JP2003163425A - Wiring board - Google Patents

Wiring board

Info

Publication number
JP2003163425A
JP2003163425A JP2001363642A JP2001363642A JP2003163425A JP 2003163425 A JP2003163425 A JP 2003163425A JP 2001363642 A JP2001363642 A JP 2001363642A JP 2001363642 A JP2001363642 A JP 2001363642A JP 2003163425 A JP2003163425 A JP 2003163425A
Authority
JP
Japan
Prior art keywords
alumina
wiring board
less
mass
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001363642A
Other languages
Japanese (ja)
Inventor
Akihisa Makino
晃久 牧野
Tomohide Hasegawa
智英 長谷川
Shigeki Yamada
成樹 山田
Masanobu Ishida
政信 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001363642A priority Critical patent/JP2003163425A/en
Publication of JP2003163425A publication Critical patent/JP2003163425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board which can deal with miniaturization and a thin shape, whose mechanical and electrical reliability is high an in which a conductor layer of high adhesion can be formed by a simultaneous firing operation, and to provide a method of manufacturing the wiring board. <P>SOLUTION: In the wiring board, conductor layers are formed on the inside and/or the surface of an insulating board composed of an alumina sintered compact in a minimum thickness of 0.6 mm or less. The sintered compact contains an auxiliary component of 4 to 15% by mass expressed in terms of an oxide. The auxiliary component exists in the grain boundary of an alumina main crystalline phase mainly as an insulating crystal, the mean particle diameter of the alumina main crystalline phase in the sintered compact is 0.5 to 4 μm, its mean porosity is 5% or less, its maximum pore diameter is 20 μm or less, and its mean pore diameter is 10 μm or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気的信頼性に優
れた配線基板に関し、特に低温焼結性に優れたアルミナ
を主成分とし、小型化・薄型化に対応が可能な半導体素
子収納用パッケージや多層配線基板などに好適に用いら
れる配線基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board having excellent electrical reliability, and in particular, for accommodating semiconductor elements, which is mainly composed of alumina excellent in low-temperature sinterability and can be made compact and thin. The present invention relates to a wiring board suitable for use in packages, multilayer wiring boards, and the like.

【0002】[0002]

【従来技術】近年、半導体素子の高集積化、電子部品の
小型化に伴い、各種電子機器の小型化、高機能化が図ら
れている。これに伴い、半導体素子を収納する、あるい
は半導体素子と同時に受動部品を搭載するセラミックパ
ッケージの小型化、薄型化が要求されてきた。
2. Description of the Related Art In recent years, with the high integration of semiconductor elements and the miniaturization of electronic components, various electronic devices have been miniaturized and highly functionalized. Along with this, there has been a demand for downsizing and thinning of a ceramic package that houses a semiconductor element or mounts a passive component simultaneously with the semiconductor element.

【0003】このようなセラミックパッケージの小型化
或いは薄型化に伴って基板厚みが薄くなり、0.6mm
以下の厚みが要求される場合も生じてきた。そこで、高
い材料強度を得るため、焼結体の厚さが0.25〜0.
35μmにおける3点曲げ強度が539MPa(55k
gf/mm2)以上の高強度アルミナ基板が特開200
0−7425号公報に提案されている。
With the downsizing or thinning of such ceramic packages, the substrate thickness is reduced to 0.6 mm.
In some cases, the following thickness is required. Therefore, in order to obtain high material strength, the thickness of the sintered body is 0.25 to 0.
3-point bending strength at 35 μm is 539 MPa (55 k
A high-strength alumina substrate having a gf / mm 2 ) or more is disclosed
No. 0-7425 is proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開2
000−7425号公報に記載された高強度アルミナ基
板は、1550℃以上の高温で焼成することが必要とな
るため、低抵抗金属を含む導体層と同時焼成ができず、
一旦基板のみを焼成し、その後に導体層を形成するとい
う余分な工程を必要とする結果、コスト高となるという
問題があった。
[Patent Document 1] Japanese Unexamined Patent Application Publication No.
The high-strength alumina substrate described in Japanese Patent Application Laid-Open No. 000-7425 needs to be fired at a high temperature of 1550 ° C. or higher, and therefore cannot be fired at the same time as the conductor layer containing a low resistance metal.
As a result of requiring an extra step of baking only the substrate once and then forming the conductor layer, there is a problem that the cost becomes high.

【0005】また、WやMoなどの高融点金属からなる
導体層を被着形成した場合においても、WやMo自身の
粒成長が進行するために強度が劣化し、絶縁基板に対す
る導体層の密着性が低く、剥離やクラックが生じて不良
が発生するという問題があった。
Even when a conductor layer made of a refractory metal such as W or Mo is deposited, the strength of the conductor layer is deteriorated due to the progress of grain growth of W or Mo itself, and the conductor layer adheres to the insulating substrate. There is a problem that the property is low, and peeling and cracks occur to cause defects.

【0006】また、基板が0.25〜0.35mmと薄
いため、この基板を用いて3点曲げ強度を測定すると、
内部には比較的大きなボイドがあっても弾性変形が大き
いため、ある程度高い強度を示すものの、電気的特性に
関しては、薄い試料では大きなボイドが少量であっても
影響が著しく、絶縁性が劣化したり、絶縁破壊しやす
く、電気的な信頼性が低いという問題があった。
Since the substrate is as thin as 0.25 to 0.35 mm, the three-point bending strength is measured using this substrate.
Even if there are relatively large voids inside, the elastic deformation is large, so it shows a relatively high strength, but with regard to the electrical characteristics, even with a small amount of large voids, the effect is significant with thin samples, and the insulation properties deteriorate. However, there is a problem in that the electric breakdown is easy and electrical reliability is low.

【0007】従って、本発明は、小型化・薄型化にも対
応でき、機械的、電気的な信頼性が高く、同時焼成によ
り密着性の高い導体層の形成が可能な配線基板を提供す
ることを目的とする。
Therefore, the present invention provides a wiring board which can be made compact and thin, has high mechanical and electrical reliability, and can form a conductor layer having high adhesion by simultaneous firing. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明は、焼結体の粒界
を結晶化するとともに、焼結体の組織と微細構造とを制
御することによって、機械的、電気的信頼性に優れた配
線基板が得られるという知見に基づくものであり、その
結果、小型化を行っても絶縁性の劣化や絶縁破壊を防
ぎ、抵抗の低い導体層を同時焼成によって形成すること
ができ、信頼性の高い配線基板を提供できる。
The present invention has excellent mechanical and electrical reliability by crystallizing the grain boundaries of a sintered body and controlling the structure and microstructure of the sintered body. It is based on the finding that a wiring board can be obtained, and as a result, deterioration of insulation and dielectric breakdown can be prevented even if miniaturization is performed, and a conductor layer with low resistance can be formed by simultaneous firing, which reduces reliability. A high wiring board can be provided.

【0009】即ち、本発明の配線基板は、最低厚みが
0.6mm以下のアルミナ質焼結体からなる絶縁基板の
内部及び/又は表面に導体層が形成されてなる配線基板
において、前記アルミナ質焼結体が酸化物換算で4〜1
5質量%の助剤成分を含み、該助剤成分が主に絶縁性結
晶としてアルミナ主結晶相の粒界に存在するとともに、
前記アルミナ質焼結体における前記アルミナ主結晶相の
平均粒子径が0.5〜4μm、平均気孔率が5%以下、
最大気孔径が20μm以下、平均気孔径が10μm以下
であることを特徴とするものである。
That is, the wiring board of the present invention is a wiring board in which a conductor layer is formed inside and / or on the surface of an insulating board made of an alumina sintered body having a minimum thickness of 0.6 mm or less. Sintered body is 4-1 in terms of oxide
5% by mass of the auxiliary component is present, and the auxiliary component mainly exists as an insulating crystal in the grain boundary of the alumina main crystal phase, and
The alumina main crystal phase in the alumina sintered body has an average particle diameter of 0.5 to 4 μm, and an average porosity of 5% or less,
It is characterized in that the maximum pore diameter is 20 μm or less and the average pore diameter is 10 μm or less.

