JPS63267508A - Manufacture of superconductor of oxide - Google Patents

Manufacture of superconductor of oxide

Info

Publication number
JPS63267508A
JPS63267508A JP62102238A JP10223887A JPS63267508A JP S63267508 A JPS63267508 A JP S63267508A JP 62102238 A JP62102238 A JP 62102238A JP 10223887 A JP10223887 A JP 10223887A JP S63267508 A JPS63267508 A JP S63267508A
Authority
JP
Japan
Prior art keywords
oxide
sheet
superconductor
organic binder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62102238A
Other languages
Japanese (ja)
Inventor
Kazuo Eda
江田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62102238A priority Critical patent/JPS63267508A/en
Publication of JPS63267508A publication Critical patent/JPS63267508A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

PURPOSE:To improve productivity, by a method wherein raw materials for an oxide of a stratified perovskite structure superconductor is sintered by adding a specific organic binder and plasticizer and processing into a predetermined form. CONSTITUTION:As an organic binder, 0.7-1.5wt.% of either polyvinyl acetate or polyvinyl butyral or both of them and a plasticizer are added to raw materials for an oxide of a stratified perovskite structure superconductor and they are made into a slurry by kneading them with plasticizer along with a solvent. A raw sheet is manufactured by forming the slurry into a sheetlike state in a fixed thickness and drying the same. Then a sheetlike superconductor of oxide is obtained by sintering the raw sheet by processing the same into a predetermined form. An oxide of A-Ba-Cu [provided that A is Y, Sc (rate earth element)] or that of La-B-Cu (provided that B is Ca, Sr) or that of Y-Sr- Cr-Cu is used as the raw materials for the oxide of the stratified perovskite structure superconductor. In addition, La, Yb, Tm, Er, Ho, Dy, Gd are used as the rare earth.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はシート状の酸化物超電導体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a sheet-like oxide superconductor.

従来の技術 超電導体は電気抵抗がOであり、送電線、電磁石などに
応用すると極めて有用である。その場合に、超電導体を
薄い薄板状に加工できると応用範囲が極めて広がる。従
来の板状超電導体の製造方法として、Nb系の金属超電
導材料に熱と圧力を加えて、引き伸す製造方法がしられ
ている。
Conventional technology Superconductors have an electrical resistance of O, and are extremely useful when applied to power transmission lines, electromagnets, etc. In this case, if the superconductor can be processed into a thin sheet, the range of applications will be greatly expanded. As a conventional method for manufacturing a plate-shaped superconductor, a manufacturing method is known in which Nb-based metal superconducting material is stretched by applying heat and pressure.

発明が解決しようとする問題点 この方法は、金属系の超電導材料には適用しやすいが、
酸化物セラミックス系材料には、酸化物セラミックス系
材料がもろいため適用困難であった。
Problems to be solved by the invention Although this method is easy to apply to metallic superconducting materials,
It has been difficult to apply this method to oxide ceramic materials because oxide ceramic materials are brittle.

本発明はかかる点に鑑みなされたもので、数10μmか
ら数100μmの任意の形状のシート状酸化物超電導体
を、きわめて容易に形成できる酸化物超電導体の製造方
法を提供することを目的としている。
The present invention was made in view of the above, and an object of the present invention is to provide a method for manufacturing an oxide superconductor that can extremely easily form a sheet-like oxide superconductor having an arbitrary shape of several tens of micrometers to several hundreds of micrometers. .

