JP2003069217A - Method for manufacturing circuit board - Google Patents

Method for manufacturing circuit board

Info

Publication number
JP2003069217A
JP2003069217A JP2001251973A JP2001251973A JP2003069217A JP 2003069217 A JP2003069217 A JP 2003069217A JP 2001251973 A JP2001251973 A JP 2001251973A JP 2001251973 A JP2001251973 A JP 2001251973A JP 2003069217 A JP2003069217 A JP 2003069217A
Authority
JP
Japan
Prior art keywords
circuit board
roughness
roughness control
manufacturing
control surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001251973A
Other languages
Japanese (ja)
Inventor
Tomohide Hasegawa
智英 長谷川
Akihisa Makino
晃久 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001251973A priority Critical patent/JP2003069217A/en
Publication of JP2003069217A publication Critical patent/JP2003069217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a circuit board capable of simultaneously baking a plurality of moldings while the moldings remain superposed without using a spreading powder between the moldings. SOLUTION: The method for manufacturing the circuit board comprises (a) a step of manufacturing the molding having a roughness control surface controlled to a surface roughness of 2 to 5 μm at least on the surface containing a silicon nitride as a main body, (b) a step of baking the plurality of the moldings obtained in the step (a) in a stacked state so that at least one surface of all the superposed surfaces becomes the roughness control surface, (c) a step of separating the baked laminate obtained in the step (b) into individual sintered materials from the roughness control surface, and (d) a step of forming the conductor layer on the surface including at least the roughness control surface of the respective sintered materials obtained in the step (c).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種絶縁基板材料
や半導体素子収納用パッケージ材料等に好適に用いるこ
とのできる回路基板を低コストで作製するための量産性
に優れた回路基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a circuit board excellent in mass productivity for manufacturing at low cost a circuit board that can be suitably used for various insulating substrate materials and semiconductor element housing package materials. Regarding

【0002】[0002]

【従来技術】近年半導体素子の高集積化に伴い、半導体
装置から発生する熱も増加しており、該半導体装置の誤
動作をなくす為には、このような熱を装置外に速やかに
放出する基板が必要となっている。
2. Description of the Related Art In recent years, the heat generated from a semiconductor device has been increasing with the high integration of semiconductor elements. In order to prevent malfunction of the semiconductor device, a substrate that quickly releases such heat to the outside of the device. Is needed.

【0003】しかしながら、従来から用いられてきた各
種絶縁基板や半導体素子収納用パッケージ等のアルミナ
材料は、熱伝導率が約20W/mKと低い事からそれに
代わるものとして150W/mK以上の高い熱伝導率を
有する窒化アルミニウムが注目され始めた。
However, conventionally used alumina materials for various insulating substrates and packages for accommodating semiconductor elements have a low thermal conductivity of about 20 W / mK, and as a substitute, a high thermal conductivity of 150 W / mK or more. Aluminum nitride with index began to be noticed.

【0004】ところが、窒化アルミニウムは、強度や破
壊靭性値が低く、高応力のかかる部品や高信頼性の要求
される分野には適用できない事が分かってきている。そ
こで高熱伝導率と高強度、高信頼性の要求に応える材料
として、最近、窒化珪素が注目されている。
However, it has been found that aluminum nitride has low strength and fracture toughness value and cannot be applied to parts to which high stress is applied and fields requiring high reliability. Therefore, silicon nitride has recently been attracting attention as a material that meets the requirements for high thermal conductivity, high strength, and high reliability.

【0005】窒化珪素は、構成元素や結晶構造から高熱
伝導性を有すると予測されていたが、最近、ようやく窒
化アルミニウム並みの120W/mKの熱伝導率を有す
る窒化珪素質焼結体が開発され、高熱伝導性窒化珪素の
応用が検討されようになってきた。
Silicon nitride was predicted to have high thermal conductivity from the constituent elements and crystal structure, but recently, a silicon nitride sintered body having a thermal conductivity of 120 W / mK comparable to that of aluminum nitride was finally developed. The application of high thermal conductivity silicon nitride has been studied.

【0006】一般に、窒化珪素質焼結体は、窒化珪素粉
末に焼結助剤を添加した混合粉末を、成形した後、得ら
れた成形体を非酸化性雰囲気中にて1700〜1900
℃程度の高温の焼成炉で所定時間焼成して作製される
が、酸化雰囲気では窒化珪素が酸化されてしまうため、
焼成炉内を外部から遮断し、窒素ガスや不活性ガス等を
用いて非酸化性雰囲気にする必要があった。その結果、
窒化珪素質焼結体からなる回路基板は、酸化物からなる
回路基板に比べてコストが高く、コストを低減すること
が必要であった。
In general, a silicon nitride sintered body is formed by molding a mixed powder obtained by adding a sintering aid to a silicon nitride powder, and then molding the obtained molded body in a non-oxidizing atmosphere from 1700 to 1900.
It is produced by firing in a firing furnace at a high temperature of about ℃ for a predetermined time, but since silicon nitride is oxidized in an oxidizing atmosphere,
It was necessary to shut off the inside of the firing furnace from the outside and use a nitrogen gas, an inert gas, or the like to create a non-oxidizing atmosphere. as a result,
A circuit board made of a silicon nitride sintered material has a higher cost than a circuit board made of an oxide, and it is necessary to reduce the cost.