【0010】また、前記アルミナ質焼結体が、アルミナ
を主成分とし、Mnを酸化物換算で1〜10質量%、S
iを酸化物換算で1〜10質量%の割合で含み、アルミ
ナ主結晶相の粒界にMn3Al2Si312及び/又はM
nAl24結晶を含むことが好ましい。これにより、安
定した組織制御が可能で、平均粒子径及び気孔を安定し
て上記範囲に収めることができる。
Further, the alumina-based sintered body contains alumina as a main component, and Mn is 1 to 10% by mass in terms of oxide, and S
i in an amount of 1 to 10% by mass in terms of oxide, and Mn 3 Al 2 Si 3 O 12 and / or M at the grain boundaries of the alumina main crystal phase.
It is preferable to include nAl 2 O 4 crystals. Thereby, stable structure control is possible, and the average particle size and pores can be stably kept within the above range.

【0011】さらに、第4a族金属元素の含有量が、酸
化物換算で0.1質量%以下であることが好ましい。こ
れにより、強度をより向上するができる。
Further, the content of the Group 4a metal element is preferably 0.1% by mass or less in terms of oxide. Thereby, the strength can be further improved.

【0012】また、前記導体層が、W及び/又はMoを
主成分とし、アルミナを含むことが好ましい。これによ
り、アルミナ質焼結体と導体層とを同時に焼成すること
ができ、絶縁基板に対して密着強度の高い導体層を形成
することが可能となり、リッドの封止あるいは各種金属
端子の接続ができる。
It is also preferable that the conductor layer contains W and / or Mo as a main component and contains alumina. As a result, the alumina-based sintered body and the conductor layer can be fired at the same time, and it becomes possible to form a conductor layer having high adhesion strength with respect to the insulating substrate, and to seal the lid or connect various metal terminals. it can.

【0013】さらに、前記導体層が、Au、Ag及びC
uの少なくとも1種を含むことが好ましい。これによ
り、導体層の電気抵抗を小さくすることができる。
Further, the conductor layer is made of Au, Ag and C.
It is preferable to include at least one of u. Thereby, the electric resistance of the conductor layer can be reduced.

【0014】[0014]

【発明の実施の形態】本発明の配線基板は、最低厚みが
0.6mm以下の部位を含むアルミナ質焼結体からなる
絶縁基板の内部及び/又は表面に導体層が形成されてな
る配線基板として好適に用いられるものであり、助剤成
分を酸化物換算で4〜15質量%含むことが重要であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The wiring board of the present invention is a wiring board in which a conductor layer is formed inside and / or on the surface of an insulating substrate made of an alumina-based sintered body including a portion having a minimum thickness of 0.6 mm or less. It is important that the auxiliary component is contained in an amount of 4 to 15% by mass in terms of oxide.

【0015】助剤成分が酸化物換算で4質量%に満たな
いと、アルミナの含有量が96質量%を越え、焼成時の
液相量が少なく、アルミナ質焼結体を作製するために高
温焼成が必要となり、その結果、導体成分であるWやM
oを含む導体層を同時焼成することができなくなる。ま
た、15質量%を越えると、アルミナの含有量が85質
量%に満たず、アルミナとしての優れた材料特性を充分
に発現することが困難となり、特に電気特性、誘電特
性、機械特性、熱特性等の特性低下を招くことになる。
より安定した結晶組織制御を行なうため、助剤成分を酸
化物換算で、特に5〜13質量%、更には6〜10質量
%にすることが好ましい。
When the amount of the auxiliary component is less than 4% by mass in terms of oxide, the content of alumina exceeds 96% by mass, the amount of liquid phase at the time of firing is small, and high temperature is required for producing an alumina sintered body. Firing is required, and as a result, conductor components such as W and M
It becomes impossible to co-fire the conductor layer containing o. On the other hand, if it exceeds 15% by mass, the content of alumina is less than 85% by mass, and it becomes difficult to sufficiently exhibit the excellent material properties as alumina. Particularly, electrical properties, dielectric properties, mechanical properties, thermal properties And so on.
In order to carry out more stable crystal structure control, the amount of the auxiliary component is preferably 5 to 13% by mass, more preferably 6 to 10% by mass in terms of oxide.

【0016】上記の助剤成分は、主に絶縁性結晶として
主結晶相のアルミナ結晶の粒界に存在することが重要で
ある。粒界相に助剤成分が少ないと、アルミナ主結晶相
間の界面に格子欠陥が生じ、また、主結晶の異方性によ
り界面にクラックが生じる結果、これらの界面が導電性
パスとして作用し、基板が0.6mm以下と薄い場合に
は基板の絶縁性が低下して絶縁破壊の危険性が増大す
る。
It is important that the above-mentioned auxiliary component exists mainly as an insulating crystal in the grain boundary of the alumina crystal of the main crystal phase. When the grain boundary phase has a small amount of an auxiliary component, lattice defects occur at the interface between the alumina main crystal phases, and as a result of the occurrence of cracks at the interface due to the anisotropy of the main crystals, these interfaces act as a conductive path, When the substrate is as thin as 0.6 mm or less, the insulating property of the substrate decreases and the risk of dielectric breakdown increases.

【0017】また、粒界相が非晶質であると熱放散性が
低下したり、金属元素の拡散が容易なため、絶縁性の経
時変化による特性劣化が生じ、長期信頼性が低くなる場
合がある。なお、助剤成分の全部が絶縁性結晶となる必
要はなく、その割合は主結晶粒子径や粒界相の厚みにも
依存するが、少なくとも導電性パスを断つ程度の結晶が
主結晶の粒界に存在すればよい。
Further, when the grain boundary phase is amorphous, the heat dissipation property is deteriorated and the metal element is easily diffused, so that the deterioration of the characteristics due to the change of the insulating property with time and the long-term reliability becomes low. There is. Note that it is not necessary that all of the auxiliary components be insulating crystals, and the proportion thereof depends on the main crystal grain size and the thickness of the grain boundary phase, but at least a crystal that cuts off the conductive path is the main crystal grain. It only has to exist in the world.

【0018】具体的な助剤成分としては、Mn23、S
iO2、ZrO2、TiO2、MgO、CaOが挙げら
れ、特にMn23、SiO2を含有することが望まし
い。
Specific auxiliary components include Mn 2 O 3 and S.
Examples thereof include iO 2 , ZrO 2 , TiO 2 , MgO, and CaO, and it is particularly preferable to contain Mn 2 O 3 and SiO 2 .

【0019】本発明によれば、電気的信頼性を向上する
ため、アルミナ主結晶相の平均粒子径が0.5〜4μm
であることが重要であり、特に0.8〜3μm、更には
1〜2μmの範囲に制御することが好ましい。平均粒子
径が0.5μmに満たない場合、熱伝導が低下し、温度
サイクル試験において熱膨張差による熱応力が繰り返し
印加されることにより絶縁基板と導体層間の密着性が低
下し、また、4μmを越えるとアルミナ主結晶粒子間に
形成される欠陥や気孔が大きくなり、基板厚みの薄い部
位における電気的な短絡や特性劣化を招くとともに、ア
ルミナ質焼結体の強度が低下する。
According to the present invention, in order to improve the electrical reliability, the average particle size of the alumina main crystal phase is 0.5 to 4 μm.
Is important, and it is particularly preferable to control in the range of 0.8 to 3 μm, more preferably 1 to 2 μm. If the average particle size is less than 0.5 μm, the thermal conductivity decreases, and the thermal stress due to the difference in thermal expansion is repeatedly applied in the temperature cycle test, and the adhesion between the insulating substrate and the conductor layer deteriorates. If it exceeds the range, the defects and pores formed between the alumina main crystal grains become large, which causes electrical short-circuiting and characteristic deterioration in the portion where the substrate thickness is thin, and the strength of the alumina-based sintered body decreases.