問題点を解決するための手段 本発明は上記問題点を解決するため、層状ペロブスカイ
ト構造超電導体酸化物用原料に、有機結合剤として、ポ
リ酢酸ビニール、もしくはポリビニールブチラールのい
ずれか、またはこれら両者を、0.7〜15重量%と、
可塑剤を加え、これらを溶媒と共に混練して泥漿とし、
前記泥漿をシート状に一定厚みに形成して乾燥させて生
シートをつくり、この生シートを所定の形状に加工し、
焼成することによって、シート状酸化物超電導体を得る
という生産性に優れたシート状酸化物超電導体の製造方
法を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses polyvinyl acetate or polyvinyl butyral, or both, as an organic binder in the raw material for the layered perovskite structure superconductor oxide. , 0.7 to 15% by weight,
Add a plasticizer and knead these with a solvent to make a slurry,
Form the slurry into a sheet with a certain thickness and dry it to make a green sheet, process this green sheet into a predetermined shape,
The present invention provides a method for producing a sheet-like oxide superconductor with excellent productivity, in which the sheet-like oxide superconductor is obtained by firing.

作用 本発明は、前記した製造方法により、任意の形状のシー
ト状酸化物超電導体を形成することができる 実施例 (実施例1) 酸化インドリウム(Y! (h、 ) 、酸化バリウム
(B a O)と酸化銅(Cub)を、Y、、4Ba、
、。
Function The present invention provides an embodiment (Example 1) in which a sheet-like oxide superconductor of any shape can be formed by the above-described manufacturing method. O) and copper oxide (Cub), Y, 4Ba,
,.

Cu、の比で含むようそれぞれ秤量し、混合の後、90
0℃の空気中で5時間焼成した。これをもう一度粉砕、
混合した後、900℃の空気中で12時間焼成し、再度
粉砕した。
Weigh each to contain Cu, and after mixing, 90
It was baked in air at 0°C for 5 hours. Grind this again,
After mixing, the mixture was fired in air at 900°C for 12 hours and ground again.

次に、この原料に、ポリ酢酸ビニール(PVAC)とポ
リビニールブチラール(PVB)とのうちの一種以上を
結合剤として、0.7〜15重量%、可塑剤としてフタ
ル酸ジオクチルを0.5重量%をそれぞれ加え、これに
セラミック原料に対して60重量%のメチルアルコール
で攪拌混合し、さらにボールミルにて24時間混合して
泥漿(スリップ)を作った。このスリップをポリエステ
ルフィルム上に、ドクターブレード法にてシーを状に成
型し、自然乾燥して生シートを作った。この時その厚み
を200μmとした。この生シートをlXIQcmの矩
形金型で打ち抜き、空気中で樹脂除去を十分施してから
950℃で5時間焼成した。室温に冷却後、950℃の
空気中で10時間熱処理を行った。冷却後、得られたシ
ート状焼結体の電気抵抗を液体窒素(77K )温度で
測定した結果、いずれも超電導性を示した。すなわちこ
のような方法で形成したシート状焼結体は、超電導体で
あった。得られたシート状焼結体を、X線解析で調べた
ところ、層状ペロブスカイト構造を示していた。
Next, to this raw material, 0.7 to 15% by weight of one or more of polyvinyl acetate (PVAC) and polyvinyl butyral (PVB) as a binder, and 0.5% by weight of dioctyl phthalate as a plasticizer. % of the ceramic raw material was added to the mixture, and 60% by weight of methyl alcohol based on the ceramic raw material was stirred and mixed, and further mixed for 24 hours in a ball mill to form a slip. This slip was formed into a sheet on a polyester film using a doctor blade method, and air-dried to produce a green sheet. At this time, the thickness was set to 200 μm. This green sheet was punched out using a rectangular mold of 1XIQcm, and after sufficiently removing the resin in air, it was fired at 950°C for 5 hours. After cooling to room temperature, heat treatment was performed in air at 950° C. for 10 hours. After cooling, the electrical resistance of the obtained sheet-like sintered bodies was measured at liquid nitrogen (77K) temperature, and as a result, all showed superconductivity. That is, the sheet-like sintered body formed by such a method was a superconductor. When the obtained sheet-like sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

図は、層状ペロブスカイト構造の基本構成要素であるペ
ロブスカイト構造を示したもので、図において、1はC
u −、2は0,3はYまたはBaである。本実施例の
層状ペロブスカイト構造は、この構成要素がある周期を
もって、層状に積み重なったものである。
The figure shows the perovskite structure, which is the basic component of the layered perovskite structure. In the figure, 1 is C
u −, 2 is 0, 3 is Y or Ba. In the layered perovskite structure of this example, these constituent elements are stacked in layers at a certain period.

