JP3331478B2 - Manufacturing method of high magnetic flux density unidirectional electrical steel sheet - Google Patents

Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Info

Publication number
JP3331478B2
JP3331478B2 JP34292292A JP34292292A JP3331478B2 JP 3331478 B2 JP3331478 B2 JP 3331478B2 JP 34292292 A JP34292292 A JP 34292292A JP 34292292 A JP34292292 A JP 34292292A JP 3331478 B2 JP3331478 B2 JP 3331478B2
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
high magnetic
cold rolling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34292292A
Other languages
Japanese (ja)
Other versions
JPH06184640A (en
Inventor
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34292292A priority Critical patent/JP3331478B2/en
Publication of JPH06184640A publication Critical patent/JPH06184640A/en
Application granted granted Critical
Publication of JP3331478B2 publication Critical patent/JP3331478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は変圧器等の鉄心に使用さ
れる高磁束密度一方向性電磁鋼板の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high magnetic flux density unidirectional magnetic steel sheet used for an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主に変圧器や発電機
の鉄心材料に使用されるが、省エネルギー化が要求され
ている昨今、更に磁束密度が高く、鉄損の少ない鋼板が
市場から要求されている。低鉄損を達成するためには、
鋼板のSi含有量を極力高め、素材の固有抵抗を上げて
渦電流損を下げる方法と、製品板厚を極力薄くし、渦電
流損を下げる方法が知られている。また、最近、製品の
鋼板表面にレーザ照射したり、歯形ロールにより鋼板表
面に溝を形成するというような磁区制御技術が開発さ
れ、実用化されており、鉄損を著しく少なくすることが
可能となっている。この場合、磁区制御後の鉄損は磁区
制御前の磁束密度が高いほど少なくなることが知られて
おり、磁束密度の高い鋼板を製造することが非常に重要
となっている。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used for core materials of transformers and generators. Recently, steel sheets with higher magnetic flux density and less iron loss have been required from the market for energy saving. Has been requested. To achieve low iron loss,
There are known a method of reducing the eddy current loss by increasing the Si content of the steel sheet as much as possible and increasing the specific resistance of the material, and a method of reducing the eddy current loss by reducing the thickness of the product sheet as much as possible. Also, recently, magnetic domain control technology such as laser irradiation on the steel plate surface of a product or forming grooves on the steel plate surface with a toothed roll has been developed and put into practical use, and it is possible to significantly reduce iron loss. Has become. In this case, it is known that the iron loss after the magnetic domain control decreases as the magnetic flux density before the magnetic domain control increases, and it is very important to manufacture a steel sheet having a high magnetic flux density.

【0003】磁束密度の高い一方向性電磁鋼板を得るに
は、{110}<001>方位いわゆるゴス方位に高度
に集積した二次再結晶組織を得ることが必要である。二
次再結晶には、インヒビターと一次再結晶集合組織が大
きく影響することが知られている。インヒビターについ
ては、仕上焼鈍を行うまでに鋼中に100〜1000Å
程度の析出分散相を均一微細に存在させることが必要
で、AlN、MnS、MnSeなどが一般的に知られて
いる。更には、結晶粒界に粒界偏析元素のSb、Sn、
Cu、Mo、Ge、B、Te、As、Biなどを偏析さ
せることが有用である。一方、一次再結晶集合組織につ
いては、従来から熱延、冷延、焼鈍の各工程条件を適切
に組み合わせることにより制御されてきた。
[0003] In order to obtain a grain-oriented electrical steel sheet having a high magnetic flux density, it is necessary to obtain a secondary recrystallized structure highly integrated in the {110} <001> orientation, the so-called Goss orientation. It is known that the inhibitor and the primary recrystallization texture greatly influence the secondary recrystallization. About inhibitor, 100-1000Å in steel before finish annealing.
AlN, MnS, MnSe, and the like are generally known because it is necessary to have a certain amount of the dispersed dispersed phase uniformly and finely. Furthermore, the grain boundary segregation elements Sb, Sn,
It is useful to segregate Cu, Mo, Ge, B, Te, As, Bi and the like. On the other hand, the primary recrystallization texture has been conventionally controlled by appropriately combining the respective process conditions of hot rolling, cold rolling and annealing.