【0020】また、アルミナ質焼結体の平均気孔率を5
%以下、最大気孔径を20μm以下、平均気孔径を10
μm以下にすることが重要である。気孔に関する上記の
関係を得ることによって、小型化・薄型化したパッケー
ジの破壊強度を高く保つとともに、基板が薄くなっても
気孔の量が少なく、気孔自身も小さいため、気孔によっ
て失われる導電性パスが短く済み、実質的な導電性パス
の減少を抑制できる結果、絶縁耐圧を高くし、且つ電気
特性の劣化や経時変化に伴う電気的信頼性の低下を防ぐ
ことができる。
The average porosity of the alumina-based sintered body is 5
% Or less, maximum pore diameter is 20 μm or less, average pore diameter is 10
It is important to make the thickness below μm. By obtaining the above relationship regarding the pores, the breaking strength of the miniaturized and thinned package is kept high, and even if the substrate becomes thin, the number of pores is small and the pores themselves are small. As a result, it is possible to suppress the reduction of the conductive path substantially, and as a result, it is possible to increase the dielectric strength voltage and prevent the deterioration of the electrical reliability due to the deterioration of the electrical characteristics and the change over time.

【0021】即ち、平均気孔率が5%を越えると絶縁耐
圧が低下するとともに、アルミナ焼結体の強度及び熱伝
導率が低下し、最大気孔径が20μmを越えたり、平均
気孔径が10μmを越えると絶縁耐圧の低下、強度の低
下に加えて、温度サイクル負荷が加わった場合に電気絶
縁性が劣化する。
That is, when the average porosity exceeds 5%, the dielectric strength is lowered, and the strength and thermal conductivity of the alumina sintered body are lowered, and the maximum pore diameter exceeds 20 μm or the average pore diameter is 10 μm. If it exceeds, in addition to the decrease in withstand voltage and the decrease in strength, the electrical insulation deteriorates when a temperature cycle load is applied.

【0022】そして、さらに電気的、機械的な信頼性を
さらに高めるため、平均気孔率は、特に3%以下、更に
は1%以下、最大気孔径は、特に15μm以下、更には
10μm以下、そして平均気孔径は、特に8μm以下、
更には6μm以下であることが好ましい。
In order to further improve the electrical and mechanical reliability, the average porosity is particularly 3% or less, further 1% or less, and the maximum pore diameter is particularly 15 μm or less, further 10 μm or less, and The average pore diameter is 8 μm or less,
Further, it is preferably 6 μm or less.

【0023】次に、本発明を具体的に、アルミナを主成
分とし、焼結助剤としてMn化合物及びSi化合物を含
む焼結体を例として説明する。この組成を採用した場
合、組織制御を容易にし、焼結体特性を高めるため、ア
ルミナの下限値は、85質量%、特に87質量%、更に
は90質量%であることが好ましい。また、上限値は、
電気的信頼性を改善するため、96質量%、特に95質
量%、更には94質量%であることが好ましい。従っ
て、組成は、上記の下限値と上限値との範囲で決定すれ
ばよい。
Next, the present invention will be specifically described by taking a sintered body containing alumina as a main component and containing a Mn compound and a Si compound as a sintering aid as an example. When this composition is adopted, the lower limit value of alumina is preferably 85% by mass, particularly 87% by mass, and further preferably 90% by mass in order to facilitate the structure control and enhance the characteristics of the sintered body. Also, the upper limit is
In order to improve electrical reliability, it is preferably 96% by mass, particularly 95% by mass, and further 94% by mass. Therefore, the composition may be determined within the range of the above lower limit and upper limit.

【0024】焼結助剤として、まず第1の焼結助剤とし
て、Mn化合物をMn23換算で1〜10質量%、特に
2〜9質量%、更には3〜8質量%、より好適には4〜
7質量%の割合で含むと良い。これは、Mn成分は低温
での焼成を可能とする焼結助剤として効果的に作用する
ものであり、このMn23量が1質量%よりも少ない
と、1350〜1500℃での緻密化が達成されず、ま
た10質量%よりも多いと、Mn3Al2Si312及び
/又はMnAl24が主結晶の粒界に析出しにくくなる
ため、充分な電気的信頼性を得ることができない傾向が
ある。
As a sintering aid, first, as a first sintering aid, a Mn compound in terms of Mn 2 O 3 is 1 to 10% by mass, particularly 2 to 9% by mass, and further 3 to 8% by mass. Preferably 4 to
It is preferable that the content be 7% by mass. This is because the Mn component effectively acts as a sintering aid that enables firing at a low temperature, and if the amount of Mn 2 O 3 is less than 1% by mass, the denseness at 1350 to 1500 ° C. If Mn 3 Al 2 Si 3 O 12 and / or MnAl 2 O 4 is not easily precipitated at the grain boundaries of the main crystal, the sufficient electrical reliability is not achieved. Tends to not be able to get.

【0025】また、第2の焼結助剤として、SiをSi
2換算で1〜10質量%、特に2〜9質量%、更には
3〜8質量%、より好適には4〜7質量%の割合で含有
することが好ましい。SiO2量が1質量%より少ない
と、焼結性に寄与する液相が生成されにくくなるため、
緻密化が進行しにくくなる傾向があり、また、10質量
%より多いと、Mn3Al2Si312及び/又はMnA
24が結晶化されにくくなるとともに非晶質相が多く
なり、電気特性、熱特性及び機械特性等が低下しやすい
傾向がある。
Si is used as a second sintering aid.
The content is preferably 1 to 10% by mass, particularly 2 to 9% by mass, further 3 to 8% by mass, and more preferably 4 to 7% by mass in terms of O 2 . When the amount of SiO 2 is less than 1% by mass, a liquid phase that contributes to sinterability is less likely to be generated.
Densification tends to be difficult to proceed, and when it is more than 10% by mass, Mn 3 Al 2 Si 3 O 12 and / or MnA
Since l 2 O 4 is less likely to be crystallized and the amorphous phase is increased, electrical properties, thermal properties, mechanical properties, etc. tend to be deteriorated.

【0026】これらの焼結助剤は、アルミナ主結晶粒子
の粒界に、絶縁性結晶であるMn3Al2Si312結晶
及び/又はMnAl24結晶として存在し、焼結体の電
気的信頼性を高めることができる。また、上記の焼結助
剤を結晶化させることにより誘電損失を顕著に低下で
き、優れた電気特性を具備することができる。
These sintering aids are present as Mn 3 Al 2 Si 3 O 12 crystals and / or MnAl 2 O 4 crystals, which are insulating crystals, at the grain boundaries of the alumina main crystal grains, and the sintering aid The electrical reliability can be improved. Also, by crystallizing the above-mentioned sintering aid, the dielectric loss can be significantly reduced, and excellent electrical characteristics can be provided.