【0007】そこで、一度に沢山の成形体を焼成して、
生産性を高めるため、成形体同士を重ねたときに付着の
原因となる焼結助剤を添加しない成形体を作製し、その
成形体を重ねるとともに、成形体の間に敷き粉を挟んで
焼成することが特開平5−17234号公報や特開平5
−330927号公報で提案されている。
Therefore, many molded bodies are fired at once,
To improve productivity, a molded product is produced without adding a sintering additive that causes adhesion when the molded products are stacked, and the molded products are stacked, and spread powder is sandwiched between the molded products and baked. Japanese Patent Laid-Open No. 5-17234 and Japanese Patent Laid-Open No.
-330927 is proposed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
5−17234号公報や特開平5−330927号公報
に記載された方法では、成形体の間に敷き粉を挟んでい
るため、焼成後の基板の表面に敷き粉が固着することに
より、基板表面が凸凹に粗れてしまうため、金属板等の
接合強度が低下するという問題があった。
However, in the method described in Japanese Patent Application Laid-Open No. 5-17234 and Japanese Patent Application Laid-Open No. 5-330927, since the spread powder is sandwiched between the molded bodies, the substrate after firing Since the spread powder adheres to the surface of the substrate, the surface of the substrate is roughened unevenly, so that there is a problem that the bonding strength of the metal plate or the like decreases.

【0009】したがって、本発明は、成形体間に敷き粉
を用いず、複数の成形体を重ねたまま一度に焼成するこ
とのできる回路基板の製造方法を提供することを目的と
する。
Therefore, it is an object of the present invention to provide a method for manufacturing a circuit board, which is capable of firing a plurality of molded bodies at once without stacking the spread powder between the molded bodies.

【0010】[0010]

【課題を解決する為の手段】本発明の回路基板の製造方
法は、少なくとも一方の表面の表面粗さRmaxを2〜5
μmに調整した成形体を直接重ねて焼成することによっ
て、成形体間に敷き粉やセラミックシートがなくても、
成形体同士が接着することがなく、一度の焼成で数多く
の成形体を焼成することができるという知見に基づくも
ので、その結果低コストを図ることが出来る。
According to the method of manufacturing a circuit board of the present invention, the surface roughness R max of at least one surface is 2 to 5.
Even if there is no spreading powder or a ceramic sheet between the compacts by directly stacking the compacts adjusted to μm and firing,
This is based on the finding that a large number of molded bodies can be fired in a single firing without the molded bodies adhering to each other, and as a result, low cost can be achieved.

【0011】即ち、(a)窒化珪素を主体とする少なく
とも一表面が2〜5μmの表面粗さに制御された粗度制
御面を具備する成形体を作製する工程と、(b)前記
(a)工程で得られた複数の成形体を、全ての重ね合わ
せ面の少なくとも一方の表面が前記粗度制御面となるよ
うに積み重ねた状態で焼成する工程と、(c)前記
(b)工程で得られた焼成積層物を粗度制御面から個々
の焼結体に分離する工程と、(d)前記(d)工程で得
られた各焼結体の少なくとも前記粗度制御面を含む表面
に導体層を形成することを特徴とするものである。
That is, (a) a step of producing a molded body having a roughness control surface whose main surface is silicon nitride and at least one surface of which is controlled to have a surface roughness of 2 to 5 μm; ) A step of firing a plurality of molded bodies obtained in the step of stacking such that at least one surface of all overlapping surfaces is the roughness control surface, and (c) the step (b) A step of separating the obtained fired laminate from the roughness control surface into individual sintered bodies, and (d) a surface including at least the roughness control surface of each sintered body obtained in the step (d). It is characterized in that a conductor layer is formed.

【0012】特に、前記(b)工程において、前記複数
の成形体を、非酸化性雰囲気中、1650℃〜1800
℃で焼成することが好ましい。これにより、緻密で強度
が高く、高熱伝導な焼結体を得ることができる。
In particular, in the step (b), the plurality of molded bodies are placed in a non-oxidizing atmosphere at 1650 ° C. to 1800 ° C.
It is preferable to bake at ° C. This makes it possible to obtain a sintered body that is dense, has high strength, and has high thermal conductivity.

【0013】また、前記(d)工程において、活性金属
を含むペーストを前記焼結体の表面に塗布し、真空中8
00℃〜1000℃にて加熱処理を行って前記導体層を
形成することが好ましい。これにより導体層と窒化珪素
質焼結体との接合強度を高めることができる。
In the step (d), a paste containing an active metal is applied to the surface of the sintered body, and the paste is placed in vacuum 8
It is preferable to perform the heat treatment at 00 ° C. to 1000 ° C. to form the conductor layer. This can increase the bonding strength between the conductor layer and the silicon nitride sintered body.

【0014】さらに、前記(d)工程において、活性金
属を含むロウ材を前記焼結体の表面に塗布し、該ロウ材
の上に金属箔及び/又は金属板を載置し、真空中800
℃〜1000℃にて加熱処理を行って前記導体層を形成
することが好ましい。これにより導体層と窒化珪素質焼
結体との接合強度を高めることができる。
Further, in the step (d), a brazing material containing an active metal is applied to the surface of the sintered body, a metal foil and / or a metal plate is placed on the brazing material, and the brazing material is placed in vacuum 800
It is preferable that the conductor layer is formed by performing heat treatment at a temperature of from 1000 to 1000 ° C. This can increase the bonding strength between the conductor layer and the silicon nitride sintered body.

【0015】さらにまた、前記焼結体の表面に接合され
た前記金属箔及び/又は金属板をエッチングすることが
好ましい。これにより、複雑で微細な回路パターンを容
易に作製することができる。
Furthermore, it is preferable to etch the metal foil and / or the metal plate bonded to the surface of the sintered body. Thereby, a complicated and fine circuit pattern can be easily manufactured.

【0016】[0016]

【発明の実施の形態】本発明の回路基板の製造方法につ
いて説明する。
DETAILED DESCRIPTION OF THE INVENTION A method of manufacturing a circuit board according to the present invention will be described.