【0004】しかし、Si含有量を高め、かつ製品板厚
を薄くすると、仕上焼鈍での二次再結晶方位制御は難し
くなり、磁束密度の高い0.25mm以下の板厚の製品
を得ることは容易ではなかった。製品板厚が薄くなると
二次再結晶方位制御が難しくなる原因の一つは、同一熱
延板からより薄い製品を得るにはより大きい冷延圧下を
施すところとなり、集合組織上の不利が生じるためであ
る。また、製品板厚に応じて熱延板の板厚を減少させる
方法が考えられるが、熱延板を薄くすることは必然的に
熱延終了温度が低くなり、MnS、MnSeなどの析出
状態が不適切となり、磁気特性が劣化するという欠点が
生じ、この方法には限界がある。かかる問題の解決策と
して、熱延板を予備冷延する方法がある。ところで、冷
延工程については、冷延率、ワークロール径、ワークロ
ールの粗度などが磁気特性に影響を及ぼすことが知られ
ている。特に予備冷延におけるワークロール径の影響に
ついては、特開平4−289121号に、熱延板を(ロ
ール径)/(板厚)≧50の圧延機によって圧下率0.
5〜15%で圧下した後、700〜1100℃の温度域
で熱延板焼鈍し、中間焼鈍を挟む2回以上の冷間圧延に
よって最終板厚に仕上げることを特徴とする方法が開示
されている。
[0004] However, when the Si content is increased and the product thickness is reduced, it is difficult to control the secondary recrystallization orientation in finish annealing, and it is difficult to obtain a product having a high magnetic flux density of 0.25 mm or less. It was not easy. One of the causes of the difficulty in controlling the secondary recrystallization orientation when the product thickness becomes thinner is that in order to obtain a thinner product from the same hot rolled sheet, a larger cold rolling reduction is applied, resulting in a disadvantage in texture. That's why. In addition, a method of reducing the thickness of the hot-rolled sheet according to the product sheet thickness is conceivable, but making the hot-rolled sheet thinner inevitably lowers the hot-rolling end temperature, and the precipitation state of MnS, MnSe, etc. This method has a drawback that it becomes inappropriate and magnetic properties deteriorate, and this method has a limit. As a solution to such a problem, there is a method of pre-cold rolling a hot-rolled sheet. Incidentally, in the cold rolling process, it is known that the cold rolling ratio, the work roll diameter, the roughness of the work roll, and the like affect the magnetic properties. In particular, regarding the effect of the work roll diameter on the pre-cold rolling, Japanese Patent Application Laid-Open No. 4-289121 discloses that a hot-rolled sheet is reduced by a rolling mill of (roll diameter) / (sheet thickness) ≧ 50 with a rolling reduction of 0.
Disclosed is a method characterized in that after rolling down in 5 to 15%, hot-rolled sheet is annealed in a temperature range of 700 to 1100 ° C. and finished to a final sheet thickness by two or more cold rollings sandwiching intermediate annealing. I have.