【0027】さらに、第3の焼結助剤として、Mg、C
a、Sr及びBaのうち少なくとも1種を酸化物換算で
3質量%以下の割合で含ませてもよい。これらの成分を
含有することによって、導体層との同時焼結性を高める
ことができる。なお、本発明における助剤成分とは、M
n、Si及び第3の焼結助剤の合計からなるものであ
り、以下に述べる着色成分や第4a族金属元素等は含ま
ない。
Further, as a third sintering aid, Mg, C
At least one of a, Sr and Ba may be contained in a proportion of 3% by mass or less in terms of oxide. By including these components, the simultaneous sinterability with the conductor layer can be improved. The auxiliary component in the present invention means M
It consists of n, Si, and a third sintering aid, and does not include the coloring components and Group 4a metal elements described below.

【0028】さらに、焼結体を黒色化するための着色成
分としてW、Mo等の金属を、所望により2質量%以下
の割合で含んでもよい。なお、これは焼結性には関与し
ないため、本発明における助剤成分として考慮しない。
Further, if desired, a metal such as W or Mo may be contained in a proportion of 2% by mass or less as a coloring component for blackening the sintered body. Since this does not affect the sinterability, it is not considered as an auxiliary component in the present invention.

【0029】また、第4a族金属元素は、電気絶縁性を
低下させる化合物として存在しやすいため、絶縁耐圧を
低下させたり、エレクトロマイグレーションにより拡散
して絶縁性を劣化させる原因となりやすいので、その含
有量を酸化物換算で0.1質量%以下、特に0.05質
量%以下、更には0.01質量%以下に制限することが
好ましい。なお、これは焼結性には関与しないため、本
発明における助剤成分として考慮しない。
Further, since the Group 4a metal element is likely to exist as a compound that lowers the electrical insulation property, it tends to lower the withstand voltage or diffuse by electromigration to deteriorate the insulation property. The amount is preferably 0.1% by mass or less, particularly 0.05% by mass or less, and further preferably 0.01% by mass or less in terms of oxide. Since this does not affect the sinterability, it is not considered as an auxiliary component in the present invention.

【0030】第4a族金属元素としては、TiO2、Z
rO2、HfO2等があるが、特に、TiO2、ZrO
2が、強度を高める点で好ましい。
As the group 4a metal element, TiO 2 , Z
There are rO 2 , HfO 2, etc., but especially TiO 2 , ZrO
2 is preferable in terms of increasing strength.

【0031】このように構成された本発明の配線基板
は、衝撃や応力が印加された場合や、熱応力が加わった
場合でも機械的信頼性を高めるため、高強度、即ち50
0MPa以上、特に550MPa以上であることが好ま
しい。強度を500MPa以上にすると、パッケージを
小型化した際に、気密封止や2次実装の時に加わった熱
応力による破壊、ハンドリング時や使用時の衝撃等によ
る破壊を防止し、機械的信頼性を高めることが可能とな
る。なお、本発明における強度は、JIS 1601に
基づいて、室温での3点曲げ強度によって評価した。
The wiring board of the present invention having such a structure has high strength, that is, 50 in order to improve mechanical reliability even when an impact or a stress is applied or a thermal stress is applied.
It is preferably 0 MPa or more, and particularly preferably 550 MPa or more. When the strength is set to 500 MPa or more, when the package is miniaturized, it is prevented from being damaged by thermal stress applied at the time of hermetically sealing or secondary mounting, and by the impact at the time of handling or use, thereby improving the mechanical reliability. It is possible to raise it. The strength in the present invention was evaluated by three-point bending strength at room temperature based on JIS 1601.

【0032】また、本発明によれば、導体層は、アルミ
ナ焼結体と強固な接着力を有する導体層を同時焼成によ
り形成するため、W及び/又はMoを主成分とし、アル
ミナを含む導体層を絶縁層の表面及び/又は内部に形成
することが好ましい。この主成分は導電性を発現させ、
電気信号の伝播路となり、アルミナは熱膨張率の差を低
下させ、蓋体の封止あるいは各種金属端子との接続を容
易にせしめることができる。
Further, according to the present invention, since the conductor layer is formed by simultaneously firing the alumina sintered body and the conductor layer having a strong adhesive force, a conductor containing W and / or Mo as a main component and containing alumina. It is preferable to form the layer on the surface and / or inside the insulating layer. This main component develops conductivity,
Alumina serves as a propagation path for electrical signals, and alumina reduces the difference in coefficient of thermal expansion, and can facilitate the sealing of the lid or the connection with various metal terminals.

【0033】また、信号の導体損失を低減できる電気抵
抗の低い導体層を形成するという点で、Au、Ag及び
Cuの少なくとも1種を含むことが好ましい。これらの
うちで高い熱伝導率及び低コストの点で、Cuが最も望
ましい。
Further, it is preferable to contain at least one of Au, Ag and Cu from the viewpoint of forming a conductor layer having a low electric resistance capable of reducing the conductor loss of a signal. Of these, Cu is most desirable in terms of high thermal conductivity and low cost.

【0034】特に、導体層が、上記の低抵抗金属と上記
の高融点金属とが3:97〜40:60、特に10:9
0〜35:65、更には20:80〜30:70の割合
で複合されてなることが好ましい。低抵抗金属と高融点
金属とを複合化させることによって、高融点金属が導体
層の骨格成分となるため低抵抗金属の融点以上の焼結温
度においても低抵抗金属は揮散せず、電気抵抗の低い導
体層を形成できるという利点がある。
In particular, in the conductor layer, the low resistance metal and the high melting point metal are 3:97 to 40:60, and particularly 10: 9.
It is preferable that they are compounded at a ratio of 0 to 35:65, further 20:80 to 30:70. By combining the low-resistance metal and the high-melting point metal, the high-melting point metal becomes the skeleton component of the conductor layer, so that the low-resistance metal does not volatilize even at the sintering temperature above the melting point of the low-resistance metal, and the electric resistance There is an advantage that a low conductor layer can be formed.

【0035】このような構成を有する配線基板は、電気
的信頼性及び機械的信頼性に優れるとともに、同時焼成
により高い密着性が可能であるという特徴を有し、セラ
ミックパッケージ、光部品及びパワーモジュール用基板
等に好適に使用することができる。
The wiring board having such a structure is excellent in electrical reliability and mechanical reliability, and has a feature that high adhesion can be obtained by simultaneous firing, and a ceramic package, an optical component and a power module are provided. It can be preferably used as a substrate for a substrate.

【0036】次に、本発明の配線基板を製造する方法に
ついて具体的に説明する。
Next, a method for manufacturing the wiring board of the present invention will be specifically described.

【0037】まず、原料粉末として、平均粒子径が0.
5〜2.5μm、特に1.0〜2.0μmのアルミナ粉
末を準備する。これは、平均粒子径の下限値を0.5μ
mとすることにより、シート成形性を容易にでき、粉末
のコスト上昇を防ぐことができる。また、上限値を2.
5μmとすることで、1500℃以下で焼結を容易にす
ることができる。
First, as the raw material powder, the average particle diameter was 0.
Alumina powder of 5 to 2.5 μm, especially 1.0 to 2.0 μm is prepared. This is the lower limit of the average particle size is 0.5μ
By setting m, the sheet moldability can be facilitated and the cost increase of the powder can be prevented. Also, the upper limit is set to 2.
By setting the thickness to 5 μm, sintering can be facilitated at 1500 ° C. or lower.

