JPH06207220A - Production of grain-oriented silicon steel sheet with high magnetic flux density - Google Patents

Production of grain-oriented silicon steel sheet with high magnetic flux density

Info

Publication number
JPH06207220A
JPH06207220A JP5002065A JP206593A JPH06207220A JP H06207220 A JPH06207220 A JP H06207220A JP 5002065 A JP5002065 A JP 5002065A JP 206593 A JP206593 A JP 206593A JP H06207220 A JPH06207220 A JP H06207220A
Authority
JP
Japan
Prior art keywords
cold rolling
magnetic flux
flux density
steel sheet
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5002065A
Other languages
Japanese (ja)
Other versions
JP2680519B2 (en
Inventor
Yosuke Kurosaki
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5002065A priority Critical patent/JP2680519B2/en
Publication of JPH06207220A publication Critical patent/JPH06207220A/en
Application granted granted Critical
Publication of JP2680519B2 publication Critical patent/JP2680519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet with high magnetic flux density by performing preliminary cold rolling at a specific draft. CONSTITUTION:A continuously cast slab, having a composition consisting of, by weight, 0.15-0.100% C, 2.0-4.0% Si, 0.03-0.12% Mn, 0.010-0.065% Sol.Al, 0.0040-0.0100% N, 0.005-0.050%, in total, of S and/or Se, further 0.003-0.3% of one or >=2 elements selected from the group consisting of Sb, Sn, Cu, Mo, Ge, B, Te, As, and Bi, and the balance essentially Fe, is subjected to a slab heating and hot-rolled. The resulting plate is subjected to-hot rolled plate annealing, to preliminary cold rolling, to precipitation annealing, and then to final high- degree cold rolling at 81-89% draft to <=0.25mm final sheet thickness. Subsequently, the resulting sheet is subjected to decarburizing and primary recrystallization annealing, to final finish annealing, and to application of coating, by which the grain oriented silicon steel sheet with high magnetic flux density is produced. At this time, preliminary cold rolling is performed at 5-50% draft by using work rolls of cold rolling mill where (work roll diameter)/(hot rolled plate thickness)<=90 is satisfied. Thus, the grain-oriented silicon steel sheet with high magnetic flux density can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は変圧器などの鉄心に使用
される高磁束密度一方向性電磁鋼板の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high magnetic flux density unidirectional electrical steel sheet used for an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主に変圧器や発電機
の鉄心材料に使用されるが、省エネルギー化が要求され
ている昨今、更に磁束密度が高く、鉄損の少ない鋼板が
市場から要求されている。低鉄損を達成するためには、
鋼板のSi含有量を極力高め素材の固有抵抗を上げて渦
電流損を下げる方法と、製品板厚を極力薄くし渦電流損
を下げる方法が知られている。また、最近、製品の鋼板
表面にレーザ照射したり、歯形ロールにより鋼板表面に
溝を形成するというような磁区制御技術が開発、実用化
されており、鉄損を著しく少なくすることが可能となっ
ている。この場合、磁区制御後の鉄損は磁区制御前の磁
束密度が高いほど少なくなることが知られており、磁束
密度の高い鋼板を製造することが非常に重要となってい
る。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and generators, but with the recent demand for energy saving, steel sheets with higher magnetic flux density and less iron loss are available from the market. Is required. To achieve low iron loss,
There are known a method of reducing the eddy current loss by increasing the Si content of the steel sheet as much as possible to increase the specific resistance of the material, and a method of reducing the eddy current loss by reducing the product sheet thickness as much as possible. In addition, recently, magnetic domain control technologies such as laser irradiation on the steel sheet surface of products and forming grooves on the steel sheet surface by tooth profile rolls have been developed and put into practical use, and it is possible to significantly reduce iron loss. ing. In this case, it is known that the iron loss after magnetic domain control decreases as the magnetic flux density before magnetic domain control increases, and it is very important to manufacture a steel sheet with a high magnetic flux density.