【0005】[0005]

【発明が解決しようとする課題】特開平4−28912
1号公報に提案されている方法は、予備冷延、熱延板焼
鈍に加えて、2回以上の冷間圧延を行う方法であり、製
造コストが高くなり、また工程管理が煩雑になるという
問題がある。また、インヒビターとしてAlNを用いて
おらず、最終強冷延の圧下率が80%未満の製造工程に
関するものであり、磁束密度B8 は1.92T前後しか
得られていない。本発明はインヒビターとしてAlNを
使用し、熱延板に予備冷延し、析出焼鈍し、81〜95
%の圧下率の最終強冷延するという工程で、予備冷延を
ワークロール径/熱延板厚≧60の冷延機で20〜50
%の圧下率で行う方法を提案するもので、磁束密度が高
く、製造コストが安く、工程管理が煩雑でない高磁束密
度一方向性電磁鋼板を製造する方法を提供することを目
的とするものである。
Problems to be Solved by the Invention Japanese Patent Laid-Open No. 4-28912
The method proposed in Japanese Patent Publication No. 1 is a method in which cold rolling is performed twice or more in addition to pre-cold rolling and hot-rolled sheet annealing, which increases the manufacturing cost and complicates the process control. There's a problem. Moreover, not using AlN as an inhibitor, final strength cold rolling reduction ratio is relates the manufacturing process of less than 80%, the magnetic flux density B 8 is not only obtained before and after 1.92 T. The present invention uses AlN as an inhibitor, preliminarily cold-rolled on a hot-rolled sheet, precipitation-annealed,
% Pre-rolling is performed by a cold rolling machine with a work roll diameter / hot rolled sheet thickness of ≧ 60.
The purpose of the present invention is to provide a method for producing a high magnetic flux density unidirectional electrical steel sheet having a high magnetic flux density, a low manufacturing cost, and a simple process control without a complicated process control. is there.

【0006】[0006]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量%で、C:0.015〜0.100%、S
i:2.0〜4.0%、Mn:0.03〜0.12%、
Sol.Al:0.010〜0.065%、N:0.0
040〜0.0100%、SおよびSeのうちから選ん
だ1種または2種合計:0.005〜0.050%、更
にSb、Sn、Cu、Mo、Ge、B、Te、As、お
よびBiから選ばれる1種または2種以上を0.003
〜0.3%含有し、残部は実質的にFeの組成になる連
続鋳造スラブにスラブ加熱を施した後、熱延し、予備冷
延を施し、析出焼鈍し、81〜95%の圧下率の最終強
冷延により0.25mm以下の最終板厚とし、脱炭・一
次再結晶焼鈍、最終仕上焼鈍、コーティング塗布によっ
て高磁束密度一方向性電磁鋼板を製造する方法におい
て、予備冷延をワークロール径/熱延板厚≧60の冷延
機で20〜50%の圧下率で行うことを特徴とする高磁
束密度一方向性電磁鋼板の製造方法にある。
The gist of the present invention is as follows: C: 0.015 to 0.100% by weight;
i: 2.0 to 4.0%, Mn: 0.03 to 0.12%,
Sol. Al: 0.010-0.065%, N: 0.0
040 to 0.0100%, one or two selected from S and Se: 0.005 to 0.050%, further Sb, Sn, Cu, Mo, Ge, B, Te, As, and Bi One or more selected from the group consisting of 0.003
After the slab heating is applied to the continuous cast slab containing approximately 0.3% and the balance is substantially Fe, hot rolling, preliminary cold rolling, precipitation annealing, and reduction of 81 to 95% are performed. In the method of producing a high magnetic flux density unidirectional magnetic steel sheet by decarburizing / primary recrystallization annealing, final finishing annealing, and coating application, the final cold rolling is performed to obtain a final sheet thickness of 0.25 mm or less by final strong cold rolling. A method for producing a high magnetic flux density unidirectional magnetic steel sheet, characterized in that the processing is performed at a rolling reduction of 20 to 50% with a cold rolling mill having a roll diameter / hot rolled sheet thickness ≧ 60.