有機結合剤の量を変えると、焼結体の密度が変化した。Varying the amount of organic binder changed the density of the sintered body.

0.7重量%以下および15重量%以上の有機結合剤を
加えた場合、焼結体密度はその最大値の90%以下に低
下し、非常にもろくなり、破損しやすくシート状焼結体
として好ましいものではなかった。したがって有機結合
剤の有効な添加量は0.7〜15重量%であった。  
− (実施例2) 酸化ランタン(t、a、O,) 、酸化バリウム(B 
a O)と酸化銅(Cu O)を、La+、@4Bao
、+hCu Iの比で含むようそれぞれ秤量し、混合の
後、実施例1と同様にして、セラミックス原料を作成し
た。
When less than 0.7% by weight and more than 15% by weight of an organic binder is added, the density of the sintered body decreases to less than 90% of its maximum value, making it extremely brittle and easily damaged as a sheet-like sintered body. It wasn't a good thing. Therefore, the effective amount of organic binder added was 0.7 to 15% by weight.
- (Example 2) Lanthanum oxide (t, a, O,), barium oxide (B
aO) and copper oxide (CuO), La+, @4Bao
, +hCu I, and after mixing, a ceramic raw material was prepared in the same manner as in Example 1.

次に、この原料に、やはり実施例1と同様に、有機結合
剤および可塑剤を加え、実施例1と同様のプロセスを経
て、シート状焼結体を作成した。
Next, an organic binder and a plasticizer were added to this raw material in the same manner as in Example 1, and a sheet-like sintered body was created through the same process as in Example 1.

得られたシート状焼結体の電気抵抗を液体ヘリウム(4
K)温度で測定した結果、いずれも超電導性を示した。
The electrical resistance of the obtained sheet-like sintered body was measured using liquid helium (4
K) As a result of temperature measurements, all showed superconductivity.

すなわちこのような方法で形成したシート状焼結体は、
超電導体であった。得られたシート状焼結体を、X線解
析で調べたところ、層状ペロブスカイト構造を示してい
た。
In other words, the sheet-like sintered body formed by this method is
It was a superconductor. When the obtained sheet-like sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

有機結合剤の量を変えた場合の効果は、やはり実施例1
の場合と同様であり、有機結合剤の有効な添加量は0.
7〜15重景%重量った。
The effect of changing the amount of organic binder can be seen in Example 1.
The effective amount of organic binder added is 0.
The weight was 7-15%.

(実施例3) 酸化ランタン(LazO*)、酸化カルシウム(Ca2
0+)と酸化銅(Cu O)を、La1.1)4Ca、
16Cu、の比で含むようそれぞれ秤量し、混合の後、
実施例1と同様にして、セラミックス原料を作成した。
(Example 3) Lanthanum oxide (LazO*), calcium oxide (Ca2
0+) and copper oxide (CuO), La1.1)4Ca,
16Cu, and after mixing,
A ceramic raw material was prepared in the same manner as in Example 1.

次に、この原料に、やはり実施例1と同様に、有機結合
剤および可塑剤を加え、実施例工と同様のプロセスを経
て、シート状焼結体を作成した。
Next, an organic binder and a plasticizer were added to this raw material in the same manner as in Example 1, and a sheet-like sintered body was produced through the same process as in the example.

得られたシート状焼結体の電気抵抗を液体ヘリウム(4
K)温度で測定した結果、いずれも超電導性を示した。
The electrical resistance of the obtained sheet-like sintered body was measured using liquid helium (4
K) As a result of temperature measurements, all showed superconductivity.