【0003】磁束密度の高い一方向性電磁鋼板を得るに
は、{110}〈001〉方位いわゆるゴス方位に高度
に集積した2次再結晶組織を得ることが必要である。2
次再結晶には、インヒビターと1次再結晶集合組織が大
きく影響することが知られている。インヒビターについ
ては、仕上焼鈍を行うまでに鋼中に100〜1000オ
ングストローム程度の析出分散相を均一微細に存在させ
ることが必要で、AlN,MnS,MnSeなどが一般
的に知られている。更には、結晶粒界に粒界偏析元素の
Sb,Sn,Cu,Mo,Ge,B,Te,As,Bi
などを偏析させることが有用である。一方、1次再結晶
集合組織については、従来から熱延、冷延、焼鈍の各工
程条件を適切に組み合わせることにより制御されてき
た。
In order to obtain a grain-oriented electrical steel sheet having a high magnetic flux density, it is necessary to obtain a secondary recrystallized structure highly integrated in the {110} <001> orientation, the so-called Goss orientation. Two
It is known that the inhibitor and the primary recrystallization texture have a great influence on the secondary recrystallization. As for the inhibitor, it is necessary to allow the precipitation-dispersed phase of about 100 to 1000 angstroms to exist uniformly and finely in the steel before finish annealing, and AlN, MnS, MnSe and the like are generally known. Furthermore, Sb, Sn, Cu, Mo, Ge, B, Te, As, Bi of grain boundary segregation elements are present at the grain boundaries.
It is useful to segregate such as. On the other hand, the primary recrystallization texture has been conventionally controlled by appropriately combining the process conditions of hot rolling, cold rolling and annealing.

【0004】しかし、Si含有量を高め、かつ製品板厚
を薄くすると、仕上焼鈍での2次再結晶方位制御は難し
くなり、磁束密度の高い0.25mm以下の板厚の製品を
得ることは容易ではなかった。製品板厚が薄くなると2
次再結晶方位制御が難しくなる原因の一つは、同一熱延
板からより薄い製品を得るにはより大きい冷延圧下を施
すところとなり、集合組織上の不利が生じるためであ
る。また、製品板厚に応じて熱延板の板厚を減少させる
方法が考えられるが、熱延板を薄くすることは必然的に
熱延終了温度が低くなり、MnS,MnSeなどの析出
状態が不適切となり、磁気特性が劣化する欠点が生じ、
この方法には限界がある。
However, if the Si content is increased and the product sheet thickness is reduced, it becomes difficult to control the secondary recrystallization orientation in the finish annealing, and it is difficult to obtain a product having a high magnetic flux density and a sheet thickness of 0.25 mm or less. It wasn't easy. 2 when the product plate thickness becomes thin
One of the reasons why it is difficult to control the secondary recrystallization direction is that a larger cold rolling reduction is applied to obtain a thinner product from the same hot-rolled sheet, which causes a disadvantage in texture. Further, a method of reducing the thickness of the hot-rolled sheet according to the product sheet thickness can be considered, but thinning the hot-rolled sheet inevitably lowers the hot-rolling finish temperature, and the precipitation state of MnS, MnSe, etc. Inappropriate, the disadvantage that the magnetic characteristics deteriorate will occur,
This method has limitations.

【0005】かかる問題の解決策として、熱延板に熱延
板焼鈍を施したのち予備冷延する方法がある。ところ
で、冷延工程については、冷延率、ワークロール径、ワ
ークロールの粗度などが磁気特性に影響を及ぼすことが
知られている。特に予備冷延におけるワークロール径の
影響については、特開平4−289121号に、熱延板
を(ロール径)/(板厚)≧50の圧延機によって圧下
率0.5〜15%で圧下した後、700〜1100℃の
温度域で熱延板焼鈍し、中間焼鈍を挟む2回以上の冷間
圧延によって最終板厚に仕上げることを特徴とする方法
が開示されている。
As a solution to such a problem, there is a method in which a hot rolled sheet is annealed and then pre-cold rolled. By the way, in the cold rolling process, it is known that the cold rolling rate, the work roll diameter, the roughness of the work roll and the like affect the magnetic properties. Regarding the influence of the work roll diameter in the pre-cold rolling, in particular, JP-A-4-289121 discloses that a hot rolled sheet is rolled at a rolling ratio of (roll diameter) / (sheet thickness) ≧ 50 at a rolling reduction of 0.5 to 15%. After that, a hot-rolled sheet is annealed in the temperature range of 700 to 1100 ° C., and the final sheet thickness is finished by cold rolling two or more times with intermediate annealing sandwiched therebetween.