【0038】また、第1の焼結助剤として平均粒子径
0.5〜5μmのMn23粉末、第2の焼結助剤として
平均粒子径0.5〜3μmのSiO2粉末を準備する。
これらの原料粉末は、不純物の制御のため、純度が99
%以上であることが好ましい。なお、Mn及びSiは、
上記の酸化物粉末以外に、焼成によって酸化物を形成し
得る炭酸塩、硝酸塩、酢酸塩等として添加してもよい。
Further, Mn 2 O 3 powder having an average particle size of 0.5 to 5 μm was prepared as the first sintering aid, and SiO 2 powder having an average particle size of 0.5 to 3 μm was prepared as the second sintering aid. To do.
These raw material powders have a purity of 99 because of controlling impurities.
% Or more is preferable. In addition, Mn and Si are
In addition to the above oxide powders, carbonates, nitrates, acetates and the like that can form oxides by firing may be added.

【0039】これらの助剤成分は、アルミナ粉末に対し
て、Mn23粉末及びをSiO2粉末をそれぞれ1〜1
0質量%、特に2〜9質量%、更には3〜8質量%の割
合で添加することが重要である。Mn23粉末は、焼結
性を高めるため、また、SiO2粉末は、緻密化を促進
するため、添加することが好ましい。
These auxiliary components are 1 to 1 of Mn 2 O 3 powder and SiO 2 powder with respect to alumina powder.
It is important to add it in an amount of 0% by mass, particularly 2 to 9% by mass, and further 3 to 8% by mass. It is preferable to add Mn 2 O 3 powder in order to enhance sinterability, and SiO 2 powder in order to promote densification.

【0040】なお、所望により、第3の焼結助剤とし
て、Mg、Ca、Sr及びBaの少なくとも1種を酸化
物換算で3質量%以下、着色成分として、W、Mo等の
遷移金属の金属粉末や酸化物粉末を金属換算で2質量%
以下の割合で添加しても良い。
If desired, at least one of Mg, Ca, Sr, and Ba is used as a third sintering aid in an amount of 3% by mass or less in terms of oxide, and a coloring component is selected from transition metals such as W and Mo. 2 mass% of metal powder and oxide powder in terms of metal
You may add in the following ratios.

【0041】上記の混合粉末に対して適宜有機バインダ
を添加した後、これをプレス法、ドクターブレード法、
圧延法、射出法等の周知の成形方法によって絶縁層を形
成するためのシート状成形体を作製する。例えば、上記
混合粉末に有機バインダや溶媒を添加してスラリーを調
製した後、ドクターブレード法によってグリーンシート
を形成する。或いはまた、混合粉末に有機バインダを加
え、シート状成形体であるグリーンシートを、プレス成
形、圧延成形等により所定の厚みに作製する。
After appropriately adding an organic binder to the above-mentioned mixed powder, this is subjected to a pressing method, a doctor blade method,
A sheet-shaped molded body for forming an insulating layer is manufactured by a known molding method such as a rolling method or an injection method. For example, an organic binder or a solvent is added to the mixed powder to prepare a slurry, and then a green sheet is formed by a doctor blade method. Alternatively, an organic binder is added to the mixed powder, and a green sheet, which is a sheet-shaped molded body, is manufactured to have a predetermined thickness by press molding, roll molding or the like.

【0042】このようにして作製したグリーンシートに
対して、所望により、マイクロドリル、レーザー等によ
り直径50〜250μmのビアホールを形成することが
できる。
If desired, via holes having a diameter of 50 to 250 μm can be formed in the green sheet thus produced by a microdrill, a laser or the like.

【0043】次いで、導体ペーストを作製する。導体ペ
ーストは、導体成分としてW及び/又はMoを用い、こ
れにアルミナ粉末を添加したものが好ましい。これは、
アルミナ焼結体と導体層の密着性を高めるためである。
なお、密着性向上のため、アルミナ粉末の代わりに、絶
縁層を形成する酸化物セラミックス成分と同一の組成物
粉末を加えても良く、さらにNi等の酸化物粉末を0.
05〜2体積%の割合で添加することも可能である。こ
れらの粉末にバインダ及び溶媒を加えて混合し、導体ペ
ーストを作製する。
Next, a conductor paste is prepared. It is preferable that the conductor paste uses W and / or Mo as a conductor component, and alumina powder is added to this. this is,
This is to improve the adhesion between the alumina sintered body and the conductor layer.
In order to improve the adhesion, powder of the same composition as the oxide ceramics component forming the insulating layer may be added in place of alumina powder, and oxide powder of Ni or the like may be added in an amount of 0.
It is also possible to add it in the ratio of 05 to 2 volume%. A binder and a solvent are added to these powders and mixed to prepare a conductor paste.

【0044】また、Au、Ag及びCuの少なくとも1
種からなる低抵抗金属の粉末を上記の組成に加えても良
い。即ち、これらの低抵抗金属の粉末とW、Mo等の高
融点金属の粉末とを含有する導体ペーストを調製するこ
とができる。
At least one of Au, Ag and Cu
A low resistance metal powder of seeds may be added to the above composition. That is, a conductor paste containing these low resistance metal powders and high melting point metal powders such as W and Mo can be prepared.

【0045】得られた導体ペーストを、スクリーン印
刷、グラビア印刷などの方法により各グリーンシート上
に印刷塗布し、配線パターンを作製するとともに、所望
により、上記の導体ペーストをビアホール内に充填す
る。
The conductor paste thus obtained is applied by printing onto each green sheet by a method such as screen printing or gravure printing to form a wiring pattern, and the conductor paste is filled in via holes if desired.

【0046】また、焼成雰囲気は、金属が酸化されない
ように、非酸化性雰囲気であることが望ましい。具体的
には、窒素、又は窒素と水素との混合ガスを用いること
が望ましい。特に、導体層中の銅の拡散を抑制する上で
は、水素及び窒素を含み、露点+30℃以下、特に+2
5℃以下の非酸化性雰囲気であることが望ましい。な
お、雰囲気中には、所望により、アルゴン等の不活性ガ
スを混入してもよい。
The firing atmosphere is preferably a non-oxidizing atmosphere so that the metal is not oxidized. Specifically, it is desirable to use nitrogen or a mixed gas of nitrogen and hydrogen. In particular, in order to suppress the diffusion of copper in the conductor layer, it contains hydrogen and nitrogen and has a dew point of + 30 ° C. or less, particularly +2.
A non-oxidizing atmosphere at 5 ° C. or lower is desirable. If desired, an inert gas such as argon may be mixed in the atmosphere.

【0047】焼成時の露点は、+30℃より高いと焼成
中にアルミナ質焼結体と雰囲気中の水分とが反応し酸化
膜を形成し、この酸化膜と銅含有導体の銅が反応して導
体の抵抗を上昇させ、且つ銅の拡散を助長することか
ら、露点+30℃以下が望ましい。
If the dew point during firing is higher than + 30 ° C., the alumina sintered body reacts with moisture in the atmosphere during firing to form an oxide film, and the oxide film reacts with copper of the copper-containing conductor. Since the resistance of the conductor is increased and the diffusion of copper is promoted, a dew point of + 30 ° C. or lower is desirable.

【0048】このような方法で製造した配線基板は、電
気的信頼性及び機械的信頼性が高く、500MPa以上
の強度が得られることから、小型セラミックパッケー
ジ、光部品、パワーモジュール用基板等に好適に用いる
ことができる。
The wiring board manufactured by such a method has high electrical reliability and mechanical reliability and can obtain a strength of 500 MPa or more. Therefore, it is suitable for a small ceramic package, an optical component, a substrate for a power module and the like. Can be used for.