すなわちこのような方法で形成したシート状焼結体は、
超電導体であった。得られたシート状焼結体を、X線解
析で調べたところ、層状ペロブスカイト構造を示してい
た。
In other words, the sheet-like sintered body formed by this method is
It was a superconductor. When the obtained sheet-like sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

有機結合剤の量を変えた場合の効果は、やはり実施例1
の場合と同様であり、有機結合剤の有効な添加量は0.
7〜15重量%であった。
The effect of changing the amount of organic binder can be seen in Example 1.
The effective amount of organic binder added is 0.
It was 7 to 15% by weight.

(実施例4) 酸化ランタン(Lag Ox ) 、酸化ストロンチウ
ム(S r O)と酸化銅(Cu O)を、La1.1
JSro、+bCu、の比で含むようそれぞれ秤量し、
混合の後、実施例1と同様にして、セラミックス原料を
作成した。
(Example 4) Lanthanum oxide (LagOx), strontium oxide (SrO) and copper oxide (CuO) were mixed with La1.1
JSro, +bCu, each weighed to contain in the ratio,
After mixing, a ceramic raw material was prepared in the same manner as in Example 1.

次に、この原料に、やはり実施例1と同様に、有機結合
剤および可塑剤を加え、実施例1と同様のプロセスを経
て、シート状焼結体を作成した。
Next, an organic binder and a plasticizer were added to this raw material in the same manner as in Example 1, and a sheet-like sintered body was created through the same process as in Example 1.

得られたシート状焼結体の電気抵抗を液体ヘリウム(4
K)温度で測定した結果、いずれも超電導性を示した。
The electrical resistance of the obtained sheet-like sintered body was measured using liquid helium (4
K) As a result of temperature measurements, all showed superconductivity.

すなわちこのような方法で形成したシート状焼結体は、
超電導体であった。得られたシート状焼結体を、X線解
析で調べたところ、層状ペロブスカイト構造を示してい
た。
In other words, the sheet-like sintered body formed by this method is
It was a superconductor. When the obtained sheet-like sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

有機結合剤の量を変えた場合の効果は、やはり実施例1
の場合と同様であり、有機結合剤の有効な添加量は0.
7〜15重量%であった。
The effect of changing the amount of organic binder can be seen in Example 1.
The effective amount of organic binder added is 0.
It was 7 to 15% by weight.

(実施例5) 酸化イツトリウム(Yz 03 ) 、酸化スカンジウ
ム(3C102) 、酸化バリウム(B a O)と酸
化銅(Cu O)を、(YS C”) 0.4 B a
O,6Cu、の比で含むようそれぞれ秤量し、混合の後
、実施例1と同様にして、セラミックス原料を作成した
(Example 5) Yttrium oxide (Yz 03 ), scandium oxide (3C102), barium oxide (Ba O) and copper oxide (Cu 2 O), (YS C") 0.4 Ba
After weighing and mixing, a ceramic raw material was prepared in the same manner as in Example 1.

次に、この原料に、やはり実施例1と同様に、有機結合
剤および可塑剤を加え、実施例1と同様のプロセスを経
て、シート状焼結体を作成した。
Next, an organic binder and a plasticizer were added to this raw material in the same manner as in Example 1, and a sheet-like sintered body was created through the same process as in Example 1.

得られたシート状焼結体の電気抵抗を液体ヘリウム(4
K)温度で測定した結果、いずれも超電導性を示した。
The electrical resistance of the obtained sheet-like sintered body was measured using liquid helium (4
K) As a result of temperature measurements, all showed superconductivity.

すなわちこのような方法で形成したシート状焼結体は、
超電導体であった。得られたシート状焼結体を、X線解
析で調べたところ、層状ペロブスカイト構造を示してい
た。
In other words, the sheet-like sintered body formed by this method is
It was a superconductor. When the obtained sheet-like sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

有機結合剤の量を変えた場合の効果は、やはり実施例1
の場合と同様であり、有機結合剤の有効な添加量は0.
7〜15重量%であった。
The effect of changing the amount of organic binder can be seen in Example 1.
The effective amount of organic binder added is 0.
It was 7 to 15% by weight.