【0006】[0006]

【発明が解決しようとする課題】特開平4−28912
1号に提案されている方法は、予備冷延、熱延板焼鈍に
加えて、2回以上の冷間圧延を行う方法であり、製造コ
ストが高くなり、また、工程管理が煩雑になるという問
題がある。また、インヒビターとしてAlNを用いてお
らず、最終強冷延の圧下率が80%未満の製造工程に関
するものであり、磁束密度B8 は1.92T前後した得
られていない。本発明はインヒビターとしてAlNを使
用し、熱延板に熱延板焼鈍し、予備冷延し、析出焼鈍
し、81〜88%の圧下率の最終強冷延するという工程
で、予備冷延をワークロール径/熱延板厚≦90の冷延
機で5〜50%の圧下率で行う方法を提案するもので、
磁束密度が高く、製造コストが安く、工程管理が煩雑で
ない高磁束密度一方向性電磁鋼板を製造する方法を提供
するものである。
[Patent Document 1] Japanese Patent Application Laid-Open No. 4-28912
The method proposed in No. 1 is a method of performing cold rolling twice or more in addition to pre-cold rolling and hot-rolled sheet annealing, resulting in high manufacturing cost and complicated process control. There's a problem. In addition, AlN is not used as an inhibitor, and it relates to a manufacturing process in which the rolling reduction of the final strong cold rolling is less than 80%, and the magnetic flux density B 8 is about 1.92T and is not obtained. The present invention uses AlN as an inhibitor, hot-rolls annealed hot-rolled sheets, pre-cold-rolls, precipitation-anneals, and finally cold-rolls with a reduction ratio of 81 to 88%. It proposes a method in which a cold rolling machine having a work roll diameter / hot rolled sheet thickness ≦ 90 and a rolling reduction of 5 to 50% is used.
It is intended to provide a method for producing a high magnetic flux density unidirectional electrical steel sheet which has a high magnetic flux density, a low production cost, and is not complicated in process control.

【0007】[0007]

【課題を解決するための手段】本発明は重量%で、C:
0.015〜0.100%、Si:2.0〜4.0%、
Mn:0.03〜0.12%、Sol.Al:0.01
0〜0.065%、N:0.0040〜0.0100
%、SおよびSeのうちから選んだ1種または2種の合
計:0.005〜0.050%、更にSb,Sn,C
u,Mo,Ge,B,Te,As、およびBiから選ば
れる1種または2種以上を0.003〜0.3%含有
し、残部は実質的にFeの組成になる連続鋳造スラブに
スラブ加熱を施したのち熱延し、熱延板焼鈍し、予備冷
延を施し、析出焼鈍し、81〜89%の圧下率の最終強
冷延により0.25mm以下の最終板厚とし、脱炭・1次
再結晶焼鈍、最終仕上焼鈍、コーティング塗布によって
高磁束密度一方向性電磁鋼板を製造する方法において、
予備冷延をワークロール径/熱延板厚≦90の冷延機で
5〜50%の圧下率で行うことを特徴とする高磁束密度
一方向性電磁鋼板の製造方法である。
The present invention, in% by weight, comprises C:
0.015-0.100%, Si: 2.0-4.0%,
Mn: 0.03 to 0.12%, Sol. Al: 0.01
0-0.065%, N: 0.0040-0.0100
%, A total of one or two selected from S and Se: 0.005 to 0.050%, and further Sb, Sn, C
A slab in a continuously cast slab containing 0.003 to 0.3% of one or more selected from u, Mo, Ge, B, Te, As, and Bi, and the balance being substantially Fe. After heating, hot rolling, hot-rolled sheet annealing, preliminary cold rolling, precipitation annealing, final strong cold rolling with a rolling reduction of 81 to 89% to a final sheet thickness of 0.25 mm or less, and decarburization -In the method for producing a high magnetic flux density unidirectional electrical steel sheet by primary recrystallization annealing, final finishing annealing, and coating application,
A method for producing a high magnetic flux density unidirectional electrical steel sheet, characterized in that preliminary cold rolling is performed by a cold rolling machine having a work roll diameter / hot rolled sheet thickness ≦ 90 at a rolling reduction of 5 to 50%.