【0007】本発明者は、磁気特性の優れた高磁束密度
一方向性電磁鋼板を製造する方法を検討したところ、予
備冷延のワークロール径をワークロール径/熱延板厚≧
60とすることが非常に有効であることを見出した。図
1は、本発明者が行った実験結果の一例である。本発明
に従った成分範囲にあるC:0.077%、Si:3.
29%、Mn:0.073%、S:0.021%、So
l.Al:0.030%、N:0.0074%、Sn:
0.10%を含有し、残部は実質的にFeからなる鋳片
を連続鋳造し、スラブ加熱後、板厚を2.30mmに熱
延した。そして種々のワークロール径の冷延機で1.8
0mmに22%の圧下率で予備冷延し、1000℃で2
分均熱後、急冷する析出焼鈍をし、100mmφのワー
クロール径の冷延機で0.22mmに87.8%の圧下
率で最終強冷延し、製品板厚とした。そして、冷延板に
脱炭・一次再結晶焼鈍を行い、最終仕上焼鈍そしてコー
ティングを施す工程によって製品となした。この時の予
備冷延のワークロール径/熱延板厚と磁束密度との関係
を図1に示す。これより、ワークロール径/熱延板厚が
≧60の場合に特に高い磁束密度を得られることが分か
る。
The present inventor has studied a method of manufacturing a high magnetic flux density unidirectional magnetic steel sheet having excellent magnetic properties. As a result, the work roll diameter of the pre-cold rolling is calculated as work roll diameter / hot rolled sheet thickness ≧
It has been found that a value of 60 is very effective. FIG. 1 is an example of the results of an experiment performed by the present inventors. C: 0.077%, Si: 3 in the component range according to the present invention.
29%, Mn: 0.073%, S: 0.021%, So
l. Al: 0.030%, N: 0.0074%, Sn:
A cast slab containing 0.10% and the balance substantially consisting of Fe was continuously cast, and after slab heating, the plate thickness was hot-rolled to 2.30 mm. And it is 1.8 with various cold rolls of work roll diameter.
Pre-cold rolled to 0 mm at a rolling reduction of 22%,
After soaking, the steel was subjected to precipitation annealing in which it was rapidly cooled, and was finally deeply cold-rolled at a reduction ratio of 87.8% to 0.22 mm by a cold rolling mill having a work roll diameter of 100 mmφ to obtain a product sheet thickness. Then, the cold-rolled sheet was subjected to decarburization / primary recrystallization annealing, final finish annealing, and a step of applying a coating to obtain a product. FIG. 1 shows the relationship between the work roll diameter / hot rolled sheet thickness and the magnetic flux density of the pre-cold rolling at this time. This shows that a particularly high magnetic flux density can be obtained when the work roll diameter / hot rolled sheet thickness is ≧ 60.

【0008】本発明の構成要件およびその限定理由につ
いて述べる。Cは、下限0.015%未満では二次再結
晶が不安定となり、上限の0.100%は、これよりC
が多くなると脱炭所要時間が長くなり経済的に不利とな
るために限定した。Siは、下限2.0%未満では良好
な鉄損が得られず、上限4.0%を超えると冷延性が著
しく劣化する。
The components of the present invention and the reasons for the limitations will be described. If the lower limit of C is less than 0.015%, the secondary recrystallization becomes unstable, and the upper limit of 0.100% is C
As the number of carbon dioxide increases, the time required for decarburization becomes longer, which is economically disadvantageous. If the lower limit of Si is less than 2.0%, good iron loss cannot be obtained, and if the upper limit is more than 4.0%, the cold rolling property is significantly deteriorated.

【0009】Mnは、下限0.03%未満では熱間脆化
を起こし、上限0.12%を超えると磁性不良を起こ
す。S、Seは、MnS、MnSeを形成するために必
要な元素で、これらの1種または2種の合計が下限0.
005%未満ではMnS、MnSeの絶対量が不足し、
上限0.050%を超えると熱間割れを生じ、また、最
終仕上焼鈍での純化が困難となる。
Mn causes hot embrittlement when the lower limit is less than 0.03%, and causes magnetic failure when the upper limit exceeds 0.12%. S and Se are elements necessary for forming MnS and MnSe, and one or two of these elements have a lower limit of 0.1.
If it is less than 005%, the absolute amounts of MnS and MnSe are insufficient,
If the upper limit is more than 0.050%, hot cracking occurs, and it is difficult to purify by final finishing annealing.

