JPH02141460A - Production of thick film of oxide superconductor - Google Patents

Production of thick film of oxide superconductor

Info

Publication number
JPH02141460A
JPH02141460A JP63292404A JP29240488A JPH02141460A JP H02141460 A JPH02141460 A JP H02141460A JP 63292404 A JP63292404 A JP 63292404A JP 29240488 A JP29240488 A JP 29240488A JP H02141460 A JPH02141460 A JP H02141460A
Authority
JP
Japan
Prior art keywords
heat treatment
sintering
powder
oxide superconductor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63292404A
Other languages
Japanese (ja)
Other versions
JP2843863B2 (en
Inventor
Hiroaki Kumakura
浩明 熊倉
Kazumasa Togano
一正 戸叶
Hiroshi Maeda
弘 前田
Eiji Yanagisawa
栄治 柳沢
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
AGC Inc
Original Assignee
Asahi Glass Co Ltd
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, National Research Institute for Metals filed Critical Asahi Glass Co Ltd
Priority to JP63292404A priority Critical patent/JP2843863B2/en
Publication of JPH02141460A publication Critical patent/JPH02141460A/en
Application granted granted Critical
Publication of JP2843863B2 publication Critical patent/JP2843863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To increase the density of a thick film of an oxide superconductor and to improve the mechanical strength and superconducting characteristics by molding a slurry contg. powder of an oxide superconductor into a sheet shape and by successively subjecting the molded body to deliming by heat treatment, pressing and sintering. CONSTITUTION:A slurry contg. powder of an oxide superconductor, e.g., fine oxide powder having superconducting characteristics obtd. by calcining and sintering powder of a mixture contg. Bi, Pb, Sr, Ca and Cu in a prescribed ratio is molded into a sheet shape by a doctor blade method or other method. This sheetlike molded body is delimed by heat treatment and sintered. The delimed molded body is preferably pressed with a roll press, etc., before the sintering. By carrying out the pressing and sintering plural times, the density is further increased, Jc is improved and Jc deterioration initiating strain due to bending stress is relieved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物超電導体厚膜の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an oxide superconductor thick film.

[従来の技術] 従来、酸化物超電導厚膜を作製する方法として、セラミ
ックス製プリント基板の製造に実用化されているドクタ
ーブレード法の応用が知られている。この方法は酸化物
超電導微粉に分散剤・結合剤・可塑剤の役割を有する有
機溶媒を加えてスラリー状の原料とし、これを1〜30
0μm程度の隙間から離型性の良好なフィルム上に連続
的に流し出すことによりグリーンシートを形成し、目的
形状に加工した後、熱処理により有機溶媒の蒸発・酸化
除去、酸化物超電導微粉の焼結を行って最終形状を得る
方法である。
[Prior Art] Conventionally, as a method for producing an oxide superconducting thick film, application of the doctor blade method, which has been put to practical use in the production of ceramic printed circuit boards, is known. In this method, an organic solvent that functions as a dispersant, binder, and plasticizer is added to oxide superconducting fine powder to form a slurry raw material.
A green sheet is formed by continuously pouring it onto a film with good mold releasability through a gap of about 0 μm, and after being processed into the desired shape, the organic solvent is evaporated and oxidized and removed by heat treatment, and the oxide superconducting fine powder is sintered. In this method, the final shape is obtained by tying the pieces together.

[発明の解決しようとする問題点] 従来のドクターブレード法は、前述のような構成を有し
ているので、グリーンシート中の酸化物超電導体の体積
分率が高められず、また有機溶媒を蒸発・酸化除去する
ために酸化物超電導粒子相互の接触状態が悪いため、焼
結性の高い微粉を用いても多孔質で、機械的強度が著し
く小さ(表面の凹凸が激しい膜となっていた。
[Problems to be solved by the invention] Since the conventional doctor blade method has the above-mentioned configuration, the volume fraction of the oxide superconductor in the green sheet cannot be increased, and the organic solvent cannot be used. Due to poor contact between oxide superconducting particles due to evaporation and oxidation removal, even if fine powder with high sinterability is used, the film remains porous and has extremely low mechanical strength (the film has a severely uneven surface). .