【0008】本発明者は、磁気特性の優れた高磁束密度
一方向性電磁鋼板を製造する方法を検討したところ、予
備冷延のワークロール径をワークロール径/熱延板厚≦
90とすることが非常に有効であることを見出した。図
1は、本発明者が行った実験結果の一例である。本発明
に従った成分範囲にあるC:0.069%、Si:3.
09%、Mn:0.068%、S:0.029%、So
l.Al:0.035%、N:0.0087%、Sn:
0.10%を含有する鋳片を連続鋳造し、スラブ加熱
後、板厚を2.30mmに熱延した。そして1150℃で
2分均熱の熱延板焼鈍をし、種々のワークロール径の冷
延機で1.80mmに22%の圧下率で予備冷延し、10
00℃で2分均熱後急冷する析出焼鈍をし、100mmφ
のワークロール径の冷延機で0.22mmに87.8%の
圧下率で最終強冷延し製品板厚とした。そして、冷延板
に脱炭・1次再結晶焼鈍を行い、最終仕上焼鈍そしてコ
ーティングを施す工程によって製品となした。この時の
予備冷延のワークロール径/熱延板厚と磁束密度との関
係を図1に示す。これより、ワークロール径/熱延板厚
が≦90の場合に特に高い磁束密度を得られることが分
かる。
The present inventor has studied a method for producing a high magnetic flux density grain-oriented electrical steel sheet having excellent magnetic properties. As a result, the work roll diameter for pre-cold rolling is defined as work roll diameter / hot rolled sheet thickness ≦
It has been found that setting 90 is very effective. FIG. 1 shows an example of the result of an experiment conducted by the present inventor. In the composition range according to the invention C: 0.069%, Si: 3.
09%, Mn: 0.068%, S: 0.029%, So
l. Al: 0.035%, N: 0.0087%, Sn:
A slab containing 0.10% was continuously cast, and after heating the slab, the plate thickness was hot rolled to 2.30 mm. Then, the hot-rolled sheet was annealed at 1150 ° C. for 2 minutes, pre-cold-rolled at a reduction ratio of 22% to 1.80 mm by cold-rolling machines with various work roll diameters, and 10
Precipitation annealing is carried out by soaking at 00 ° C for 2 minutes and then rapidly cooling, 100 mmφ
With a cold rolling machine having a work roll diameter of 0.22 mm, final strong cold rolling was performed at a reduction rate of 87.8% to obtain a product sheet thickness. Then, the cold-rolled sheet was subjected to decarburization / primary recrystallization annealing, final finishing annealing, and coating to obtain a product. The relationship between the work roll diameter of the pre-cold rolling / the thickness of the hot rolled sheet and the magnetic flux density at this time is shown in FIG. From this, it can be seen that particularly high magnetic flux density can be obtained when the work roll diameter / hot rolled sheet thickness is ≦ 90.

【0009】本発明の諸条件および限定理由は以下の通
りである。Cは、下限0.015%未満であれば2次再
結晶が不安定となり、上限の0.100%は、これより
Cが多くなると脱炭所要時間が長くなり経済的に不利と
なるために限定した。Siは、下限2%未満では良好な
鉄損が得られず、上限4%を超えると冷延性が著しく劣
化する。Mnは、下限0.03%未満であれば熱間脆化
を起こし、上限0.12%を超えると磁性不良を起こ
す。S,Seは、MnS,MnSeを形成するために必
要な元素で、これらの1種または2種の合計が下限0.
005%未満ではMnS,MnSeの絶対量が不足し、
上限0.050%を超えると熱間割れを生じ、また、最
終仕上焼鈍での純化が困難となる。
The conditions and the reasons for limitation of the present invention are as follows. If the lower limit of C is less than 0.015%, the secondary recrystallization becomes unstable, and the upper limit of 0.100% is economically disadvantageous because the time required for decarburization becomes longer when C is higher than this. Limited If Si is less than the lower limit of 2%, good iron loss cannot be obtained, and if it exceeds the upper limit of 4%, cold ductility is significantly deteriorated. If the lower limit of Mn is less than 0.03%, hot embrittlement occurs, and if it exceeds the upper limit of 0.12%, magnetic failure occurs. S and Se are elements necessary for forming MnS and MnSe, and the total of one or two of these is lower than 0.
If it is less than 005%, the absolute amounts of MnS and MnSe are insufficient,
If the upper limit of 0.050% is exceeded, hot cracking occurs, and purification in final finish annealing becomes difficult.