【0017】第一に、工程(a)として成形体を作製す
る。まず、そのために原料粉末を準備する。窒化珪素粉
末は、純度94〜98%、平均粒径0.1〜1.5μ
m、α率が80%以上、不純物酸素量が0.5〜3.0
重量%のものが望ましい。不純物酸素量が3.0重量%
よりも多いと、焼結体表面が荒れやすく、強度劣化を招
く恐れがあり、0.5重量%よりも少ないと焼結性が悪
くなるためである。
First, a molded body is produced in step (a). First, a raw material powder is prepared for that purpose. The silicon nitride powder has a purity of 94 to 98% and an average particle size of 0.1 to 1.5 μm.
m, α ratio of 80% or more, impurity oxygen amount of 0.5 to 3.0
Weight% is desirable. Impurity oxygen content is 3.0% by weight
If it is more than 0.5% by weight, the surface of the sintered body is likely to be roughened and the strength may be deteriorated. If it is less than 0.5% by weight, the sinterability is deteriorated.

【0018】この窒化珪素粉末に対して、所望の焼結助
剤を加えることが好ましい。焼結助剤としては、希土類
元素化合物、Mg化合物、Si化合物、Al化合物等の
公知のものを用いることが出来る。これらの化合物は、
酸化物以外にも焼成によって酸化物を形成しうる炭酸塩
や酢酸塩等であっても良い。
It is preferable to add a desired sintering aid to the silicon nitride powder. As the sintering aid, known compounds such as rare earth element compounds, Mg compounds, Si compounds and Al compounds can be used. These compounds are
In addition to oxides, carbonates or acetates that can form oxides by firing may be used.

【0019】焼結助剤の添加量は、少なすぎると焼結不
良で熱伝導率や強度が低下して問題となり、また、多す
ぎると焼成において液相がしみ出し、重ね合わせた成形
体同士が付着しやすいため、添加する助剤によって適正
な量を加えることが好ましい。具体的には、希土類元素
化合物であれば酸化物換算で3〜20重量%、特に10
〜15重量%、Mg化合物であれば酸化物換算で0.5
〜5重量%、特に1〜3重量%、Si化合物であれば酸
化物換算で0.1〜7重量%、特に0.1〜4重量%、
Al化合物であれば酸化物換算で0.1〜2重量%、特
に0.1〜1重量%であることが好ましい。また、上記
を含む全ての焼結助剤のうち所望のものを組み合わせて
適正な組成とすれば、それぞれの添加量が上記の範囲か
ら変えても良い。
If the amount of the sintering aid added is too small, the sintering will be inferior and the thermal conductivity and strength will decrease, and if it is too large, the liquid phase will exude during firing, and the molded products that have been superposed will overlap each other. Is easily attached, it is preferable to add an appropriate amount depending on the auxiliary agent to be added. Specifically, if it is a rare earth element compound, it is 3 to 20% by weight, especially 10 in terms of oxide.
~ 15 wt%, 0.5 for Mg compounds in terms of oxides
˜5% by weight, especially 1 to 3% by weight, and if it is a Si compound, it is 0.1 to 7% by weight in terms of oxide, especially 0.1 to 4% by weight
If it is an Al compound, it is preferably 0.1 to 2% by weight, particularly 0.1 to 1% by weight in terms of oxide. Further, if a desired composition of all the above-mentioned sintering aids is combined to obtain an appropriate composition, the addition amount of each may be changed from the above range.

【0020】次いで、上記の粉末に有機バインダと溶媒
とを加え、混合した後に成形する。成形は、プレス成形
法、押出し成形法、射出成形法、テープ成形法等の公知
の手法を用いることができるが、回路基板は薄く、表面
が平滑なためドクターブレード法を用いることが好まし
い。
Next, an organic binder and a solvent are added to the above powder, and the mixture is mixed and then molded. The molding can be carried out by a known method such as a press molding method, an extrusion molding method, an injection molding method, a tape molding method, etc. However, since the circuit board is thin and the surface is smooth, it is preferable to use the doctor blade method.

【0021】ドクターブレード法においては、スラリー
を調製し、テープを作製し、このテープを切断すること
によってシート状成形体を作製する。その際、グリーン
シートの少なくとも一方の表面の表面粗さを2〜5μm
にすることが重要であり、特に3〜4.5μm、更には
3.5〜4μmであることが好ましい。なお、本発明に
おける表面粗さは、Rmaxで表される最大表面粗さを示
すもので、単にRmaxと言うことがある。また、本発明
の表面粗さRmaxは、接触式の表面粗さ測定器にて行う
ことができる。
In the doctor blade method, a slurry is prepared, a tape is prepared, and the tape is cut to prepare a sheet-shaped molded body. At that time, the surface roughness of at least one surface of the green sheet is 2 to 5 μm.
It is important that the thickness is 3 to 4.5 μm, more preferably 3.5 to 4 μm. The surface roughness in the present invention indicates the maximum surface roughness represented by R max , and may be simply referred to as R max . Further, the surface roughness R max of the present invention can be measured by a contact-type surface roughness measuring device.

【0022】重ね合わせたときに少なくとも一方の表面
のRmaxが3μmに満たないと、焼成時に成形体同士が
付着し、不良の発生率が高くなるためであり、また、R
maxが5μmを超えると、焼結体表面が粗れてしまうた
め、金属板等の接合強度が低下するためである。
This is because if R max of at least one surface is less than 3 μm when superposed, the compacts adhere to each other during firing, resulting in a high defect rate.
This is because when the maximum value exceeds 5 μm, the surface of the sintered body becomes rough, and the bonding strength of the metal plate or the like decreases.

【0023】上記2〜5μmの表面粗さに制御された粗
度制御面を作製するには、スラリーを乾燥させる条件や
キャリヤテープの表面粗さ等を調整することが有効であ
る。例えば、テープの乾燥温度を50℃、キャリヤテー
プの表面粗さを3μmに設定する。また、表面粗さを3
μmに制御したペットフィルムを成形体へ圧着させ、粗
度を転写することも可能である。
In order to prepare the roughness control surface whose surface roughness is controlled to 2 to 5 μm, it is effective to adjust the conditions for drying the slurry, the surface roughness of the carrier tape and the like. For example, the drying temperature of the tape is set to 50 ° C. and the surface roughness of the carrier tape is set to 3 μm. Also, the surface roughness is 3
It is also possible to transfer the roughness by pressing a PET film controlled to μm onto the molded body.