【0010】Sol.Alは、AlNを形成するために
必要な元素で、下限0.010%未満ではAlNの絶対
量が不足し、上限0.065%を超えるとAlNの適当
な分散状態が得られない。Nは、AlNを形成するため
に必要な元素で、下限0.0040%未満ではAlNの
絶対量が不足し、上限0.0100%を超えるとAlN
の適当な分散状態が得られない。
Sol. Al is an element necessary for forming AlN. If the lower limit is less than 0.010%, the absolute amount of AlN is insufficient, and if the upper limit is more than 0.065%, an appropriate dispersion state of AlN cannot be obtained. N is an element necessary for forming AlN. If the lower limit is less than 0.0040%, the absolute amount of AlN is insufficient.
Cannot be obtained in an appropriate dispersion state.

【0011】Sb、Sn、Cu、Mo、Ge、B、T
e、AsおよびBiは粒界に偏析させ、二次再結晶を安
定化させるが、これらから選ばれる1種または2種以上
の含有量が下限0.003%未満では偏析量が不足し、
上限0.3%は経済的理由と脱炭性の悪化によるもので
ある。予備冷延のワークロール径はワークロール径/熱
延板厚≧60とする。これよりも小さいと磁束密度を高
くできない。
Sb, Sn, Cu, Mo, Ge, B, T
e, As and Bi segregate at the grain boundaries and stabilize the secondary recrystallization, but if the content of one or more selected from these is less than the lower limit of 0.003%, the segregation amount will be insufficient,
The upper limit of 0.3% is due to economic reasons and decarbonization. The work roll diameter of the pre-cold rolling is set to work roll diameter / hot rolled sheet thickness ≧ 60. If it is smaller than this, the magnetic flux density cannot be increased.

【0012】予備冷延は1回または2回以上のパスで施
し、全圧下率で20〜50%とする。20%未満では、
線状細粒による磁性不良を起こす。予備冷延率が50%
を超えると集合組織が不適当となり、磁束密度の低下が
著しい。最終強冷延の圧下率については、81%未満で
も95%を超えても集合組織が不適当になるので二次再
結晶が不安定となる。
The preliminary cold rolling is performed in one or more passes, and the total reduction is set to 20 to 50%. If less than 20%
Magnetic defects are caused by the linear fine particles. Preliminary cold rolling rate is 50%
If it exceeds, the texture becomes inappropriate, and the magnetic flux density is significantly reduced. Regarding the rolling reduction of the final strong cold rolling, if it is less than 81% or more than 95%, the texture becomes inappropriate, so that the secondary recrystallization becomes unstable.

【0013】製品板厚を0.25mm以下と限定したの
は、最近の需要ニーズに対応して低鉄損の製品を得るた
めである。
The reason why the thickness of the product is limited to 0.25 mm or less is to obtain a product with low iron loss in response to recent demand needs.

【0014】[0014]