このため、電気的な接触も弱(、さらには酸化物超電導
体は一般に結晶方位によって電流の流れ易さが異なるが
、焼結中に成長する結晶粒は各々無秩序な配置を取るた
め、配向性を有した厚膜を構成することは困難であった
。その結果、ドクターブレード法による厚膜は非常に脆
弱で、コイル状の小さい径に曲げることや取扱いが困難
で、表面あらさが粗く、かつ臨界電流密度が小さいとい
った問題点を有していた。
For this reason, electrical contact is also weak (and, in general, the ease with which current flows in oxide superconductors differs depending on the crystal orientation, but since the crystal grains that grow during sintering have a disordered arrangement, As a result, thick films produced by the doctor blade method are extremely brittle, difficult to bend into small diameter coils and difficult to handle, have rough surfaces, and The problem was that the critical current density was small.

[課題を解決するための手段] 本発明は、前述の問題点を解決すべ(なされたものであ
り、酸化物超電導体粉末を含むスラリーを、板状に成形
した後、脱灰熱処理および焼結熱処理を行なうことによ
り酸化物超電導体を得る方法において、脱灰熱処理およ
び/または焼結熱処理後に加圧処理およびそれに続く熱
処理を行なうことを特徴とする製造方法を提供するもの
である。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and after forming a slurry containing oxide superconductor powder into a plate shape, it undergoes deashing heat treatment and sintering. The present invention provides a manufacturing method for obtaining an oxide superconductor by heat treatment, characterized in that after deashing heat treatment and/or sintering heat treatment, pressure treatment and subsequent heat treatment are performed.

本発明は、酸化物超電導体のいずれの系に対しても有効
である。
The present invention is effective for any system of oxide superconductors.

本発明においては、酸化物超電導体粉末のスラリーは、
従来のドクターブレード法に用いられるものと同様に、
粉末と分散剤・結合剤・可塑剤・溶媒などを均一に混合
したものを好適に用いることができる。該スラリーを板
状に成形する方法は、従来知られているようなドクター
ブレード法が最も好ましい。
In the present invention, the slurry of oxide superconductor powder is
Similar to that used in the traditional doctor blade method,
A uniform mixture of powder, dispersant, binder, plasticizer, solvent, etc. can be suitably used. The most preferable method for forming the slurry into a plate shape is the conventionally known doctor blade method.

該スラリーを板状に成形して得られるグリーンシートは
、次に脱灰熱処理を施される。脱灰熱処理は、スラリー
中の有機物を蒸発・酸化除去する工程であり、この工程
の後の板状成形体は、粒子間の接触が不充分で、多孔質
な状態である。本発明においては、この段階で、少なく
とも1度板状成形体を加圧することが好ましい。加圧す
る方法は、平板プレス、ロール式プレス等を用いること
ができる。圧縮した後、板状成形体は加熱焼成する必要
がある。脱灰熱処理した後の加圧の後の加熱焼成は、焼
結熱処理で束ねることができる。
A green sheet obtained by molding the slurry into a plate shape is then subjected to deashing heat treatment. The deashing heat treatment is a process of evaporating and oxidizing organic matter in the slurry, and the plate-shaped molded product after this process has insufficient contact between particles and is in a porous state. In the present invention, it is preferable to press the plate-shaped molded product at least once at this stage. As a pressurizing method, a flat plate press, a roll press, etc. can be used. After being compressed, the plate-shaped molded body needs to be heated and fired. After the deashing heat treatment and the pressurization, heating and sintering can be performed to bundle the materials by sintering heat treatment.

焼結熱処理は、その超電導体で行なわれる通常の条件で
行なうことが好ましい。焼結熱処理後においても、圧縮
とそれに続く熱処理を行なう場合は、本発明の効果が増
大するので、好ましい。
It is preferable that the sintering heat treatment be carried out under the usual conditions for the superconductor. It is preferable to perform compression and subsequent heat treatment even after the sintering heat treatment, since this increases the effects of the present invention.