【0049】[0049]

【実施例】純度99%、平均粒子径1.8μmのアルミ
ナ粉末に対して、純度99%、平均粒子径4.5μmの
Mn23粉末、純度99%、平均粒子径1.0μmのS
iO2粉末、純度99.9%、平均粒子径1.2μmの
W粉末、純度99.9%、平均粒子径1.2μmのMo
粉末、純度99.9%、平均粒子径0.7μmのMgC
3粉末、純度99%、平均粒子径1.3μmのCaC
3粉末、純度99%、平均粒子径1.0μmのSrC
3粉末、純度99%、平均粒子径1.0μmのBaO
粉末、純度90%、平均粒子径1.2μmのCr23
末及び純度90%、平均粒子径0.5μmのCo34
末を表1に示すような割合で混合した後、さらに、成形
用有機樹脂(バインダ)としてアクリル系バインダと、
トルエンを溶媒として混合してスラリーを調製した後、
ドクターブレード法にて厚さ200μmのシート状に成
形し、グリーンシートを得た。
EXAMPLES With respect to alumina powder having a purity of 99% and an average particle diameter of 1.8 μm, Mn 2 O 3 powder having a purity of 99% and an average particle diameter of 4.5 μm, S having a purity of 99% and an average particle diameter of 1.0 μm.
iO 2 powder, purity 99.9%, W powder with average particle size 1.2 μm, purity 99.9%, Mo with average particle size 1.2 μm
Powder, purity 99.9%, average particle size 0.7 μm MgC
O 3 powder, purity 99%, CaC with average particle size 1.3 μm
O 3 powder, purity 99%, SrC with average particle size 1.0 μm
O 3 powder, purity 99%, BaO with average particle size 1.0 μm
After mixing powder, Cr 2 O 3 powder having a purity of 90% and an average particle diameter of 1.2 μm and Co 3 O 4 powder having a purity of 90% and an average particle diameter of 0.5 μm in a ratio as shown in Table 1, An acrylic binder as a molding organic resin (binder),
After preparing a slurry by mixing toluene as a solvent,
A doctor blade method was used to form a sheet having a thickness of 200 μm to obtain a green sheet.

【0050】上記で得られたグリーンシートを所定厚み
に積層し、露点+25℃の窒素水素混合雰囲気にて脱脂
を行なった後、引き続き、表2に示した昇温速度で10
00℃から焼成最高温度まで昇温し、焼成最高温度にて
露点+25℃の窒素水素混合雰囲気にて1時間焼成した
後、1000℃までを表2に示した速度で冷却した。
The green sheets obtained above were laminated to a predetermined thickness and degreased in a nitrogen-hydrogen mixed atmosphere with a dew point of + 25 ° C., and subsequently, at a temperature rising rate shown in Table 2, 10
The temperature was raised from 00 ° C. to the maximum firing temperature, fired at the maximum firing temperature in a nitrogen-hydrogen mixed atmosphere with a dew point of + 25 ° C. for 1 hour, and then cooled to 1000 ° C. at the rate shown in Table 2.

【0051】得られた焼結体の粒界結晶相は焼結体を粉
砕し、X線回折により同定した。また、嵩密度をアルキ
メデス法によって測定し、同じ試料を粉砕して真密度の
測定を行ない、嵩密度との比率から平均気孔率を算出し
た。さらに、焼結体表面をダイアモンドペーストにて鏡
面研磨し、画像解析装置(ニレコ製 LUZEX−F
S)を用いて気孔の最大気孔径、平均気孔径を測定し
た。即ち、顕微鏡倍率を100倍、測定面積を9.0×
104μm2として10箇所測定し、最大気孔径及び平均
気孔径の平均値をそれぞれ算出した。
The grain boundary crystal phase of the obtained sintered body was identified by X-ray diffraction after crushing the sintered body. Further, the bulk density was measured by the Archimedes method, the same sample was crushed to measure the true density, and the average porosity was calculated from the ratio with the bulk density. Furthermore, the surface of the sintered body was mirror-polished with a diamond paste, and an image analyzer (LUZEX-F manufactured by Nireco) was used.
The maximum pore diameter and average pore diameter of the pores were measured using S). That is, the microscope magnification is 100 times and the measurement area is 9.0 ×.
10 4 μm 2 was measured at 10 points, and the average values of the maximum pore diameter and the average pore diameter were calculated.

【0052】また、強度は、厚み3mm、幅4mm、長
さ40mmの梁状試料を作製し、JIS R1601に
基づいて、室温にて3点曲げ強度で測定し、30本の平
均値を強度とした。
As for the strength, a beam-shaped sample having a thickness of 3 mm, a width of 4 mm and a length of 40 mm was prepared and measured at room temperature by three-point bending strength based on JIS R1601, and the average value of 30 pieces was taken as the strength. did.

【0053】さらに、アルミナ主結晶相の平均粒子径
は、走査電子顕微鏡による1000倍の写真から100
個の粒子を用いてインターセプト法により平均粒子径を
求めた。
Further, the average particle diameter of the alumina main crystal phase is 100 from a 1000 times photograph by a scanning electron microscope.
The average particle size was determined by the intercept method using individual particles.

【0054】また、JIS C2141に基づいて3端
子法により各試料の絶縁抵抗を測定した後、−65℃〜
150℃の温度サイクル試験を100サイクル行なった
後に再度絶縁抵抗を測定し、絶縁抵抗が1010Ω以上の
ものを○、1010Ω未満を×とした。
After measuring the insulation resistance of each sample by the three-terminal method based on JIS C2141,
The insulation resistance was measured again after 100 cycles of a temperature cycle test at 150 ° C., and the insulation resistance of 10 10 Ω or more was evaluated as ◯ and less than 10 10 Ω was evaluated as x.

【0055】また、縦60mm、横60mm、厚み0.
32mmの基板をシリコーン油の中に入れ、基板の厚み
方向に5kVの電圧を印加し、絶縁破壊の有無を確認し
た。そして、破壊しないものを○、破壊したものを×と
して表2に示した。
The length is 60 mm, the width is 60 mm, and the thickness is 0.
A 32 mm substrate was placed in silicone oil, a voltage of 5 kV was applied in the thickness direction of the substrate, and the presence or absence of dielectric breakdown was confirmed. And, those which are not destroyed are indicated by ◯, and those which are destroyed are indicated by x, and shown in Table 2.

【0056】一方、上記と同様にして作製したグリーン
シートに対して、打抜き加工を施し、直径が200μm
のビアホールを形成した。そして、純度99.9%、平
均粒子径1.2μmのW粉末及びMo粉末、純度99.
9%、平均粒子径0.8μmのAu粉末、純度99.9
%、平均粒子径1.2μmのAg粉末、純度99%、平
均粒子径1.2μmのCu粉末、純度99%、平均粒子
径1.8μmのアルミナ粉末、平均粒子径1.0μmの
NiO粉末を、表1に示す組成に調製した後、アクリル
系バインダとアセトンを溶媒として混合し、導体ペース
トを調製し、この導体ペーストをスクリーン印刷法によ
って上記のグリーンシートのビアホール内に充填すると
ともに、配線パターン状に印刷塗布した。なお、配線パ
ターンは、線幅150μmとなるように調製した。
On the other hand, the green sheet produced in the same manner as above was punched to have a diameter of 200 μm.
A via hole was formed. Then, W powder and Mo powder having a purity of 99.9% and an average particle diameter of 1.2 μm, a purity of 99.
9%, Au powder with an average particle size of 0.8 μm, purity 99.9
%, Ag powder having an average particle diameter of 1.2 μm, purity 99%, Cu powder having an average particle diameter of 1.2 μm, purity 99%, alumina powder having an average particle diameter of 1.8 μm, and NiO powder having an average particle diameter of 1.0 μm. After preparing the composition shown in Table 1, an acrylic binder and acetone were mixed as a solvent to prepare a conductor paste, and the conductor paste was filled into the via holes of the green sheet by a screen printing method, and at the same time, the wiring pattern was formed. It was applied by printing. The wiring pattern was prepared to have a line width of 150 μm.