(実施例6) 希土類酸化物(Yb、Tm、Ers HO% Dy、G
dの酸化物)、酸化バリウム(B a O)と酸化銅(
Cub)を、希土類酸化物と酸化物バリウムを酸化銅1
に対して、0.3および0.7になるよう種々秤量し、
混合の後、実施例1と同様にして、セラミックス原料を
作成した。
(Example 6) Rare earth oxide (Yb, Tm, Ers HO% Dy, G
d oxide), barium oxide (B a O) and copper oxide (
Cub), rare earth oxide and barium oxide, copper oxide 1
Weighed variously so that it was 0.3 and 0.7,
After mixing, a ceramic raw material was prepared in the same manner as in Example 1.

次に、この原料に、やはり実施例1と同様に、有機結合
剤および可塑剤を加え、実施例1と同様のプロセスを経
て、シート状焼結体を作成した。
Next, an organic binder and a plasticizer were added to this raw material in the same manner as in Example 1, and a sheet-like sintered body was created through the same process as in Example 1.

得られたシート状焼結体の電気抵抗を液体ヘリウム(4
K)温度で測定した結果、いずれも超電導性を示した。
The electrical resistance of the obtained sheet-like sintered body was measured using liquid helium (4
K) As a result of temperature measurements, all showed superconductivity.

すなわちこのような方法で形成したシート状焼結体は、
超電導体であった。得られたシート状焼結体を、X線解
析で調べたところ、層状ペロブスカイト構造を示してい
た。
In other words, the sheet-like sintered body formed by this method is
It was a superconductor. When the obtained sheet-like sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

有機結合剤の量を変えた場合の効果は、やはり実施例1
の場合と同様であり、有機結合剤の有効な添加量は0.
7〜15重量%であった。
The effect of changing the amount of organic binder can be seen in Example 1.
The effective amount of organic binder added is 0.
It was 7 to 15% by weight.

(実施例7) 酸化イツトリウム(Yz 03 ) 、酸化ストロンチ
ウム(S r O)と酸化銅(Cub)を、Yo、4S
ro、、、CuO比で含むようそれぞれ秤量し、混合の
後、実施例1と同様にして、セラミックス原料を作成し
た。
(Example 7) Yttrium oxide (Yz 03 ), strontium oxide (S r O) and copper oxide (Cub) were mixed with Yo, 4S
After weighing and mixing, a ceramic raw material was prepared in the same manner as in Example 1.

次に、この原料に、やはり実施例1と同様に、有機結合
剤および可塑剤を加え、実施例1と同様のプロセスを経
て、シート状焼結体を作成した。
Next, an organic binder and a plasticizer were added to this raw material in the same manner as in Example 1, and a sheet-like sintered body was created through the same process as in Example 1.

得られたシート状焼結体の電気抵抗を液体ヘリウム(4
K)温度で測定した結果、いずれも超電導性を示した。
The electrical resistance of the obtained sheet-like sintered body was measured using liquid helium (4
K) As a result of temperature measurements, all showed superconductivity.

すなわちこのような方法で形成したシート状焼結体は、
超電導体であった。得られたシート状焼結体を、X線解
析で調べたところ、層状ペロブスカイト構造を示してい
た。
In other words, the sheet-like sintered body formed by this method is
It was a superconductor. When the obtained sheet-like sintered body was examined by X-ray analysis, it showed a layered perovskite structure.

有機結合剤の量を変えた場合の効果は、やはり実施例1
と同様であり、有機結合剤の有効な添加量は0.7〜1
5重量%であった。
The effect of changing the amount of organic binder can be seen in Example 1.
The effective addition amount of the organic binder is 0.7 to 1
It was 5% by weight.