【0024】成形体の一方の面が上記粗度制御面であれ
ば、他方の面の表面粗さは制限されるものではないが、
基板表面への回路形成後のメッキ付着防止のため、0.
5〜1.5μm、特に0.7〜1.2μmであることが
好ましく、更に焼成における成形体同士の付着をより少
なくするため、上記粗度制御面であることが最も好まし
い。
If one surface of the molded body is the roughness control surface, the surface roughness of the other surface is not limited,
To prevent the adhesion of plating after the circuit is formed on the substrate surface,
It is preferably from 5 to 1.5 μm, and particularly preferably from 0.7 to 1.2 μm, and the roughness control surface is most preferable in order to further reduce the adhesion between the molded bodies during firing.

【0025】なお、このシート状成形体は、単層のまま
成形体として用いてもよいし、薄肉のグリーンシートを
積層して成形体を作製してもよいが、積層した場合でも
積層体の一表面は前記粗度制御面を形成している必要が
あるのは言うまでも無い。
This sheet-shaped molded product may be used as a molded product as it is as a single layer, or a thin green sheet may be laminated to form a molded product. It goes without saying that one surface needs to form the roughness control surface.

【0026】次に、工程(b)として、焼結体を作製す
る。そのため、まず、工程(a)で作製した成形体を複
数用意する。これらの成形体は、それぞれ少なくとも一
表面が上記粗度制御面、即ち表面粗さRmaxが2〜5μ
mであるから、全ての重ね合わせ面の少なくとも一方の
表面が前記粗度制御面となるように積み重ねる。
Next, in step (b), a sintered body is produced. Therefore, first, a plurality of molded bodies produced in the step (a) are prepared. At least one surface of each of these molded bodies has the roughness control surface, that is, the surface roughness R max is 2 to 5 μm.
Since it is m, at least one surface of all superposed surfaces is stacked so as to be the roughness control surface.

【0027】換言すれば、成形体の粗度制御面が同じ位
置、例えば全ての成形体の粗度制御面が上面になるよう
に積み重ねると、2個の成形体で形成される重ね合わせ
面において、下に位置する成形体の面が粗度制御面とな
り、成形体同士が焼成によって付着することを防止でき
る。また、全ての成形体の粗度制御面が下面になるよう
に積み重ねても同様の効果が得られる。
In other words, if the roughness control surfaces of the molded bodies are stacked at the same position, for example, the roughness control surfaces of all the molded bodies are the upper surfaces, the stacked surfaces formed by the two molded bodies will have the same surface. The surface of the molded body located below serves as a roughness control surface, and it is possible to prevent the molded bodies from adhering to each other by firing. Further, the same effect can be obtained by stacking all the molded bodies so that the roughness control surface is the lower surface.

【0028】このように複数の成形体を積み重ねた後、
この状態を保ったまま焼成炉に設置し、焼成を行う。焼
成は、非酸化性雰囲気で行うことが好ましく、具体的に
は酸素分圧が1×10-5atm以下であることが、成形
体の酸化を防ぎ、焼結の阻害を防止するために好まし
い。即ち、窒素ガスやAr等の不活性ガス等で焼成炉内
を満たせば良いが、その一部を水素ガスやアンモニアガ
ス等の還元性ガスによって置き換えても差し支えない。
特に、窒素ガスは、窒化珪素の分解を抑える上で好まし
い。
After stacking a plurality of molded bodies in this way,
While keeping this state, it is placed in a firing furnace and fired. The firing is preferably performed in a non-oxidizing atmosphere, and specifically, an oxygen partial pressure of 1 × 10 −5 atm or less is preferable in order to prevent the oxidation of the molded body and the inhibition of sintering. . That is, the inside of the firing furnace may be filled with an inert gas such as nitrogen gas or Ar, but a part thereof may be replaced with a reducing gas such as hydrogen gas or ammonia gas.
Nitrogen gas is particularly preferable for suppressing decomposition of silicon nitride.

【0029】焼成温度は、焼結助剤の種類及びその添加
量によっても異なるが、1650〜1800℃、特に1
680〜1750℃、更に1700〜1720℃である
ことが好ましい。これは、1650℃より低い温度では
焼結不足となり、1800℃より高い温度では窒化珪素
が分解し、強度が低下するという理由である。また、焼
成時間は焼結体の相対密度が95%以上になるようにす
れば特に制限はないが、上記の焼成温度、即ち最高保持
温度で3〜12時間保持すれば十分である。
The firing temperature varies depending on the type of sintering aid and the amount added, but it is 1650 to 1800 ° C., especially 1 ° C.
It is preferably 680 to 1750 ° C, more preferably 1700 to 1720 ° C. This is because the sintering is insufficient at a temperature lower than 1650 ° C, and the silicon nitride is decomposed at a temperature higher than 1800 ° C to lower the strength. The firing time is not particularly limited as long as the relative density of the sintered body is 95% or more, but it is sufficient to hold the firing temperature, that is, the maximum holding temperature for 3 to 12 hours.

【0030】また、ガラス相の結晶化を行ない、強度及
び熱伝導率を高めるため、焼成終了後に1500℃まで
60℃/時間以下の速度で降温し、その後、加熱を停止
し、自然冷却を行うことが好ましい。
In order to crystallize the glass phase and increase the strength and thermal conductivity, the temperature is lowered to 1500 ° C. at a rate of 60 ° C./hour or less after completion of firing, after which heating is stopped and natural cooling is performed. It is preferable.

【0031】なお、所望により、焼成に先立ち、バイン
ダを除去するために、弱酸化性雰囲気、900℃におい
て脱脂処理を行っても良い。
If desired, a degreasing treatment may be performed at 900 ° C. in a weakly oxidizing atmosphere to remove the binder before firing.