脱灰熱処理および焼結熱処理における加圧・熱処理はそ
れぞれ複数回行なうことができ、さらに本発明の効果を
高めることができる。
The pressure and heat treatments in the deashing heat treatment and the sintering heat treatment can each be performed multiple times to further enhance the effects of the present invention.

[実施例] 実施例I Bi:Pb:Sr:Ca:Cu =0.7 :0.3 
: 1 : 1 :1.8の組成比となるような共沈粉
末を800℃。
[Example] Example I Bi:Pb:Sr:Ca:Cu =0.7:0.3
: Co-precipitated powder with a composition ratio of 1:1:1.8 at 800°C.

845℃大気中で仮焼き、焼結熱処理を行なって超電導
特性を付与した酸化物微粉末をトリクロルエチレン、ポ
リビニルブチラール、ソルジタントリオエートなどの有
機溶媒と混合してドクターブレード法により厚さ 10
0μmのグリーンシートテープを成形した。このテープ
から幅2 mm、長さ 100n+mの試料を切出し5
00℃で熱処理して有機溶媒を蒸発・酸化除去したのち
、試料1は845℃で焼結熱処理を行なった。
Oxide fine powder, which has been calcined and sintered in air at 845°C to give it superconducting properties, is mixed with an organic solvent such as trichlorethylene, polyvinyl butyral, or solgitane trioate, and then processed to a thickness of 10 mm using the doctor blade method.
A 0 μm green sheet tape was molded. Cut out a sample with a width of 2 mm and a length of 100n+m from this tape5.
After heat treatment at 00°C to evaporate and oxidize the organic solvent, sample 1 was subjected to sintering heat treatment at 845°C.

試料2は500℃で熱処理ロール圧延を行なったのち、
845℃で焼結熱処理を行なった。その結果試料1は、
膜厚90μmで相対比重が3.0臨界型流密度(77に
、 OT)が4 A/cm2で可撓性のない脆弱な試料
になったのに対して試料2では、圧延処理により膜厚が
35μmに圧縮され相対比重が5.8と高密度化されて
臨界電流密度が2000A/cm”に改善された。また
曲げ応力によるJc劣化開始歪、cdが0.0005%
から0.1%まで向上するなどの改善が得られた。
Sample 2 was heat-treated roll rolled at 500°C, and then
Sintering heat treatment was performed at 845°C. As a result, sample 1 is
With a film thickness of 90 μm and a relative specific gravity of 3.0, the critical flow density (OT) was 4 A/cm2, resulting in an inflexible and brittle sample. was compressed to 35 μm, the relative specific gravity was increased to 5.8, and the critical current density was improved to 2000 A/cm. Also, the Jc deterioration onset strain and CD due to bending stress were 0.0005%.
Improvements such as an improvement from 0.1% to 0.1% were obtained.

実施例2 Bi: Pb: Sr: Ca: Cu=1.84: 
0.34: 1.91:2.03 : 3.06の組成
比となるような共沈粉末を800℃、大気中835℃、
1/13atmOz 、 12/13atmAr雰囲気
中で仮焼き、焼結熱処理を行なって超電導特性を付与し
た酸化物微粉末を用いて実施例1と同様の方法により作
製した厚さ50μmのグリーンシートテープから試料を
切出し有機溶媒を除去したのち、試料lは、ロール圧延
をおこなったのち835℃で焼結熱処理を行なった。
Example 2 Bi: Pb: Sr: Ca: Cu=1.84:
Co-precipitated powder with a composition ratio of 0.34: 1.91: 2.03: 3.06 was heated at 800°C and at 835°C in the atmosphere.
A sample was prepared from a 50 μm thick green sheet tape produced in the same manner as in Example 1 using fine oxide powder that had been calcined and sintered in a 1/13 atmOz and 12/13 atmAr atmosphere to impart superconducting properties. After cutting out and removing the organic solvent, sample 1 was rolled and then subjected to sintering heat treatment at 835°C.