発明の効果 以上述べた如く、本発明の方法によれば、任意の形状の
シート状焼結体酸化物超電4体を形成することができる
Effects of the Invention As described above, according to the method of the present invention, four sheet-like sintered oxide superelectric bodies having an arbitrary shape can be formed.

本実施例の製造方法は、前記実施例から分るように、層
状ペロブスカイト構造を有する酸化物超電導体について
は、いずれの材料についても適用できるものである。第
1図では、実施例1の場合の構造について、示したが、
実施例2〜7の場合は、この構造において、Y % B
 aの代りに、それぞれの実施例で用いたCu、0以外
の元素におきかえたものである。
As can be seen from the above examples, the manufacturing method of this example can be applied to any material for an oxide superconductor having a layered perovskite structure. Although FIG. 1 shows the structure of Example 1,
In the case of Examples 2 to 7, in this structure, Y%B
In place of a, an element other than Cu and 0 used in each example was substituted.

本実施例では、シートの厚みとして、200μmとした
が、これは30μm〜1000μmの間で任意に形成す
ることができる。また大きさ、形状として、lXIQc
mの矩形としたが、打抜き金型の形状を変えることによ
り、任意の形のシート状焼結体の得られることは、明ら
かである。
In this embodiment, the thickness of the sheet is 200 μm, but it can be formed arbitrarily between 30 μm and 1000 μm. Also, in terms of size and shape, lXIQc
It is clear that a sheet-like sintered body of any shape can be obtained by changing the shape of the punching die.

以上述べた如く、本発明は、層状ペロブスカイト構造超
電導体酸化物用原料に、有機結合剤として、ポリ酢酸ビ
ニール、もしくはポリビニールブチラールのいずれか、
またはこれら両者を、0.7゜〜15重量%と、可塑剤
を加え、これらを溶媒と共に混練して泥漿とし、前記泥
漿をシート状に一定厚みに形成して乾燥させて生シート
をつくり、この生シートを所定の形状に加工し、焼成す
ることによって、シート状酸化物超電導体を得るという
生産性に優れたシート状酸化物超電導体の製造方法を提
供するものである。
As described above, the present invention uses polyvinyl acetate or polyvinyl butyral as an organic binder in a raw material for a layered perovskite superconducting oxide,
Or add 0.7° to 15% by weight of both of these and a plasticizer, knead them with a solvent to form a slurry, form the slurry into a sheet with a constant thickness and dry it to make a green sheet, The present invention provides a highly productive method for producing a sheet-like oxide superconductor, in which the raw sheet is processed into a predetermined shape and fired to obtain a sheet-like oxide superconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に用いた酸化物超電導体の結晶構造である、
層状ペロブスカイト構造の基本構成要素である、ペロブ
スカイト構造を示した説明図である。 1・・・・・・Cu、2・・・・・・0.3・・・・・
・YまたはBa。 代理人の氏名 弁理士 中尾敏男 はか1名1  = 
 Cu −Q 3− YまたはBσ
The figure shows the crystal structure of the oxide superconductor used in the present invention.
FIG. 2 is an explanatory diagram showing a perovskite structure, which is a basic component of a layered perovskite structure. 1...Cu, 2...0.3...
・Y or Ba. Name of agent: Patent attorney Toshio Nakao Haka1 person1 =
Cu −Q 3− Y or Bσ

Claims (3)