【0032】第三に、工程(c)として、工程(b)に
おいて焼成して得られた焼成積層物を個々の焼結体に分
離する。即ち、工程(b)において積み重ねた状態で焼
成したため、それを取り出し、粗度制御面から全ての焼
結体を容易に分離することが重要である。
Thirdly, in step (c), the fired laminate obtained by firing in step (b) is separated into individual sintered bodies. In other words, it is important that the sintered bodies are fired in the stacked state in the step (b), and that they are taken out and all the sintered bodies are easily separated from the roughness control surface.

【0033】本発明によれば、重ね合わせ面の少なくと
も一方の表面が粗度制御面であるから、焼成しても粗度
制御面が付着することがないため、粗度制御面から簡単
に成形体を分離することができる。
According to the present invention, since at least one surface of the superposed surfaces is the roughness control surface, the roughness control surface does not adhere even after firing. Therefore, the roughness control surface can be easily formed. The body can be separated.

【0034】最後に、工程(d)において、焼結体の表
面に導体層を形成する。即ち、粗度制御面と、所望によ
り他の面に導体層を形成し、回路基板を得ることができ
る。導体層を粗度制御面に形成するのは、表面粗さが比
較的大きいため、密着性の高い導体層を形成することが
できるからである。
Finally, in step (d), a conductor layer is formed on the surface of the sintered body. That is, a circuit board can be obtained by forming a conductor layer on the roughness control surface and, if desired, another surface. The conductor layer is formed on the roughness control surface because the surface roughness is relatively large, so that the conductor layer having high adhesion can be formed.

【0035】導体層の形成は、厚膜法、金属ロウ付け
法、蒸着法、活性金属法等の公知の手法を用いることが
できるが、特に、金属ロウ付け法及び活性金属法が低コ
ストで、良好な密着性を得るために好ましい。
For forming the conductor layer, known methods such as a thick film method, a metal brazing method, a vapor deposition method and an active metal method can be used. In particular, the metal brazing method and the active metal method are low in cost. , To obtain good adhesion.

【0036】例えば、活性金属を含むペーストを、粗度
制御面を含む焼結体の表面に塗布して焼き付ける。ここ
で、活性金属はTi、ZrおよびHfのうち少なくとも
1種の金属を意味し、溶媒と所望により分散剤を添加
し、粘度を調整する。
For example, a paste containing an active metal is applied to the surface of the sintered body including the roughness control surface and baked. Here, the active metal means at least one metal selected from Ti, Zr, and Hf, and the viscosity is adjusted by adding a solvent and optionally a dispersant.

【0037】また、塗布の方法としては印刷が好まし
く、低コスト、大量産のため、特にスクリーンを用いた
印刷法を用いることが好ましい。そして、窒化珪素及び
ペーストの酸化を防ぐため、非酸化雰囲気、特に真空中
で、800℃〜1000℃、特に850〜950℃にて
加熱処理を行うことが好ましい。この温度範囲にするこ
とによって導体層と焼結体間の接着強度が十分確保で
き、且つ導体広がりの無い回路基板を作製できる。
Printing is preferable as a coating method, and it is particularly preferable to use a printing method using a screen because of low cost and mass production. Then, in order to prevent the oxidation of the silicon nitride and the paste, it is preferable to perform heat treatment at 800 ° C. to 1000 ° C., particularly 850 to 950 ° C. in a non-oxidizing atmosphere, particularly in vacuum. By setting this temperature range, a sufficient adhesion strength between the conductor layer and the sintered body can be secured, and a circuit board without conductor spreading can be manufactured.

【0038】また、活性金属を含むロウ材を前記焼結体
の表面に塗布し、該ロウ材の上に金属箔及び/又は金属
板を載置し、加熱処理を行って接合することもできる。
ここで活性金属とは、Ti、ZrおよびHfのうち少な
くとも1種の金属を意味し、これを含むロウ材を使用す
る。具体的なロウ材としては、Cu−Ag−TiやCu
−Au−Ti等のロウ材を例示できる。
Alternatively, a brazing material containing an active metal may be applied to the surface of the sintered body, a metal foil and / or a metal plate may be placed on the brazing material, and heat treatment may be performed for bonding. .
Here, the active metal means at least one metal selected from Ti, Zr, and Hf, and a brazing material containing this is used. Specific brazing materials include Cu-Ag-Ti and Cu.
A brazing material such as -Au-Ti can be exemplified.

【0039】また、金属箔及び/又は金属板は、Cu、
AlおよびAuのうち少なくとも1種の低抵抗金属を含
むことが好ましく、その厚みは0.1mm以上、特に
0.2mm以上であることが望ましい。これにより、発
熱を抑制することができ、特に大電流が流れた場合に金
属が発熱して回路の断線等を防止できる。
The metal foil and / or the metal plate are made of Cu,
It is preferable to contain at least one low resistance metal of Al and Au, and the thickness thereof is preferably 0.1 mm or more, and particularly 0.2 mm or more. As a result, heat generation can be suppressed, and in particular, when a large current flows, the metal heat is generated and it is possible to prevent the circuit from breaking.

【0040】なお、金属箔及び/又は金属板と焼結体と
の接合には、800〜1000℃の熱処理を行うことが
好ましい。この温度範囲で接合することにより、金属板
等と焼結体間の接合強度が十分確保でき、且つロウ材広
がりの無い回路基板が得られる。
It is preferable to perform heat treatment at 800 to 1000 ° C. for joining the metal foil and / or the metal plate and the sintered body. Bonding in this temperature range makes it possible to secure a sufficient bonding strength between the metal plate or the like and the sintered body and to obtain a circuit board in which the brazing material does not spread.

【0041】また、均一な接合体を得るために加熱処理
において圧力を加えて接合することが好ましい。
Further, in order to obtain a uniform joined body, it is preferable that pressure is applied during the heat treatment to join.