【実施例】【Example】

実施例1 C:0.068%、Si:3.19%、Mn:0.07
8%、S:0.021%、Sol.Al:0.021
%、N:0.0079%、Sn:0.14%、Cu:
0.07%を含有し、残部は実質的にFeからなる鋳片
を連続鋳造し、スラブ加熱し、熱間圧延して2.1mm
厚のホットコイルとした。次いで、種々のワークロール
径で1.30mmに38%の圧下率で予備冷延し、10
50℃×2分の均熱後急冷するという析出焼鈍をし、1
00mmφのワークロール径の冷延機で86.9%の圧
下率で最終冷延し、板厚を0.17mmとした。次い
で、得られた冷延板に脱炭・一次再結晶焼鈍を行い、最
終仕上焼鈍し、最終コーティングを施す工程を経て製品
となした。この時の予備冷延のワークロール径、ワーク
ロール径/熱延板厚と得られた製品の磁束密度B8 を表
1に示す。これより、本発明例は比較例と比べ高い磁束
密度が得られることが分かる。
Example 1 C: 0.068%, Si: 3.19%, Mn: 0.07
8%, S: 0.021%, Sol. Al: 0.021
%, N: 0.0079%, Sn: 0.14%, Cu:
Continuously casts a slab containing 0.07%, with the balance substantially consisting of Fe, slab-heated and hot-rolled to 2.1 mm
A thick hot coil was used. Then, it was pre-cold rolled to 1.30 mm with various work roll diameters at a rolling reduction of 38%,
Precipitation annealing was performed by quenching after soaking at 50 ° C for 2 minutes.
The final cold rolling was performed at a rolling reduction of 86.9% using a cold rolling mill having a work roll diameter of 00 mmφ, and the sheet thickness was set to 0.17 mm. Next, the obtained cold-rolled sheet was subjected to decarburization / primary recrystallization annealing, final finish annealing, and a step of applying a final coating to obtain a product. Indicates the work roll diameter of the pre-cold-rolled at this time, the magnetic flux density B 8 of the work roll diameter / hot-rolled sheet product obtained with thicknesses in Table 1. From this, it can be seen that the present invention example can obtain a higher magnetic flux density than the comparative example.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 種々の成分を含有する鋳片を連続鋳造し、スラブ加熱し
た後、熱間圧延し、1.8mm厚の熱延板を得た。ワー
クロール径/熱延板厚=38.9となるワークロール径
70mmφの冷延機と、ワークロール径/熱延板厚=3
33.3となるワークロール径600mmφの冷延機で
1.10mmに39%の圧下率で予備冷延し、1000
℃で2分均熱後、急冷する析出焼鈍を行い、0.15m
mに70mmφのワークロール径の冷延機で86.4%
の圧下率で最終強冷延した。その後、得られた冷延板に
脱炭・一次再結晶焼鈍を行い、最終仕上焼鈍し、最終コ
ーティングを施す工程を経て製品となした。この時の鋳
片の成分、予備冷延のワークロール径と製品の磁束密度
8 を表2、表3(表2のつづき−1)、表4(表2の
つづき−2)に示す。これより、本発明例は比較例に比
べ高い磁束密度を得られることが分かる。
Example 2 A slab containing various components was continuously cast, slab-heated, and then hot-rolled to obtain a hot-rolled sheet having a thickness of 1.8 mm. Cold roller with a work roll diameter of 70 mmφ where work roll diameter / hot rolled sheet thickness = 38.9, and work roll diameter / hot rolled sheet thickness = 3
Preliminarily cold-rolled to 1.10 mm with a rolling reduction of 39% using a cold-rolling machine with a work roll diameter of 600 mmφ to obtain 33.3,
After soaking at 2 ° C for 2 minutes, quenching precipitation annealing was performed, and 0.15 m
86.4% with a cold roll mill with a work roll diameter of 70 mmφ to m
The final cold rolling was performed at a rolling reduction of. Thereafter, the obtained cold rolled sheet was subjected to decarburization / primary recrystallization annealing, final finish annealing, and a step of applying a final coating to obtain a product. Component of the time of slab, Table 2 the work roll diameter and product of the magnetic flux density B 8 of the pre-cold rolled, Table 3 (Table 2 continued -1), shown in Table 4 (Table 2 continued -2). This shows that the present invention example can obtain a higher magnetic flux density than the comparative example.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【発明の効果】以上の如く本発明によれば、磁気特性の
優れた高磁束密度一方向性電磁鋼板を製造でき、その工
業的効果は非常に大きい。
As described above, according to the present invention, a high magnetic flux density unidirectional magnetic steel sheet having excellent magnetic properties can be manufactured, and its industrial effect is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】予備冷延のワークロール径/熱延板厚と製品の