【0010】Sol.Alは、AlNを形成するために
必要な元素で、下限0.010%未満ではAlNの絶対
量が不足し、上限0.065%を超えるとAlNの適当
な分散状態が得られない。Nは、AlNを形成するため
に必要な元素で、下限0.0040%未満ではAlNの
絶対量が不足し、上限0.0100%を超えるとAlN
の適当な分散状態が得られない。Sb,Sn,Cu,M
o,Ge,B,Te,As、およびBiは粒界に偏析さ
せ、2次再結晶を安定化させるが、これらから選ばれる
1種または2種以上の含有量が下限0.03%未満では
偏析量が不足し、上限0.3%は経済的理由と脱炭性の
悪化によるものである。
Sol. Al is an element necessary for forming AlN, and if the lower limit is less than 0.010%, the absolute amount of AlN is insufficient, and if it exceeds the upper limit of 0.065%, a proper dispersed state of AlN cannot be obtained. N is an element necessary for forming AlN. If the lower limit is less than 0.0040%, the absolute amount of AlN is insufficient, and if the upper limit is more than 0.0100%, AlN is insufficient.
The proper dispersion state of can not be obtained. Sb, Sn, Cu, M
o, Ge, B, Te, As, and Bi segregate at the grain boundaries to stabilize secondary recrystallization, but if the content of one or more selected from these is less than the lower limit of 0.03%. The segregation amount is insufficient, and the upper limit of 0.3% is due to economic reasons and deterioration of decarburization.

【0011】熱延板焼鈍は、熱延板の組織、析出分散相
の均一化に効果があり、線状細粒の発生防止にも効果が
あるので実施する。予備冷延のワークロール径はワーク
ロール径/熱延板厚≦60とする。これよりも小さいと
磁束密度を高くできない。予備冷延は1回または2回以
上のパスで施し、全圧下率で5〜50%とする。5%未
満では、続く最終強冷延への圧下率調整量が少なすぎ
る。予備冷延率が50%を超えると集合組織が不適当と
なり磁束密度の低下が著しい。最終強冷延の圧下率につ
いては、81%未満でも89%を超えても集合組織が不
適当になるので2次再結晶が不安定となる。製品板厚を
0.25mm以下と限定したのは、最近の需要ニーズに対
応して低鉄損な製品を得るためである。
The hot-rolled sheet annealing is carried out because it has the effect of making the structure of the hot-rolled sheet and the precipitation-dispersed phase uniform and also effective in preventing the generation of linear fine grains. The work roll diameter for pre-cold rolling is defined as work roll diameter / hot rolled sheet thickness ≦ 60. If it is smaller than this, the magnetic flux density cannot be increased. Pre-cold rolling is performed once or twice or more, and the total rolling reduction is 5 to 50%. If it is less than 5%, the amount of rolling reduction adjustment to the subsequent final strong cold rolling is too small. If the pre-cold rolling rate exceeds 50%, the texture is unsuitable and the magnetic flux density is significantly reduced. Regarding the rolling reduction in the final strong cold rolling, the texture becomes inadequate if the rolling reduction is less than 81% or more than 89%, so that the secondary recrystallization becomes unstable. The reason for limiting the product plate thickness to 0.25 mm or less is to obtain a product with low iron loss in response to recent demand needs.

【0012】[0012]

【実施例】【Example】

〔実施例1〕C:0.088%、Si:3.45%、M
n:0.062%、S:0.021%、Sol.Al:
0.036%、N:0.0091%、Sn:0.14
%、Cu:0.07%を含有する鋳片を連続鋳造し、ス
ラブ加熱し、熱間圧延し2.1mm厚のホットコイルとし
た。そして、1080℃×2分均熱後急冷するという熱
間板焼鈍をし、種々のワークロール径で1.30mmに3
8%の圧下率で予備冷延した。そして、1050℃×2
分の均熱後急冷するという析出焼鈍をし、100mmφの
ワークロール径の冷延機で86.9%の圧下率で最終冷
延し、板厚を0.17mmとした。その後、冷延板に脱炭
・1次再結晶焼鈍を行い、最終仕上焼鈍そして最終コー
ティングを施す工程によって製品となした。
[Example 1] C: 0.088%, Si: 3.45%, M
n: 0.062%, S: 0.021%, Sol. Al:
0.036%, N: 0.0091%, Sn: 0.14
%, Cu: 0.07%, continuously cast, slab-heated, and hot-rolled to form a hot coil having a thickness of 2.1 mm. Then, hot plate annealing was performed, in which the material was soaked at 1080 ° C for 2 minutes and then rapidly cooled, and various work roll diameters were adjusted to 1.30 mm.
Pre-cold rolling was performed at a reduction rate of 8%. And 1050 ℃ × 2
Precipitation annealing was performed by soaking for a minute and then rapidly cooling, and finally cold-rolled with a cold rolling machine having a work roll diameter of 100 mmφ at a reduction rate of 86.9% to obtain a sheet thickness of 0.17 mm. Then, the cold-rolled sheet was subjected to decarburization / primary recrystallization annealing, final finishing annealing, and final coating to obtain a product.