【0042】導体層が回路パターンであるときは、回路
パターンの形成された金属箔や金属板を用いても良い
が、取扱いが難しい場合には、回路パターンの形成され
ていない金属箔又は金属板を接合した後、エッチングし
て所望の回路パターンを形成することが好ましい。具体
的には、金属箔又は金属板の表面に、レジスト塗布、露
光、現像、エッチング処理、レジスト剥離などの工程を
用いて、金属箔や金属板に所定の回路パターンを形成す
ることが好ましい。この方法を用いると、複雑な回路パ
ターンを容易に作製することができる。
When the conductor layer is a circuit pattern, a metal foil or a metal plate on which a circuit pattern is formed may be used, but when handling is difficult, a metal foil or a metal plate on which a circuit pattern is not formed is used. After joining, it is preferable to form a desired circuit pattern by etching. Specifically, it is preferable to form a predetermined circuit pattern on the surface of the metal foil or the metal plate by using steps such as resist application, exposure, development, etching treatment, and resist stripping. By using this method, a complicated circuit pattern can be easily manufactured.

【0043】[0043]

【実施例】平均粒径が1μm、α率87%、不純物酸素
量が1重量%の直接窒化法により製造された窒化珪素粉
末と、平均粒径が1μm、純度99.9%のEr23
末、Y23粉末、Yb23粉末、MgO粉末、MgCO
3粉末、AlN粉末及びAl23粉末を表1に示す割合
で調合し、その混合粉末に対してアクリル樹脂バインダ
とトルエンを溶媒として添加し、混練後、ドクターブレ
ード法により厚み0.4mmのグリーンシートを成形し
た。
EXAMPLE A silicon nitride powder produced by a direct nitriding method having an average particle size of 1 μm, an α ratio of 87% and an impurity oxygen content of 1% by weight, and Er 2 O having an average particle size of 1 μm and a purity of 99.9%. 3 powder, Y 2 O 3 powder, Yb 2 O 3 powder, MgO powder, MgCO
3 powders, AlN powders and Al 2 O 3 powders were mixed in the proportions shown in Table 1, acrylic resin binder and toluene were added to the mixed powders as a solvent, and after kneading, a thickness of 0.4 mm was obtained by a doctor blade method. A green sheet was molded.

【0044】なお、このグリーンシートの作製に際して
は、乾燥温度、キャリヤテープ表面粗さを表1のように
変え、グリーンシートの下面の表面粗さを調整し、これ
を粗度制御面とした。
In the production of this green sheet, the drying temperature and the carrier tape surface roughness were changed as shown in Table 1 to adjust the surface roughness of the lower surface of the green sheet, which was used as the roughness control surface.

【0045】得られたグリーンシートの粗度制御面が下
になるようにして積層し、切断することにより縦80m
m、横115mm、厚み0.8mmの基板用成形体と、
直径12mm、厚さ5mmの円板状の評価用成形体を各
試料につき100個ずつ作製した。
The green sheets thus obtained are laminated so that the roughness control surface faces downward, and cut to a length of 80 m.
m, width 115 mm, thickness 0.8 mm molded body for substrate,
For each sample, 100 disc-shaped moldings for evaluation having a diameter of 12 mm and a thickness of 5 mm were prepared.

【0046】これらの基板用成形体は、1段に20個ず
つ、粗度制御面が下になるように、即ち、重なり面に必
ず粗度制御面が来るように積み重ね、100個の成形体
を表1の焼成条件にて焼成して基板用焼結体を作製し、
焼成後に各段毎に各焼結体を分離し、付着してとれない
焼結体の数を測定した。なお、焼成雰囲気中の酸素分圧
は、いずれも1×10-5atm以下であった。
These substrate compacts were stacked in a stack of 20 compacts each so that the roughness control face was on the lower side, that is, the roughness control face was always on the overlapping face. By firing under the firing conditions shown in Table 1 to produce a sintered body for a substrate,
After firing, each sintered body was separated for each stage, and the number of the sintered bodies that could not be attached was measured. The oxygen partial pressure in the firing atmosphere was 1 × 10 −5 atm or less.

【0047】次に、基板用試料接合評価用基板として縦
60mm、横90mm、厚み0.6mmの絶縁基板を用
意し、基板の一表面にCu−Ag−Tiの活性金属ロウ
を回路パターン状に印刷塗布し、0.5mmの回路パタ
ーン状にソルダーレジストを印刷塗布したCu板を貼り
付けた。また、その裏面は、Cu−Ag−Tiペースト
をスクリーン印刷によって塗布し、還元雰囲気中900
℃で熱処理してCu板を接合するとともに、ペーストを
焼き付けた。
Next, an insulating substrate having a length of 60 mm, a width of 90 mm, and a thickness of 0.6 mm is prepared as a substrate for bonding and evaluating a sample for a substrate, and Cu-Ag-Ti active metal solder is formed in a circuit pattern on one surface of the substrate. A Cu plate was applied by printing and printed with a solder resist in a circuit pattern of 0.5 mm. Further, the back surface thereof is coated with a Cu-Ag-Ti paste by screen printing, and is put in a reducing atmosphere at 900
The paste was baked while the Cu plates were joined by heat treatment at ℃.

【0048】得られた接合体のCu板にエッチング処理
を施して回路パターンを形成し、回路パターン表面に無
電解Niメッキを施し、回路基板を作製した。100個
の試料のうち、回路基板として不良品を測定し、全工程
における不良率を測定した。
The Cu plate of the obtained joined body was subjected to an etching treatment to form a circuit pattern, and the surface of the circuit pattern was subjected to electroless Ni plating to produce a circuit board. Among 100 samples, defective products were measured as circuit boards, and defective rates in all steps were measured.

【0049】[0049]

【表1】 [Table 1]

【0050】本発明の試料No.3〜21は、焼成不良
が10個以下、全不良率が10%以下であった。
Sample No. of the present invention. In Nos. 3 to 21, the firing failure was 10 or less, and the total failure rate was 10% or less.

