JPH06209110A - Mnos type semiconductor device - Google Patents

Mnos type semiconductor device

Info

Publication number
JPH06209110A
JPH06209110A JP330993A JP330993A JPH06209110A JP H06209110 A JPH06209110 A JP H06209110A JP 330993 A JP330993 A JP 330993A JP 330993 A JP330993 A JP 330993A JP H06209110 A JPH06209110 A JP H06209110A
Authority
JP
Japan
Prior art keywords
film
gate
semiconductor device
layer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP330993A
Other languages
Japanese (ja)
Inventor
Muneyuki Matsumoto
宗之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP330993A priority Critical patent/JPH06209110A/en
Publication of JPH06209110A publication Critical patent/JPH06209110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the increase in the trap level density of a gate nitride film due to the sputter damage thereby easily shifting the threshold value voltage in the minus direction in order to form a gate electrode on a gate insulating film (two layers of an oxide film and a nitride film). CONSTITUTION:In order to form a gate part of an MNOS semiconductor device, a conductive thin film (phosphorus doped polysilicon film in this embodiment) 8 is provided between a gate insulating film (oxide film 4a, nitride film 5a) and a gate electrode 6a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、MNOS(Metal Ni
tride Oxide Transistor) 構造の半導体装置の構造に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to MNOS (Metal Ni
The present invention relates to a structure of a semiconductor device having a tride oxide transistor structure.

【0002】[0002]

【従来の技術】MNOS型半導体装置については、例え
ば馬場玄式「電子デバイス事典」再版(昭53−1−2
5)ラジオ技術社p.61など多くの文献に開示されて
いるが、図4に、その従来のMNOS構造の半導体装置
のトランジスタ部の断面構造例を示す。同図はN−ch
Tr(Nチャネル型トランジスタ)の例であり、その構
成を以下に説明する。
2. Description of the Related Art Regarding the MNOS type semiconductor device, for example, the Baba Genshiki "Electronic Device Encyclopedia" reprint (Sho 53-1-2)
5) Radio Technology Company p. Although disclosed in many documents such as 61, FIG. 4 shows an example of a sectional structure of a transistor portion of the conventional semiconductor device having the MNOS structure. The figure shows N-ch
This is an example of Tr (N-channel type transistor), and its configuration will be described below.

【0003】N型Si基板1に、低濃度のP型拡散層2
(一般にはPウェル層と称する。)が形成されており、
さらに該Pウェル層2内にTr(トランジスタ)のソー
ス・ドレインとなる高濃度のN型拡散層(一般にはN+
層)3が形成されている。
A low concentration P type diffusion layer 2 is formed on an N type Si substrate 1.
(Generally referred to as a P well layer) is formed,
Further, in the P-well layer 2, a high-concentration N-type diffusion layer (generally N +
Layer 3 is formed.

【0004】さらに、チャネル部(ソースとドレインの
間)の上にはゲート酸化膜(SiO2 )4aが形成さ
れ、その上にゲート窒化(Si3 4 )膜5aが形成さ
れている。
Further, a gate oxide film (SiO 2 ) 4a is formed on the channel portion (between the source and the drain), and a gate nitride (Si 3 N 4 ) film 5a is formed thereon.

【0005】ゲート膜(酸化膜4aと窒化膜5aの2層
膜)の上にはAlからなるゲート電極6aが形成されて
いる。
A gate electrode 6a made of Al is formed on the gate film (a two-layer film including an oxide film 4a and a nitride film 5a).

【0006】一方、ソース・ドレインとなるN+ 層3上
にはAl配線6が形成されている。又、素子は保護膜7
(一般にはCVD(化学的気相成長)SiN膜又はCV
DPSG膜)でカバーされている。N−chTrとして
の動作は、通常のN−chMOSTr(N Channel Meta
l Oxide Transistor)と同様で、ドレイン・ソース間に
電位差を与えておき、さらにゲート電極にVT (しきい
値電圧)以上のバイアスを印加すると、ゲート絶縁膜4
aを介してチャネル表面に電界が加わり、チャネルに反
転層が生じ、ドレインからソースに電流が流れる。
On the other hand, an Al wiring 6 is formed on the N + layer 3 serving as the source / drain. In addition, the element is a protective film 7
(Generally CVD (Chemical Vapor Deposition) SiN film or CV
DPSG film). The operation as an N-ch Tr is the same as that of a normal N-ch MOSTr (N Channel Meta
(Oxide Transistor), a potential difference is applied between the drain and the source, and a bias of V T (threshold voltage) or more is applied to the gate electrode.
An electric field is applied to the channel surface via a, an inversion layer is generated in the channel, and a current flows from the drain to the source.