【0013】この時の予備冷延のワークロール径、ワー
クロール径/熱延板厚と得られた製品の磁束密度B8
表1に示す。これより、本発明例は比較例と比べ高い磁
束密度が得られることが分かる。
Table 1 shows the work roll diameter of the pre-cold rolling at this time, the work roll diameter / the hot rolled sheet thickness, and the magnetic flux density B 8 of the obtained product. From this, it is understood that the inventive example can obtain a higher magnetic flux density than the comparative example.

【0014】[0014]

【表1】 [Table 1]

【0015】〔実施例2〕種々の成分を含有する鋳片を
連続鋳造し、スラブ加熱した後、熱間圧延し、1.8mm
厚の熱延板を得た。熱間板焼鈍は1100℃で2分間の
均熱後急冷し、ワークロール径/熱延板厚=38.9と
なるワークロール径70mmφの冷延機と、ワークロール
径/熱延板厚=333.3となるワークロール径600
mmφの冷延機で1.10mmに39%の圧下率で予備冷延
し、1100℃で2分均熱後急冷する析出焼鈍を行い、
0.15mmに70mmφのワークロール径の冷延機で8
6.4%の圧下率で最終強冷延した。その後、得られた
冷延板に脱炭・1次再結晶焼鈍を行い、最終仕上焼鈍そ
して最終コーティングを施す工程によって製品となし
た。
Example 2 A slab containing various components was continuously cast, slab-heated and then hot-rolled to give a thickness of 1.8 mm.
A thick hot rolled plate was obtained. Hot plate annealing was soaked at 1100 ° C. for 2 minutes and then rapidly cooled, and a work roll diameter / hot rolled sheet thickness = 38.9, a work roll diameter 70 mmφ cold rolling machine, and work roll diameter / hot rolled sheet thickness = Work roll diameter of 333.3 600
Pre-cold rolling to 1.10 mm at a reduction rate of 39% with a mmφ cold rolling machine, and soaking at 1100 ° C. for 2 minutes followed by rapid cooling for precipitation annealing,
8 with a cold rolling machine with a work roll diameter of 70 mmφ from 0.15 mm
The final strong cold rolling was performed at a rolling reduction of 6.4%. Then, the cold-rolled sheet thus obtained was subjected to decarburization / primary recrystallization annealing, final finishing annealing and final coating to obtain a product.

【0016】この時の鋳片の成分、予備冷延のワークロ
ール径と製品の磁束密度B8 を表2に示す。これより、
本発明例は比較例と比べ高い磁束密度が得られることが
分かる。
Table 2 shows the composition of the slab, the work roll diameter of the pre-cold rolling and the magnetic flux density B 8 of the product at this time. Than this,
It can be seen that the inventive example can obtain a higher magnetic flux density than the comparative example.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【表5】 [Table 5]

【0021】[0021]