【0051】一方、粗度制御面が6μmと大きい本発明
の範囲外の試料No.1は、焼成不良が2個以下であっ
たが、全不良率は90%と高かった。
On the other hand, the sample No. having a roughness control surface as large as 6 μm, which is out of the range of the present invention, was used. No. 1 had two or less defective firings, but the total defective rate was as high as 90%.

【0052】また、粗度制御面が2μm以下と小さい本
発明の範囲外の試料No.2は、焼成不良が90個、全
不良率が100%といずれも非常に高かった。
Further, the surface roughness control surface is as small as 2 μm or less, which is outside the range of the present invention. In No. 2, the number of defective firing was 90, and the total defective rate was 100%, which were all very high.

【0053】[0053]

【発明の効果】本発明によれば、成形体の一表面を2〜
5μmに調整し、粗度制御面とすることにより、複数の
成形体を重ね合わせ面に粗度制御面が来るように積み重
ねて焼成しても焼結体同士が付着することない。
According to the present invention, one surface of a molded article is
By adjusting the roughness to 5 μm and using it as a roughness control surface, the sintered bodies do not adhere to each other even when a plurality of molded bodies are stacked and fired so that the roughness control surface comes to the overlapping surface.

【0054】つまり、本発明の方法を用いれば、敷き粉
を使わずに一度の焼成で多量の焼結体を得ることがで
き、且つ不良率も低減できるため、回路基板のコストを
低減することができる。
That is, when the method of the present invention is used, a large amount of a sintered body can be obtained by one-time firing without using spread powder, and the defect rate can be reduced, so that the cost of the circuit board can be reduced. You can

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/12 C04B 35/64 K H05K 3/06 G 3/12 610 35/58 102D H01L 23/12 D Fターム(参考) 4G001 BA06 BA08 BA09 BA32 BA36 BB06 BB08 BB09 BB32 BB36 BC17 BC22 BD23 BE32 BE35 4G026 BA17 BB22 BB27 BF31 BG02 BG21 BH07 5E339 AB06 AD01 BC02 BD06 BD11 BE13 FF03 5E343 AA23 AA36 BB24 BB67 DD03 DD52 EE22 EE23 EE33 ER35 GG11 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 23/12 C04B 35/64 K H05K 3/06 G 3/12 610 35/58 102D H01L 23/12 D F term ( Reference) 4G001 BA06 BA08 BA09 BA32 BA36 BB06 BB08 BB09 BB32 BB36 BC17 BC22 BD23 BE32 BE35 4G026 BA17 BB22 BB27 BF31 BG02 BG21 BH07 5E339 AB06 AD01 BC02 BD06 BD11 BE13 EE23 DD23 BB23 BB23 BB23 BB24 BB67

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】(a)窒化珪素を主体とする少なくとも一
表面が2〜5μmの表面粗さに制御された粗度制御面を
具備する成形体を作製する工程と、(b)前記(a)工
程で得られた複数の成形体を、全ての重ね合わせ面の少
なくとも一方の表面が前記粗度制御面となるように積み
重ねた状態で焼成する工程と、(c)前記(b)工程で
得られた焼成積層物を粗度制御面から個々の焼結体に分
離する工程と、(d)前記(c)工程で得られた各焼結
体の少なくとも前記粗度制御面を含む表面に導体層を形
成することを特徴とする回路基板の製造方法。
1. A step of: (a) producing a molded article having a roughness control surface whose main surface is silicon nitride and whose surface roughness is controlled to 2 to 5 μm; and (b) the step (a) above. ) A step of firing a plurality of molded bodies obtained in the step of stacking such that at least one surface of all overlapping surfaces is the roughness control surface, and (c) the step (b) A step of separating the obtained fired laminate from the roughness control surface into individual sintered bodies, and (d) a surface including at least the roughness control surface of each sintered body obtained in the step (c). A method of manufacturing a circuit board, comprising forming a conductor layer.
【請求項2】前記(b)工程において、前記複数の成形
体を、非酸化性雰囲気中、1650℃〜1800℃で焼
成することを特徴とする請求項1記載の回路基板の製造
方法。
2. The method for manufacturing a circuit board according to claim 1, wherein in the step (b), the plurality of molded bodies are fired at 1650 ° C. to 1800 ° C. in a non-oxidizing atmosphere.
【請求項3】前記(d)工程において、活性金属を含む
ペーストを前記焼結体の表面に塗布し、真空中800℃
〜1000℃にて加熱処理を行って前記導体層を形成す
ることを特徴とする請求項1又は2記載の回路基板の製
造方法。
3. In the step (d), a paste containing an active metal is applied to the surface of the sintered body, and the temperature is 800 ° C. in vacuum.
The method for manufacturing a circuit board according to claim 1 or 2, wherein the conductor layer is formed by performing a heat treatment at 1000 ° C.
【請求項4】前記(d)工程において、活性金属を含む
ロウ材を前記焼結体の表面に塗布し、該ロウ材の上に金
属箔及び/又は金属板を載置し、真空中800℃〜10
00℃にて加熱処理を行って前記導体層を形成すること
を特徴とする請求項1乃至3のいずれかに記載の回路基
板の製造方法。
4. In the step (d), a brazing material containing an active metal is applied to the surface of the sintered body, a metal foil and / or a metal plate is placed on the brazing material, and the brazing material is placed in vacuum 800 ℃ ~ 10
The method for manufacturing a circuit board according to claim 1, wherein the conductor layer is formed by performing heat treatment at 00 ° C.
【請求項5】前記焼結体の表面に接合された前記金属箔
及び/又は金属板をエッチングすることを特徴とする請
求項4記載の回路基板の製造方法。
5. The method of manufacturing a circuit board according to claim 4, wherein the metal foil and / or the metal plate bonded to the surface of the sintered body is etched.
JP2001251973A 2001-08-22 2001-08-22 Method for manufacturing circuit board Pending JP2003069217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251973A JP2003069217A (en) 2001-08-22 2001-08-22 Method for manufacturing circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251973A JP2003069217A (en) 2001-08-22 2001-08-22 Method for manufacturing circuit board