【0007】この様なTrの構造に於て、ゲート酸化膜
4aや、フィールド酸化膜4上にSi3 4 膜5aおよ
び5を設けているが、これは半導体製造工程中で、例え
ばAl電極6a,6からNa+ イオンの様なアルカリ金
属が不純物汚染として素子内に侵入し、VT 変動等の品
質劣化が発生するのを防ぐ事を目的としている。即ちゲ
ートSiO2 膜4a上にSi3 4 膜5aを設けること
で、Na+ などの可動イオン汚染に強い高信頼性のメタ
ルゲートMOSTrを製造することが可能となってい
る。
In such a Tr structure, the Si 3 N 4 films 5a and 5 are provided on the gate oxide film 4a and the field oxide film 4, which are formed in the semiconductor manufacturing process, for example, Al electrodes. The purpose is to prevent an alkali metal such as Na + ions from entering 6a and 6 as impurity contamination into the device and causing quality deterioration such as V T fluctuation. That is, by providing the Si 3 N 4 film 5a on the gate SiO 2 film 4a, it is possible to manufacture a highly reliable metal gate MOSTr that is resistant to contamination of mobile ions such as Na + .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来技
術のMNOS構造では以下に述べる様な問題点があっ
た。
However, the conventional MNOS structure has the following problems.

【0009】即ち、ゲート絶縁膜として用いているSi
3 4 (窒化シリコン)膜上に直接ゲート電極のメタル
膜(前記例では、AlまたはAl−Si膜)をマグネト
ロンスパッタ法で成膜する為に、スパッタダメージによ
りSi3 4 膜表層のトラップ準位密度が大となる。
That is, Si used as a gate insulating film
Since the metal film (Al or Al-Si film in the above example) of the gate electrode is directly formed on the 3 N 4 (silicon nitride) film by the magnetron sputtering method, the trap of the surface layer of the Si 3 N 4 film is caused by the sputter damage. The level density becomes large.

【0010】その結果、この様なMNOS構造のTrの
ゲートに電圧を印加した際、例えばN−chTrではゲ
ート電極からホールがゲート絶縁膜に注入、トラップさ
れ易くなり、TrのVT (しきい値電圧)がマイナス方
向にシフトされやすくなるという問題点があった。
As a result, when a voltage is applied to the gate of the Tr having such an MNOS structure, for example, in N-chTr, holes are easily injected and trapped from the gate electrode into the gate insulating film, and the V T (threshold of Tr is increased. There is a problem that the value voltage) tends to be shifted in the negative direction.

【0011】この発明の目的は、以上述べた、スパッタ
ダメージにより、ゲートSi3 4膜のトラップ準位密
度増大を未然に防止することで、TrのVT 変動を防止
し信頼性の高いMNOS構造の素子を提供することにあ
る。
The object of the present invention is to prevent the increase of the trap level density of the gate Si 3 N 4 film due to the above-mentioned sputter damage, thereby preventing the fluctuation of V T of Tr and providing a highly reliable MNOS. It is to provide a structural element.

【0012】[0012]

【課題を解決するための手段】前記目的達成のため、本
発明はMNOS型半導体装置として、少くともゲート絶
縁膜上に、CVD法を用いた導電膜(例えばリンドープ
Poly−Si(ポリシリコン))を形成し、しかる後
にマグネトロンスパッタ法でゲート電極となるAl−S
i膜を成膜する構造としたものである。
In order to achieve the above object, the present invention provides a MNOS type semiconductor device, at least on a gate insulating film, a conductive film using a CVD method (for example, phosphorus-doped Poly-Si (polysilicon)). And then Al-S to be a gate electrode by a magnetron sputtering method.
It has a structure for forming an i film.