【特許請求の範囲】[Claims] (1)層状ペロブスカイト構造超電導体酸化物用原料に
、有機結合剤として、ポリ酢酸ビニール、もしくはポリ
ビニールブチラールのいずれか、またはこれら両者を、
0.7〜15重量%と、可塑剤を加え、これらを溶媒と
共に混練して泥漿とし、前記泥漿をシート状に形成して
乾燥させて 生シートをつくり、この生シートを所定の形状に加工し
、焼成することを特徴とする酸化物超電導体の製造方法
(1) Adding either polyvinyl acetate or polyvinyl butyral, or both, as an organic binder to the raw material for the layered perovskite structure superconductor oxide,
Add 0.7 to 15% by weight and a plasticizer, knead these with a solvent to form a slurry, form the slurry into a sheet and dry it to make a green sheet, and process this green sheet into a predetermined shape. 1. A method for producing an oxide superconductor, the method comprising:
(2)層状ペロブスカイト構造超電導体酸化物原料とし
て、A−Ba−Cu酸化物(但しAは、Y、Sc、希土
類)、またはLa−B−Cu酸化物(但しBは、Ca、
Sr)、またはY−Sr−Cuの酸化物を用いたことを
特徴とする特許請求の範囲第(1)項記載の酸化物超電
導体の製造方法。
(2) Layered perovskite structure superconductor oxide raw material: A-Ba-Cu oxide (where A is Y, Sc, rare earth) or La-B-Cu oxide (where B is Ca,
The method for manufacturing an oxide superconductor according to claim (1), characterized in that an oxide of Sr) or Y-Sr-Cu is used.
(3)希土類として、La、Yb、Tm、Er、Ho、
Dy、Gdを用いたことを特徴とする特許請求の範囲第
(2)項記載の酸化物超電導体の製造方法。
(3) Rare earths include La, Yb, Tm, Er, Ho,
The method for manufacturing an oxide superconductor according to claim (2), characterized in that Dy and Gd are used.
JP62102238A 1987-04-24 1987-04-24 Manufacture of superconductor of oxide Pending JPS63267508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62102238A JPS63267508A (en) 1987-04-24 1987-04-24 Manufacture of superconductor of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62102238A JPS63267508A (en) 1987-04-24 1987-04-24 Manufacture of superconductor of oxide

Publications (1)

Publication Number Publication Date
JPS63267508A true JPS63267508A (en) 1988-11-04

Family

ID=14322055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62102238A Pending JPS63267508A (en) 1987-04-24 1987-04-24 Manufacture of superconductor of oxide

Country Status (1)

Country Link
JP (1) JPS63267508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023230A (en) * 1987-09-08 1991-06-11 Hercules Incorporated Oxide superconductors encased in pan-derived carbon matrix

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260854A (en) * 1987-03-16 1988-10-27 アメリカン テレフォン アンド テレグラフ カムパニー Superconductor and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260854A (en) * 1987-03-16 1988-10-27 アメリカン テレフォン アンド テレグラフ カムパニー Superconductor and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023230A (en) * 1987-09-08 1991-06-11 Hercules Incorporated Oxide superconductors encased in pan-derived carbon matrix

Similar Documents

Publication Publication Date Title
US5206211A (en) Process for the production of an elongate body consisting of longitudinally aligned acicular crystals of a superconducting material
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
DE3853316T2 (en) Superconducting circuit card and process for its manufacture.
JPS63267508A (en) Manufacture of superconductor of oxide
DE3855811T2 (en) Superconducting metal oxide material
JPS63285159A (en) Production of superconductor of oxide
JPS63277555A (en) Oxide superconductive ceramic sintered material and production thereof
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JPS63270346A (en) Production of oxide superconductor
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP2573256B2 (en) Manufacturing method of superconductor member
JPS63270345A (en) Production of oxide superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP2523687B2 (en) Method of forming superconducting film pattern
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JP3164640B2 (en) Manufacturing method of oxide superconductor
JPH07115949B2 (en) Method for manufacturing oxide superconductor
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JPH07232960A (en) Production of oxide superconductor
JPS63310766A (en) Production of superconducting material
JP2590370B2 (en) Superconducting material and manufacturing method thereof
JP3314102B2 (en) Manufacturing method of oxide superconductor
JPH08143311A (en) Copper oxide superconductor and its production
JPH0316956A (en) Production of oxide superconductor
JPH054803A (en) Production of oxide superconductive structure