Publications (1)

Publication Number Publication Date
JP2003069217A true JP2003069217A (en) 2003-03-07

Family

ID=19080525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251973A Pending JP2003069217A (en) 2001-08-22 2001-08-22 Method for manufacturing circuit board

Country Status (1)

Country Link
JP (1) JP2003069217A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289777A (en) * 2004-04-05 2005-10-20 Murata Mfg Co Ltd Method for manufacturing ceramic sintered compact for electronic component
JP2010030280A (en) * 2008-06-27 2010-02-12 Kyocera Corp Ceramic base body, heat dissipating base body and electronic device
JP2016040224A (en) * 2015-09-03 2016-03-24 日立金属株式会社 Method for producing sintered board of silicon nitride-based ceramic
JP2019064220A (en) * 2017-10-04 2019-04-25 株式会社日本触媒 Method for producing ceramic sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631536U (en) * 1979-08-15 1981-03-27
JPS61136965A (en) * 1984-12-06 1986-06-24 京セラ株式会社 Manufacture of ceramic substrate for thin membrane
JPH0297467A (en) * 1988-10-05 1990-04-10 Hokuriku Electric Ind Co Ltd Production of thin ceramic sheet and green ceramic sheet utilizer for method thereof
JPH0434808A (en) * 1990-05-30 1992-02-05 Ngk Insulators Ltd Composition for conductor paste
JPH05335741A (en) * 1992-06-03 1993-12-17 Ibiden Co Ltd Manufacture of ceramic multilayer board
JPH06196831A (en) * 1992-12-24 1994-07-15 Tokin Corp Manufacture of conductive pattern for aln substrate
JPH06349315A (en) * 1993-06-02 1994-12-22 Denki Kagaku Kogyo Kk Paste and its use
JPH09162325A (en) * 1995-12-07 1997-06-20 Denki Kagaku Kogyo Kk Nitride silicon circuit board and its manufacturing method
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board
JP2000244121A (en) * 1999-02-23 2000-09-08 Kyocera Corp Silicon nitride wiring board and manufacture thereof
JP2001135929A (en) * 1999-11-08 2001-05-18 Dowa Mining Co Ltd Manufacturing method of silicon nitride circuit board

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631536U (en) * 1979-08-15 1981-03-27
JPS61136965A (en) * 1984-12-06 1986-06-24 京セラ株式会社 Manufacture of ceramic substrate for thin membrane
JPH0297467A (en) * 1988-10-05 1990-04-10 Hokuriku Electric Ind Co Ltd Production of thin ceramic sheet and green ceramic sheet utilizer for method thereof
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board
JPH0434808A (en) * 1990-05-30 1992-02-05 Ngk Insulators Ltd Composition for conductor paste
JPH05335741A (en) * 1992-06-03 1993-12-17 Ibiden Co Ltd Manufacture of ceramic multilayer board
JPH06196831A (en) * 1992-12-24 1994-07-15 Tokin Corp Manufacture of conductive pattern for aln substrate
JPH06349315A (en) * 1993-06-02 1994-12-22 Denki Kagaku Kogyo Kk Paste and its use
JPH09162325A (en) * 1995-12-07 1997-06-20 Denki Kagaku Kogyo Kk Nitride silicon circuit board and its manufacturing method
JP2000244121A (en) * 1999-02-23 2000-09-08 Kyocera Corp Silicon nitride wiring board and manufacture thereof
JP2001135929A (en) * 1999-11-08 2001-05-18 Dowa Mining Co Ltd Manufacturing method of silicon nitride circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289777A (en) * 2004-04-05 2005-10-20 Murata Mfg Co Ltd Method for manufacturing ceramic sintered compact for electronic component
JP2010030280A (en) * 2008-06-27 2010-02-12 Kyocera Corp Ceramic base body, heat dissipating base body and electronic device
JP2016040224A (en) * 2015-09-03 2016-03-24 日立金属株式会社 Method for producing sintered board of silicon nitride-based ceramic
JP2019064220A (en) * 2017-10-04 2019-04-25 株式会社日本触媒 Method for producing ceramic sheet

Similar Documents

Publication Publication Date Title
JP3575068B2 (en) Ceramic metallized substrate having smooth plating layer and method of manufacturing the same
JP2001168482A (en) Ceramics circuit substrate
JP4688380B2 (en) Circuit board and manufacturing method thereof
JP2003069217A (en) Method for manufacturing circuit board
JP3663306B2 (en) Aluminum nitride sintered body and electrostatic chuck using the same
JP4023944B2 (en) Manufacturing method of aluminum nitride sintered body and plate heater or electrostatic chuck
JPH0679995B2 (en) WN metallization structure of AlN substrate
JP2003163425A (en) Wiring board
JPS61291480A (en) Surface treating composition for aluminum nitride base material
JPH1067586A (en) Circuit base plate for power module and its production
JP4051164B2 (en) Silicon nitride based circuit board and manufacturing method thereof
US5932043A (en) Method for flat firing aluminum nitride/tungsten electronic modules
JP3623107B2 (en) Electrostatic chuck
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JP2677748B2 (en) Ceramics copper circuit board
JPH0624880A (en) Metal-ceramic material and production thereof
JP3230861B2 (en) Silicon nitride metallized substrate
JPS62176961A (en) Aluminum nitride sintered body and manufacture
JPH03228873A (en) Aluminum nitride-based substrate
JP4653272B2 (en) Method for manufacturing aluminum nitride substrate
JP2007186382A (en) Aluminum nitride sintered compact
JP3272791B2 (en) Manufacturing method of aluminum nitride sintered body
JPH0196068A (en) Production of aluminum nitride sintered body
JPH01300584A (en) Circuit board
JP2784551B2 (en) Aluminum nitride substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125