【0013】[0013]

【作用】本発明は前述したように、MNOS構造の素子
のゲートSi3 4 膜上に、例えばリンドープのPol
y−Si膜等の導電膜をCVD法で成膜した後、Al
(又はAl−Si)電極を形成する様にしたので、Al
スパッタ時のダメージをゲートSi3 4 膜に与えるこ
となく素子形成ができる様になる。
As described above, according to the present invention, for example, phosphorus-doped Pol is formed on the gate Si 3 N 4 film of the MNOS structure element.
After forming a conductive film such as a y-Si film by a CVD method, Al
(Or Al-Si) electrodes are formed.
The element can be formed without damaging the gate Si 3 N 4 film during sputtering.

【0014】その結果、スパッタ・ダメージに起因する
ゲートSi3 4 膜表層のトラップ密度増大を未然に防
止できる様になり、ホールやエレクトロントラップによ
るTrのVT 変動が起こらない極めて信頼性の高いMN
OS構造の半導体装置を提供する事ができる。
As a result, it is possible to prevent an increase in the trap density of the surface layer of the gate Si 3 N 4 film due to sputter damage, and it is highly reliable that fluctuations in V T of Tr due to holes and electron traps do not occur. MN
A semiconductor device having an OS structure can be provided.

【0015】[0015]

【実施例】図1に本発明の第1の実施例を示す。又、図
2にその製造工程を断面図で示し、以下に図2を主体に
説明する。なお、図4の従来のMNOS半導体装置の例
と同様に、ここでもN−chTrの例で示す。なお従来
例と同じ部分には同一符号で示してある。
FIG. 1 shows the first embodiment of the present invention. Further, FIG. 2 shows a cross-sectional view of the manufacturing process thereof, and the description will be given below mainly with reference to FIG. Note that, similarly to the example of the conventional MNOS semiconductor device of FIG. 4, an example of N-chTr is shown here. The same parts as those in the conventional example are indicated by the same reference numerals.

【0016】まず、図2(a)に示すように、従来同
様、N型Si基板1上にPウェル層2を形成後、高濃度
N型拡散層(N+ 層と称す)3をTrのソース・ドレイ
ン用に形成する。Si基板1の表層より上部には保護及
び絶縁膜として熱酸化によるフィールド酸化膜4を形成
し、Trのチャネルとなる部位のみ500〜1000Å
程度のゲート酸化膜4aとなるよう形成する。
First, as shown in FIG. 2A, as in the prior art, after forming a P well layer 2 on an N type Si substrate 1, a high concentration N type diffusion layer (referred to as an N + layer) 3 is formed of Tr. Formed for source and drain. A field oxide film 4 formed by thermal oxidation is formed as a protective and insulating film above the surface layer of the Si substrate 1, and 500 to 1000 Å is applied only to a portion which becomes a channel of Tr
The gate oxide film 4a is formed to a certain extent.

【0017】さらに、MNOS構造特有のSi3 4
5及び5aをゲート酸化膜4a及びフィールド酸化膜4
の上層にLP−CVD(減圧化学的気相成長)法で形成
する。
Further, the Si 3 N 4 films 5 and 5a peculiar to the MNOS structure are replaced with the gate oxide film 4a and the field oxide film 4.
The upper layer is formed by LP-CVD (Low Pressure Chemical Vapor Deposition) method.

【0018】ここまでは、従来のMNOS構造の製法と
同様である。
Up to this point, the manufacturing method of the conventional MNOS structure is the same.

【0019】次に、図2(b)のように、素子全面に減
圧CVD法を用いてSiH4 ガスによりPoly−Si
(ポリシリコン)の薄膜8を生成する。この薄膜8は、
少くとも50Å以上の厚さがあれば、後工程でのスパッ
タによる窒化膜5aへのダメージを防ぐには充分であ
る。
Next, as shown in FIG. 2B, a poly-Si is formed on the entire surface of the device by using a low pressure CVD method with SiH 4 gas.
A thin film 8 of (polysilicon) is produced. This thin film 8 is
A thickness of at least 50 Å or more is sufficient to prevent damage to the nitride film 5a due to sputtering in a later process.