【発明の効果】本発明によれば、磁気特性の優れた高磁
束密度一方向性電磁鋼板を製造でき、その工業的効果は
非常に大きい。
According to the present invention, a high magnetic flux density unidirectional electrical steel sheet having excellent magnetic properties can be manufactured, and its industrial effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】予備冷延のワークロール径/熱延板厚と製品の
磁束密度B8 の関係図表である。
FIG. 1 is a table showing a relationship between work roll diameter / hot rolled sheet thickness of pre-cold rolling and magnetic flux density B 8 of a product.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.015〜0.100%、 Si:2.0〜4.0%、 Mn:0.03〜0.12%、 Sol.Al:0.010〜0.065%、 N :0.0040〜0.0100%、 SおよびSeのうちから選んだ1種または2種の合計:
0.005〜0.050%、 更にSb,Sn,Cu,Mo,Ge,B,Te,As、
およびBiから選ばれる1種または2種以上を0.00
3〜0.3%、 残部は実質的にFeの組成になる連続鋳造スラブにスラ
ブ加熱を施したのち熱延し、熱延板焼鈍し、予備冷延を
施し、析出焼鈍し、81〜89%の圧下率の最終強冷延
により0.25mm以下の最終板厚とし、脱炭・1次再結
晶焼鈍、最終仕上焼鈍、コーティング塗布によって高磁
束密度一方向性電磁鋼板を製造する方法において、予備
冷延をワークロール径/熱延板厚≦90の冷延機で5〜
50%の圧下率で行うことを特徴とする高磁束密度一方
向性電磁鋼板の製造方法。
1. By weight%, C: 0.015 to 0.100%, Si: 2.0 to 4.0%, Mn: 0.03 to 0.12%, Sol. Al: 0.010 to 0.065%, N: 0.0040 to 0.0100%, and a total of one or two selected from S and Se:
0.005-0.050%, Sb, Sn, Cu, Mo, Ge, B, Te, As,
And one or more selected from Bi are 0.00
3 to 0.3%, with the balance being slab heating to a continuously cast slab that is substantially Fe composition, then hot rolled, hot rolled sheet annealed, pre-cold rolled, precipitation annealed, 81-89 In a method for producing a high magnetic flux density unidirectional electrical steel sheet by decarburization / primary recrystallization annealing, final finishing annealing, and coating application, a final sheet thickness of 0.25 mm or less is obtained by final strong cold rolling with a reduction rate of%. Pre-cold rolling with a cold rolling machine with work roll diameter / hot rolled sheet thickness ≤ 90
A method for producing a high magnetic flux density unidirectional electrical steel sheet, which is performed at a reduction rate of 50%.
JP5002065A 1993-01-08 1993-01-08 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP2680519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002065A JP2680519B2 (en) 1993-01-08 1993-01-08 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002065A JP2680519B2 (en) 1993-01-08 1993-01-08 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH06207220A true JPH06207220A (en) 1994-07-26
JP2680519B2 JP2680519B2 (en) 1997-11-19

Family

ID=11518948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002065A Expired - Lifetime JP2680519B2 (en) 1993-01-08 1993-01-08 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP2680519B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110217A1 (en) 2009-03-23 2010-09-30 新日本製鐵株式会社 Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core
WO2011115120A1 (en) 2010-03-17 2011-09-22 新日本製鐵株式会社 Method for producing directional electromagnetic steel sheet
WO2013051042A1 (en) 2011-10-05 2013-04-11 Centro Sviluppo Materiali S.Pa. Process for the production of grain-oriented magnetic sheet with a high level of cold reduction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551642A (en) * 1991-03-15 1993-03-02 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet stable in magnetic property

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551642A (en) * 1991-03-15 1993-03-02 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet stable in magnetic property

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110217A1 (en) 2009-03-23 2010-09-30 新日本製鐵株式会社 Process for producing grain-oriented magnetic steel sheet, grain-oriented magnetic steel sheet for wound core, and wound core
EP3696288A2 (en) 2009-03-23 2020-08-19 Nippon Steel Corporation Manufacturing method of grain oriented electrical steel sheet, grain oriented electrical steel sheet for wound core, and wound core
WO2011115120A1 (en) 2010-03-17 2011-09-22 新日本製鐵株式会社 Method for producing directional electromagnetic steel sheet
US9273371B2 (en) 2010-03-17 2016-03-01 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of grain-oriented electrical steel sheet
WO2013051042A1 (en) 2011-10-05 2013-04-11 Centro Sviluppo Materiali S.Pa. Process for the production of grain-oriented magnetic sheet with a high level of cold reduction

Also Published As

Publication number Publication date
JP2680519B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US6331215B1 (en) Process for producing grain-oriented electromagnetic steel sheet
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP2000104144A (en) Silicon steel sheet excellent in magnetic property in l orientation and c orientation and its production
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3331478B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH03229820A (en) Production of nonoriented silicon steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3179986B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH10273727A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH06212262A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2574583B2 (en) Method for manufacturing oriented silicon steel sheet with good iron loss
JP4213784B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3451652B2 (en) Method for producing unidirectional silicon steel sheet
JPH04289121A (en) Production of thin grain-oriented silicon steel sheet having stable magnetic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 16