【0057】上記のようにして作製した各シート状成形
体を位置合わせして積層圧着して積層体を作製した。そ
の後、この積層成形体を露点+25℃の窒素水素混合雰
囲気にて脱脂を行なった後、露点+25℃の窒素水素混
合雰囲気にて脱脂を行なった後、引き続き、表2に示し
た昇温速度で1000℃から焼成最高温度まで昇温し、
焼成最高温度にて露点+25℃の窒素水素混合雰囲気に
て1時間焼成した後、1000℃までを表2に示した速
度で冷却した。
Each of the sheet-shaped compacts produced as described above was aligned and pressure-laminated to produce a laminate. Then, this laminated compact was degreased in a nitrogen-hydrogen mixed atmosphere with a dew point of + 25 ° C. and then degreased in a nitrogen-hydrogen mixed atmosphere with a dew point of + 25 ° C., and subsequently at the temperature rising rate shown in Table 2. The temperature rises from 1000 ° C to the maximum firing temperature,
After firing for 1 hour in a nitrogen-hydrogen mixed atmosphere having a dew point of + 25 ° C. at the firing maximum temperature, the sample was cooled to 1000 ° C. at the rate shown in Table 2.

【0058】作製した配線基板の導体層を走査型電子顕
微鏡にて観察し、導体層の外観として、剥離やクラック
の無いものを○、あるものを×とした。結果を表1、2
に示した。
The conductor layer of the produced wiring board was observed with a scanning electron microscope, and the appearance of the conductor layer was evaluated as ◯ when there was no peeling or crack, and as x when there was some. The results are shown in Tables 1 and 2.
It was shown to.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】本発明の試料No.2、5、8、10及び
13〜29は、いずれも強度が520MPa以上、絶縁
性が1010Ω以上で劣化が小さく、絶縁破壊せず、導体
層の外観は良好であった。
Sample No. of the present invention. Each of Nos. 2, 5, 8, 10 and 13 to 29 had a strength of 520 MPa or more and an insulating property of 10 10 Ω or more, which caused little deterioration, did not cause dielectric breakdown, and had a good conductor layer appearance.

【0062】一方、粒界結晶相が非晶質で、平均気孔
率、最大気孔径、平均気孔径が大きく本発明の範囲外の
試料No.1は、強度が320MPa、絶縁性が劣化し
て抵抗が低くなり、絶縁破壊した。
On the other hand, in the case of Sample No. 3 having an amorphous grain boundary crystal phase, large average porosity, maximum pore diameter, and large average pore diameter, which are outside the range of the present invention. In No. 1, the strength was 320 MPa, the insulating property was deteriorated, the resistance was lowered, and the dielectric breakdown occurred.

【0063】また、粒界結晶相が非晶質である本発明の
範囲外の試料No.6及び12は、強度が430MPa
以下、絶縁性の劣化が観察された。
Further, the sample No. outside the scope of the present invention in which the grain boundary crystal phase is amorphous was used. 6 and 12 have a strength of 430 MPa
Hereinafter, the deterioration of the insulating property was observed.

【0064】さらに、平均気孔率、最大気孔径及び平均
気孔径が大きく、本発明の範囲外の試料No.3、7及
び9は、強度が480MPa以下と低く、絶縁抵抗が劣
化しい、絶縁破壊した。また、同様の試料No.4は強
度が390MPaと小さく、絶縁性が劣化した。
Further, sample No. 3 having a large average porosity, maximum pore diameter and average pore diameter, which are out of the range of the present invention. In Nos. 3, 7 and 9, the strength was low at 480 MPa or less, the insulation resistance was not deteriorated, and dielectric breakdown occurred. In addition, similar sample No. No. 4 had a small strength of 390 MPa, and the insulating property was deteriorated.

【0065】さらにまた、1550℃で焼成し、平均結
晶粒子径が5μmと大きい本発明の範囲外の試料No.
11は、強度が460MPaと小さく、導体層は、簡単
に剥離し、外観が不良であった。
Furthermore, after being fired at 1550 ° C., the sample No. 1 having a large average crystal grain size of 5 μm, which is outside the range of the present invention, was used.
No. 11 had a low strength of 460 MPa, the conductor layer was easily peeled off, and the appearance was poor.

【0066】[0066]

【発明の効果】本発明の配線基板は、助剤添加量と、ア
ルミナ主結晶の平均粒子径、平均気孔率、最大気孔径及
び平均気孔径等の焼結体組織を制御することにより、ア
ルミナ質焼結体と導体層との1500℃以下の焼成温度
における同時焼成を可能とし、且つ電気的信頼性及び機
械的信頼性を向上することができ、その結果、機械的及
び電気的に信頼性の高い小型セラミックパッケージを実
現できる。
EFFECT OF THE INVENTION The wiring board of the present invention can be formed by controlling the additive amount and the sintered body structure such as the average particle size of the alumina main crystal, the average porosity, the maximum pore size and the average pore size. It is possible to perform simultaneous firing of the high quality sintered body and the conductor layer at a firing temperature of 1500 ° C. or lower, and it is possible to improve electrical reliability and mechanical reliability, and as a result, mechanical and electrical reliability are obtained. It is possible to realize a high-performance compact ceramic package.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/46 H05K 3/46 T C04B 35/10 D (72)発明者 石田 政信 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 Fターム(参考) 4E351 AA07 BB01 BB24 BB26 BB31 CC12 CC22 CC31 CC33 DD04 DD05 DD06 DD17 DD31 GG02 GG06 4G030 AA07 AA08 AA09 AA10 AA17 AA22 AA25 AA28 AA36 AA37 AA61 BA12 CA01 CA04 CA05 CA08 GA04 GA14 GA17 GA20 GA24 GA27 5E346 AA12 AA15 AA32 AA38 BB01 CC17 CC32 CC35 CC36 CC38 CC39 DD02 DD34 EE24 EE27 EE28 EE29 GG02 GG04 GG06 GG09 HH01 HH11 HH22 HH24Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H05K 3/46 H05K 3/46 TC 04B 35/10 D (72) Inventor Masanobu Ishida 1-4 Yamashita-cho, Kokubun-shi, Kagoshima No. KYOCERA Co., Ltd. Research Institute F-term (reference) 4E351 AA07 BB01 BB24 BB26 BB31 CC12 CC22 CC31 CC33 DD04 DD05 DD06 DD17 DD31 GG02 GG06 4G030 AA07 AA08 AA09 AA10 AA17 AA22 CAA GA CA04 GA17 CA04 GA14 CA12 CA14 GA20 GA24 GA27 5E346 AA12 AA15 AA32 AA38 BB01 CC17 CC32 CC35 CC36 CC38 CC39 DD02 DD34 EE24 EE27 EE28 EE29 GG02 GG04 GG06 GG09 HH01 HH11 HH22 HH24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】最低厚みが0.6mm以下のアルミナ質焼
結体からなる絶縁基板の内部及び/又は表面に導体層が
形成されてなる配線基板において、前記アルミナ質焼結
体が酸化物換算で4〜15質量%の助剤成分を含み、該
助剤成分が主に絶縁性結晶としてアルミナ主結晶相の粒
界に存在するとともに、前記アルミナ質焼結体における
前記アルミナ主結晶相の平均粒子径が0.5〜4μm、
平均気孔率が5%以下、最大気孔径が20μm以下、平
均気孔径が10μm以下であることを特徴とする配線基
板。
1. A wiring board having a conductor layer formed inside and / or on the surface of an insulating substrate made of an alumina sintered body having a minimum thickness of 0.6 mm or less, wherein the alumina sintered body is converted into oxide. And 4 to 15% by mass of the auxiliary component, the auxiliary component mainly exists as an insulating crystal in a grain boundary of the alumina main crystal phase, and the average of the alumina main crystal phase in the alumina sintered body is Particle size is 0.5 to 4 μm,
A wiring board having an average porosity of 5% or less, a maximum pore diameter of 20 μm or less, and an average pore diameter of 10 μm or less.
【請求項2】前記アルミナ質焼結体が、アルミナを主成
分とし、Mnを酸化物換算で1〜10質量%、Siを酸
化物換算で1〜10質量%の割合で含み、アルミナ主結
晶相の粒界にMn3Al2Si312及び/又はMnAl2
4結晶を含むことを特徴とする請求項1記載の配線基
板。
2. The alumina-based sintered body contains alumina as a main component, contains Mn in an amount of 1 to 10% by mass in terms of oxide and Si in an amount of 1 to 10% by weight in terms of oxide, and comprises an alumina main crystal. Mn 3 Al 2 Si 3 O 12 and / or MnAl 2 at the grain boundary of the phase
The wiring board according to claim 1, comprising an O 4 crystal.
【請求項3】第4a族金属元素を、酸化物換算で0.1
質量%以下の割合で含むことを特徴とする請求項1又は
2に記載の配線基板。
3. A metal element of Group 4a of 0.1 in terms of oxide.
The wiring board according to claim 1, wherein the wiring board is contained in a proportion of not more than mass%.
【請求項4】前記導体層が、W及び/又はMoを主成分
とし、アルミナを含むことを特徴とする請求項1乃至3
のいずれかに記載の配線基板。
4. The conductor layer according to claim 1, wherein the conductor layer contains W and / or Mo as a main component and contains alumina.
The wiring board according to any one of 1.
【請求項5】前記導体層が、Au、Ag及びCuの少な
くとも1種を含むことを特徴とする請求項1乃至4のい
ずれかに記載の配線基板。
5. The wiring board according to claim 1, wherein the conductor layer contains at least one of Au, Ag and Cu.
JP2001363642A 2001-11-29 2001-11-29 Wiring board Pending JP2003163425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363642A JP2003163425A (en) 2001-11-29 2001-11-29 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363642A JP2003163425A (en) 2001-11-29 2001-11-29 Wiring board