【0020】次に、前記Poly−Si膜8の導電性を
良好にする為に、高濃度にN型のドーパントを拡散す
る。一般には、PoCl3 をソースとしたリン拡散法や
高電流タイプのインプラ(インプランテーション)装置
によるリンイオン打込みと拡散炉によるアニール(又は
ランプアニールでも可)を行ない、Poly−Si膜8
の抵抗を15Ω/□〜30Ω□程度にコントロールす
る。次にソース・ドレイン層3から電極を引き出す為の
コンタクト孔を形成する為に、ホトリソグラフィの技術
を用いてソース・ドレイン3上のPoly−Si/Si
3 4 /SiO2 膜(8/5/4)をレジスト9をマス
クにして選択的にエッチングする。
Next, in order to improve the conductivity of the Poly-Si film 8, an N-type dopant is diffused at a high concentration. In general, phosphorus ion implantation using a phosphorus diffusion method using PoCl 3 as a source or high current type implantation (implantation) device and annealing in a diffusion furnace (or lamp annealing is also possible) are performed to obtain the Poly-Si film 8
Control the resistance of 15Ω / □ to 30Ω □. Next, in order to form a contact hole for drawing out the electrode from the source / drain layer 3, a technique of photolithography is used to form the Poly-Si / Si on the source / drain 3.
The 3 N 4 / SiO 2 film (8/5/4) is selectively etched using the resist 9 as a mask.

【0021】Poly−Si膜8及びSi3 4 膜5は
CF4 +5%O2 のエッチングガスを用いたドライエッ
チングが可能であるし、SiO2 膜4はHF−NH3
系のエッチャントでエッチングできる。その後、レジス
ト9は除去する。
The Poly-Si film 8 and the Si 3 N 4 film 5 can be dry-etched by using an etching gas of CF 4 + 5% O 2 , and the SiO 2 film 4 is HF-NH 3 F.
Can be etched with a system etchant. After that, the resist 9 is removed.

【0022】次に、図2(c)のように、全面にAl−
Si膜(1〜1.5%Si含有)6を1.0μ程度、マ
グネトロンスパッタ法で成膜し、ホトリソグラフィ技術
を用いてレジスト10をマスクにして選択的にエッチン
グし、ゲート電極6a及びソース・ドレイン配線部のA
l配線6を形成する。尚Al−Si配線6,6aのエッ
チングは、リン酸を主成分とした、硝酸、酢酸との混酸
による、ウェットエッチング法又はBCl3 +Cl2
のガスを用いたドライエッチングで行なう。その後、レ
ジスト10は除去する。
Next, as shown in FIG. 2 (c), Al- is formed on the entire surface.
A Si film (containing 1 to 1.5% Si) 6 having a thickness of about 1.0 μ is formed by a magnetron sputtering method, and is selectively etched by using the resist 10 as a mask using a photolithography technique to form a gate electrode 6a and a source.・ A of drain wiring
The l wiring 6 is formed. Incidentally etching of Al-Si wires 6,6a are phosphoric acid as a main component, nitric acid, by mixed acid of acetic acid, carried out by dry etching using wet etching or BCl 3 + Cl 2 and the like gases. After that, the resist 10 is removed.

【0023】次に、図2(d)のように、Al−Si膜
6,6a中のSiとリンドープPoly−Si膜8をA
l配線パターン6をマスクにHF−HNO3 等のエッチ
ャントで選択的にエッチングする。
Next, as shown in FIG. 2D, the Si in the Al-Si films 6 and 6a and the phosphorus-doped Poly-Si film 8 are formed into A.
Using the l wiring pattern 6 as a mask, etching is selectively performed with an etchant such as HF-HNO 3 .

【0024】最後に、従来同様、保護膜7を成膜する。
尚保護膜7としてはCVD法によるSiO2 膜やPSG
膜又はプラズマCVD法によるSiN膜が一般には用い
られる。
Finally, the protective film 7 is formed as in the conventional case.
As the protective film 7, a SiO 2 film or PSG formed by the CVD method is used.
A film or a SiN film formed by a plasma CVD method is generally used.