試料2は試料1を再度ロール圧延し835℃で焼結熱処
理を繰返した。その結果、試料1は、膜厚17μm、相
対比重5.8となり臨界電流密度は4000A/cm2
であったのに対し、試料2は膜厚15μm、相対比重5
.9となり、臨界電流密度が7000A/cm2に改善
された。また、曲げ応力によるJc劣化開始歪、εdが
0.1%から0.15%の間で向上するなどの改善が得
られた、。
Sample 2 was obtained by rolling sample 1 again and repeating the sintering heat treatment at 835°C. As a result, sample 1 had a film thickness of 17 μm, a relative specific gravity of 5.8, and a critical current density of 4000 A/cm2.
On the other hand, sample 2 had a film thickness of 15 μm and a relative specific gravity of 5.
.. 9, and the critical current density was improved to 7000 A/cm2. In addition, improvements were obtained such that the Jc deterioration initiation strain due to bending stress, εd, was improved between 0.1% and 0.15%.

実施例3 BazCu30x、 Cub、 T120Bの高純度粉
末試薬をTl:Ca:Ba:Cu−2: 2 : 2 
: 3となるよう混合し、 920℃ 0□雰囲気中で
焼成を行なって、超電導た特性を付与した酸化物微粉末
を用いて実施例1(試料2)と同様の方法により、圧延
処理を行なって試料を作製し、 500℃、920℃酸
素雰囲気中で短時間(10〜30分)焼成することによ
り臨界電流密度3000A / cm2J c劣化開始
歪、εd=0.2%の試料が得られた。
Example 3 High purity powder reagents of BazCu30x, Cub, and T120B were prepared as Tl:Ca:Ba:Cu-2:2:2
: 3, calcined in 920°C 0□ atmosphere, and rolled using the same method as in Example 1 (Sample 2) using fine oxide powder that imparted superconducting properties. A sample was prepared at 500°C and 920°C in an oxygen atmosphere for a short time (10 to 30 minutes) to obtain a sample with a critical current density of 3000 A/cm2J c deterioration onset strain, εd = 0.2%. .

実施例4 Y:Sa:Cu=1:2:3の組成比となるような共沈
法粉末を880℃、930°C酸素雰囲気中で仮焼き、
焼結熱処理を行なって超電導だ特性を付与した酸化物微
粉末を用いて実施例1 (試料2)と同様の方法により
、圧延処理を行なって試料を作成し、500℃、930
℃酸素雰囲気中で熱処理を行なうことにより、臨界電流
密度2500A/cm2.Jc劣化開始歪、gd=0.
1%の試料が得られた。
Example 4 Co-precipitation powder with a composition ratio of Y:Sa:Cu=1:2:3 was calcined at 880°C and 930°C in an oxygen atmosphere.
Using sintering heat treatment to give superconducting properties, fine oxide powder was subjected to rolling treatment in the same manner as in Example 1 (Sample 2) to prepare a sample.
By performing heat treatment in an oxygen atmosphere at ℃, a critical current density of 2500 A/cm2. Jc deterioration start strain, gd=0.
A 1% sample was obtained.

[発明の効果] 本発明はドクターブレード法の脱媒熱処理後あるいはそ
の両者において複数回の圧延あるいは加圧処理を行なう
ことにより、酸化物超電導厚膜を高密度化させ、さらに
は膜内組織の結晶粒を配向させて、結晶粒相互の接触状
態を良好にし、拡散反応を容易にする結果、その後の最
終熱処理似よって形成される酸化物超電導厚膜の密度を
高め、機械的強度(可撓性)および超電導特性を著しく
改善できることが極めて容易となる効果がある。
[Effects of the Invention] The present invention densifies an oxide superconducting thick film and further improves the structure within the film by performing rolling or pressure treatment multiple times or both after desolvation heat treatment using the doctor blade method. As a result of orienting the crystal grains, improving the contact between the crystal grains and facilitating the diffusion reaction, the density of the oxide superconducting thick film formed during the subsequent final heat treatment is increased, and the mechanical strength (flexibility) is increased. This has the effect of making it extremely easy to significantly improve the superconductivity and superconductivity properties.