Publications (1)

Publication Number Publication Date
JP2003163425A true JP2003163425A (en) 2003-06-06

Family

ID=19173953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363642A Pending JP2003163425A (en) 2001-11-29 2001-11-29 Wiring board

Country Status (1)

Country Link
JP (1) JP2003163425A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053758A (en) * 2003-08-07 2005-03-03 Ngk Spark Plug Co Ltd Alumina sintered body and integrated circuit board
JP2007250379A (en) * 2006-03-16 2007-09-27 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine, and its manufacturing method
JP2009180518A (en) * 2008-01-29 2009-08-13 Kyocera Corp Wiring board for probe card and probe card
JP2009236576A (en) * 2008-03-26 2009-10-15 Kyocera Corp Wiring board for probe card and probe card using the same
JP2011134753A (en) * 2009-12-22 2011-07-07 Kyocera Corp Ceramic wiring board for probe card, and probe card using the same
JP2012156560A (en) * 2012-05-21 2012-08-16 Kyocera Corp Alumina sintered compact and wiring board
WO2013008919A1 (en) * 2011-07-14 2013-01-17 株式会社東芝 Ceramic circuit board
WO2014002306A1 (en) * 2012-06-25 2014-01-03 京セラ株式会社 Alumina ceramic, and ceramic wiring substrate and ceramic package using same
JP2018030745A (en) * 2016-08-23 2018-03-01 日本特殊陶業株式会社 Ceramic substrate
WO2023243542A1 (en) * 2022-06-13 2023-12-21 Ngkエレクトロデバイス株式会社 Sintered body

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053758A (en) * 2003-08-07 2005-03-03 Ngk Spark Plug Co Ltd Alumina sintered body and integrated circuit board
JP4578076B2 (en) * 2003-08-07 2010-11-10 日本特殊陶業株式会社 Alumina sintered body and IC substrate
JP2007250379A (en) * 2006-03-16 2007-09-27 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine, and its manufacturing method
JP4690230B2 (en) * 2006-03-16 2011-06-01 日本特殊陶業株式会社 Spark plug for internal combustion engine and method for manufacturing the same
JP2009180518A (en) * 2008-01-29 2009-08-13 Kyocera Corp Wiring board for probe card and probe card
JP2009236576A (en) * 2008-03-26 2009-10-15 Kyocera Corp Wiring board for probe card and probe card using the same
JP2011134753A (en) * 2009-12-22 2011-07-07 Kyocera Corp Ceramic wiring board for probe card, and probe card using the same
WO2013008919A1 (en) * 2011-07-14 2013-01-17 株式会社東芝 Ceramic circuit board
CN103492345A (en) * 2011-07-14 2014-01-01 株式会社东芝 Ceramic circuit board
JPWO2013008919A1 (en) * 2011-07-14 2015-02-23 株式会社東芝 Ceramic circuit board
KR101522807B1 (en) * 2011-07-14 2015-05-26 가부시끼가이샤 도시바 Ceramic circuit board
JP2012156560A (en) * 2012-05-21 2012-08-16 Kyocera Corp Alumina sintered compact and wiring board
WO2014002306A1 (en) * 2012-06-25 2014-01-03 京セラ株式会社 Alumina ceramic, and ceramic wiring substrate and ceramic package using same
JPWO2014002306A1 (en) * 2012-06-25 2016-05-30 京セラ株式会社 Alumina ceramics and ceramic wiring board and ceramic package using the same
JP2018030745A (en) * 2016-08-23 2018-03-01 日本特殊陶業株式会社 Ceramic substrate
WO2023243542A1 (en) * 2022-06-13 2023-12-21 Ngkエレクトロデバイス株式会社 Sintered body

Similar Documents

Publication Publication Date Title
JP5321066B2 (en) Ceramic composition and ceramic substrate
WO1998044523A1 (en) Non-reducing dielectric ceramic material
JP3924406B2 (en) Alumina sintered body and manufacturing method thereof, wiring board and manufacturing method thereof
JP2003163425A (en) Wiring board
JP2003040668A (en) Low temperature fired ceramic sintered compact and its manufacturing method and wiring board
JP4959079B2 (en) Package for storing semiconductor elements
JP2005050875A (en) Ceramic package
JP3517062B2 (en) Copper metallized composition and glass-ceramic wiring board using the same
JP4613826B2 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
JP4802039B2 (en) Ceramic composition and multilayer ceramic circuit device
EP1447391A2 (en) Oxide ceramic material, ceramic substrate employing the same, ceramic laminate device, and power amplifier module
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP2990494B2 (en) Multilayer ceramic capacitors
JP2004256384A (en) Oxide ceramic material, and ceramic substrate, laminated ceramic device, and power amplifier module using the material
JP2003309226A (en) Ceramic package and manufacturing method therefor
JP2003318060A (en) Manufacturing method of laminated electronic component
JP3537648B2 (en) Aluminum nitride wiring board and method of manufacturing the same
JP4619173B2 (en) Composite electronic component materials
JP2000077805A (en) Wiring board and manufacture thereof
JP4413223B2 (en) Ceramic package
JP5004548B2 (en) Low-temperature fired porcelain, method for producing the same, and wiring board using the same
JP3537698B2 (en) Wiring board and method of manufacturing the same
JP4449344B2 (en) Oxide porcelain composition and ceramic multilayer substrate
JP2005101300A (en) Ceramic package and its manufacturing process
JPH09142969A (en) Metallized composition and production of wiring board formed by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725