【0025】このようにして完成した構造が図1であ
り、少くともゲート窒化膜5aとゲート電極6aとの間
に、ポリシリコン膜8が設けられた構造となる。
The structure completed in this way is shown in FIG. 1, which is a structure in which the polysilicon film 8 is provided at least between the gate nitride film 5a and the gate electrode 6a.

【0026】尚本実施例では導電性薄膜8は、LP−C
VD法によるPoly−Si膜を用いたが、その他の材
質としてはリンドープPoly−Siを直接LP−CV
Dで成膜する方法や、TiのCVD膜等が考えられる。
In this embodiment, the conductive thin film 8 is LP-C.
Although the Poly-Si film by the VD method was used, as another material, phosphorus-doped Poly-Si is directly LP-CV.
A method of forming a film by D, a CVD film of Ti, and the like can be considered.

【0027】Tiの場合には、TiCl4 を原料ガスと
し数torrの減圧下で400〜500℃で成膜でき
る。又、Tiを用いる場合はPoly−Siの様なリン
ドープを必要としない。又、TiのエッチングはHF系
のエッチャントで可能である。
In the case of Ti, it is possible to form a film at 400 to 500 ° C. under a reduced pressure of several torr using TiCl 4 as a raw material gas. Further, when Ti is used, phosphorus doping unlike Poly-Si is not required. Further, the etching of Ti can be performed with an HF-based etchant.

【0028】図3に本発明の第2の実施例の構造を示
す。
FIG. 3 shows the structure of the second embodiment of the present invention.

【0029】第2の実施例では、LP−CVD法による
Si3 4 膜5生成後(図2(a))、先にコンタクト
孔を開孔しその後、導電膜8を成膜する工程とした例で
ある。第1の実施例と異なるのは、コンタクト孔内に導
電膜8が残る点のみであり、ゲート電極6a下の構造は
第1の実施例と同じである。
In the second embodiment, after the Si 3 N 4 film 5 is formed by the LP-CVD method (FIG. 2A), the contact hole is first opened and then the conductive film 8 is formed. It is an example. The difference from the first embodiment is only that the conductive film 8 remains in the contact hole, and the structure under the gate electrode 6a is the same as that of the first embodiment.

【0030】以上の説明はN−chTrを例にとったも
のであるが、P−chTrであっても前述したN型部と
P型部とを置き換えて考えれば、同じ効果が得られるこ
とは説明するまでもない。
Although the above description is based on the N-chTr as an example, the same effect can be obtained even if the P-chTr is replaced by the N-type part and the P-type part. Needless to say.

【0031】[0031]

【発明の効果】以上、詳細に説明したようにこの発明に
よれば、MNOS構造の素子のゲートSi3 4 膜上に
例えばリンドープのPoly−Si膜等の導電膜をCV
D法で成膜した後、Al(又はAl−Si)電極を形成
する様にしたので、Alスパッタ時のダメージをゲート
Si3 4 膜に与えることなく素子形成ができる様にな
る。
As described above in detail, according to the present invention, a conductive film such as a phosphorus-doped Poly-Si film is formed on the gate Si 3 N 4 film of the MNOS structure element by CV.
Since the Al (or Al-Si) electrode is formed after the film is formed by the D method, the element can be formed without damaging the gate Si 3 N 4 film during Al sputtering.

【0032】その結果、スパッタ・ダメージに起因する
ゲートSi3 4 膜表層のトラップ密度増大を未然に防
止できる様になり、ホールやエレクトロントラップによ
るTrのVT 変動が起こらない極めて信頼性の高いMN
OS構造の半導体装置を提供する事ができる。
As a result, it is possible to prevent an increase in the trap density of the surface layer of the gate Si 3 N 4 film due to sputter damage, and it is highly reliable that fluctuations in V T of Tr due to holes and electron traps do not occur. MN
A semiconductor device having an OS structure can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例FIG. 1 is a first embodiment of the present invention.

【図2】第1の実施例の製造工程FIG. 2 is a manufacturing process of the first embodiment.

【図3】本発明の第2の実施例FIG. 3 is a second embodiment of the present invention.