また、従来のドクターブレード法による厚膜に比べて機
械的強度が著しく優れているために、ハンドリング時の
破損などが減少して作製時の歩留りが向上するとともに
、加圧処理するため、厚膜表面の平坦度を高めることが
容易で、平滑表面仕上げを必要とする場合、研磨工程が
簡略化でき、コスト減になる等の効果もある。
In addition, because the mechanical strength is significantly superior to thick films made using the conventional doctor blade method, damage during handling is reduced and production yields are improved. It is easy to increase the flatness of the surface, and when a smooth surface finish is required, the polishing process can be simplified and costs can be reduced.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導体粉末を含むスラリーを板状に成形
した後、脱灰熱処理および焼結熱処理を行なうことによ
り酸化物超電導体を得る方法において、脱灰熱処理およ
び/または焼結熱処理後に加圧処理およびそれに続く熱
処理を行なうことを特徴とする製造方法。
(1) In a method of obtaining an oxide superconductor by forming a slurry containing oxide superconductor powder into a plate shape and then performing deashing heat treatment and sintering heat treatment, the process is performed after deashing heat treatment and/or sintering heat treatment. A manufacturing method characterized by performing pressure treatment and subsequent heat treatment.
(2)加圧処理およびそれに続く熱処理が脱灰熱処理お
よび/または焼結熱処理後に加圧処理後、複数回行なわ
れることを特徴とする請求項(1)の製造方法。
(2) The manufacturing method according to claim (1), wherein the pressure treatment and the subsequent heat treatment are performed multiple times after the pressure treatment and after the deashing heat treatment and/or the sintering heat treatment.
JP63292404A 1988-11-21 1988-11-21 Method for producing oxide superconductor thick film Expired - Lifetime JP2843863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292404A JP2843863B2 (en) 1988-11-21 1988-11-21 Method for producing oxide superconductor thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292404A JP2843863B2 (en) 1988-11-21 1988-11-21 Method for producing oxide superconductor thick film

Publications (2)

Publication Number Publication Date
JPH02141460A true JPH02141460A (en) 1990-05-30
JP2843863B2 JP2843863B2 (en) 1999-01-06

Family

ID=17781345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292404A Expired - Lifetime JP2843863B2 (en) 1988-11-21 1988-11-21 Method for producing oxide superconductor thick film

Country Status (1)

Country Link
JP (1) JP2843863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478801A (en) * 1993-06-23 1995-12-26 Hoechst Aktiengesellschaft Process for producing tubular parts of high-TC superconductor material
JP2002111210A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478801A (en) * 1993-06-23 1995-12-26 Hoechst Aktiengesellschaft Process for producing tubular parts of high-TC superconductor material
JP2002111210A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board and its manufacturing method

Also Published As

Publication number Publication date
JP2843863B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JPH02141460A (en) Production of thick film of oxide superconductor
JPH04228467A (en) Method for manufacture of shaped article of superconducting oxide ceramic material
JP2573256B2 (en) Manufacturing method of superconductor member
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JP2592872B2 (en) Manufacturing method of oxide superconducting wire
JP2794679B2 (en) Method for producing high-density ITO sintered body
JPH0940460A (en) Production of titanic acid based sintered body
JP3127820B2 (en) Sputtering target for forming ferroelectric film and method for manufacturing the same
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JP2969221B2 (en) Manufacturing method of oxide superconductor
JPH09263971A (en) Superconducting composite body and its production
JPH01242473A (en) Production of joined superconducting body
JP3160899B2 (en) Method for producing oxide high-temperature superconductor
JPH04342911A (en) Manufacture of tape-like ceramic superconductive conductor
JPH03193605A (en) Production of target material for forming oxide superconducting thin film
JPH03279212A (en) Production of target material for forming oxide superconducting thin film
JPH082967A (en) Production of aluminum nitride sintered compact
JPH0518778B2 (en)
JPH01176268A (en) Production of high-temperature superconductor
JPH04310732A (en) Manufacture of composite body of oxide superconductor and metal
JPH07232960A (en) Production of oxide superconductor
JPS63279529A (en) Manufacture of superconductor molding
JPH0431371A (en) Production of oxide superconductor
JPH01120714A (en) Oxide superconductor member and its manufacture
JPH0196060A (en) Production of oxide superconducting material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term