) Superconductive printed circuit board and manufacture thereof
JP3448597B2 (en) Bismuth-based oxide superconducting composite and method for producing the same
JPH02143575A (en) Manufacture of tl superconductor wiring pattern
JPH01176268A (en) Production of high-temperature superconductor
JPH054803A (en) Production of oxide superconductive structure
JPH01108172A (en) Production of superconducting material
JPS63267508A (en) Manufacture of superconductor of oxide
JPS63310197A (en) Forming method for superconducting wiring pattern
JPS63279529A (en) Manufacture of superconductor molding