【図4】従来例FIG. 4 Conventional example

【符号の説明】[Explanation of symbols]

1 N型Si基板 2 Pウェル層 3 N+ 層(ソース・ドレイン) 4 フィールド酸化膜 4a ゲート酸化膜 5,5a Si3 4 膜 6,6a Al配線 7 保護膜 8 ポリシリコン膜1 N-type Si substrate 2 P well layer 3 N + layer (source / drain) 4 Field oxide film 4a Gate oxide film 5,5a Si 3 N 4 film 6,6a Al wiring 7 Protective film 8 Polysilicon film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゲート絶縁膜として酸化膜と窒化膜との
2層膜を使用し、該2層膜の上にゲート電極を有するM
NOS型半導体装置において、 前記2層膜と前記ゲート電極との間に導電性膜を有する
ことを特徴とするMNOS型半導体装置。
1. An M having a two-layer film including an oxide film and a nitride film as a gate insulating film, and having a gate electrode on the two-layer film.
A NOS type semiconductor device, comprising a conductive film between the two-layer film and the gate electrode.
【請求項2】 前記導電性膜が、減圧化学的気相成長法
により成膜される少くとも厚さ50Å以上の膜であり、
かつ、SiH4 を原料ガスとしたポリシリコン膜に不純
物を注入した膜か、あるいはTiCl4 を原料ガスとし
たTi膜としたことを特徴とする請求項1記載のMNO
S型半導体装置。
2. The conductive film is a film having a thickness of at least 50 Å or more formed by a low pressure chemical vapor deposition method,
2. The MNO according to claim 1, which is a film obtained by injecting impurities into a polysilicon film using SiH 4 as a raw material gas or a Ti film using TiCl 4 as a raw material gas.
S-type semiconductor device.
JP330993A 1993-01-12 1993-01-12 Mnos type semiconductor device Pending JPH06209110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP330993A JPH06209110A (en) 1993-01-12 1993-01-12 Mnos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP330993A JPH06209110A (en) 1993-01-12 1993-01-12 Mnos type semiconductor device

Publications (1)

Publication Number Publication Date
JPH06209110A true JPH06209110A (en) 1994-07-26

Family

ID=11553759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP330993A Pending JPH06209110A (en) 1993-01-12 1993-01-12 Mnos type semiconductor device

Country Status (1)

Country Link
JP (1) JPH06209110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343210B1 (en) * 1999-08-11 2002-07-10 윤종용 MNOS series memory using single electron transistor and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343210B1 (en) * 1999-08-11 2002-07-10 윤종용 MNOS series memory using single electron transistor and fabrication method thereof

Similar Documents

Publication Publication Date Title
US5405806A (en) Method for forming a metal silicide interconnect in an integrated circuit
US6541823B1 (en) Semiconductor device including multiple field effect transistors and manufacturing method thereof
US4735917A (en) Silicon-on-sapphire integrated circuits
KR19980018751A (en) SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JPH0637317A (en) Thin-film transistor and its manufacture
JP2007036116A (en) Semiconductor device manufacturing method
JPH07249770A (en) Semiconductor device and its fabrication
JP2638411B2 (en) Method for manufacturing MOS type semiconductor device
JPH01259565A (en) Thin film transistor and manufacture of the same
JPH06209110A (en) Mnos type semiconductor device
US6191016B1 (en) Method of patterning a layer for a gate electrode of a MOS transistor
JPH0645614A (en) Manufacture of read-only semiconductor memory
JP2888857B2 (en) Semiconductor device
JPS61154172A (en) Manufacture of semiconductor device
JPH07226502A (en) Mos transistor and manufacture thereof
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JP2712230B2 (en) Method for manufacturing MOS type semiconductor device
JPH05326497A (en) Manufacture of semiconductor device
JP3194303B2 (en) Semiconductor device
JP3191313B2 (en) Method for manufacturing semiconductor device
JPH0529624A (en) Thin film transistor and manufacture thereof
JPS60133755A (en) Manufacture of semiconductor device
JPH06204241A (en) Field effect transistor and manufacture thereof
JPS58190060A (en) Manufacture of semiconductor device
JPH0296377A (en) Manufacture of semiconductor device