磁束密度B8 の関係図である。
FIG. 1 is a diagram showing the relationship between the work roll diameter / hot rolled sheet thickness of pre-cold rolling and the magnetic flux density B 8 of a product.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 - 38/60 H01F 1/16 - 1/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00-38/60 H01F 1/16-1/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.015〜0.100
%、Si:2.0〜4.0%、Mn:0.03〜0.1
2%、Sol.Al:0.010〜0.065%、N:
0.0040〜0.0100%、SおよびSeのうちか
ら選んだ1種または2種合計:0.005〜0.050
%、更にSb、Sn、Cu、Mo、Ge、B、Te、A
sおよびBiから選ばれる1種または2種以上を0.0
03〜0.3%含有し、残部は実質的にFeの組成にな
る連続鋳造スラブにスラブ加熱を施した後、熱延し、予
備冷延を施し、析出焼鈍し、81〜95%の圧下率の最
終強冷延により0.25mm以下の最終板厚とし、脱炭
・一次再結晶焼鈍、最終仕上焼鈍、コーティング塗布に
よって高磁束密度一方向性電磁鋼板を製造する方法にお
いて、予備冷延をワークロール径/熱延板厚≧60の冷
延機で20〜50%の圧下率で行うことを特徴とする高
磁束密度一方向性電磁鋼板の製造方法。
1. C: 0.015 to 0.100 by weight%
%, Si: 2.0 to 4.0%, Mn: 0.03 to 0.1
2%, Sol. Al: 0.010-0.065%, N:
0.0040 to 0.0100%, one or two selected from S and Se: 0.005 to 0.050
%, Sb, Sn, Cu, Mo, Ge, B, Te, A
one or more selected from s and Bi are 0.0
A continuous cast slab containing 0.3 to 0.3%, with the balance being substantially Fe, is subjected to slab heating, hot rolled, pre-cold rolled, precipitation annealed, and reduced by 81 to 95%. In the method of producing a high magnetic flux density unidirectional electrical steel sheet by final strong cold rolling at a final sheet thickness of 0.25 mm or less, decarburization, primary recrystallization annealing, final finish annealing, and coating application, A method for producing a high magnetic flux density unidirectional magnetic steel sheet, which is performed at a reduction ratio of 20 to 50% using a cold rolling machine having a work roll diameter / hot rolled sheet thickness of ≧ 60.
JP34292292A 1992-12-22 1992-12-22 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet Expired - Lifetime JP3331478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34292292A JP3331478B2 (en) 1992-12-22 1992-12-22 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34292292A JP3331478B2 (en) 1992-12-22 1992-12-22 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH06184640A JPH06184640A (en) 1994-07-05
JP3331478B2 true JP3331478B2 (en) 2002-10-07

Family

ID=18357561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34292292A Expired - Lifetime JP3331478B2 (en) 1992-12-22 1992-12-22 Manufacturing method of high magnetic flux density unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3331478B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403418B2 (en) * 2008-09-22 2014-01-29 日立金属株式会社 Method for producing Co-Fe-Ni alloy sputtering target material
US20120013430A1 (en) 2009-03-23 2012-01-19 Nobusato Morishige Manufacturing method of grain oriented electrical steel sheet, grain oriented electrical steel sheet for wound core, and wound core
PL2548977T3 (en) 2010-03-17 2015-10-30 Nippon Steel & Sumitomo Metal Corp Method for producing directional electromagnetic steel sheet
JP5991484B2 (en) * 2011-12-06 2016-09-14 Jfeスチール株式会社 Manufacturing method of low iron loss grain oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH06184640A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
EP0837149B1 (en) Grain-oriented electromagnetic steel sheet and process for producing the same
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP3331478B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3338263B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH02104620A (en) Production of non-oriented magnetic steel sheet having low iron loss
JPH01139721A (en) Manufacture of semiprocessing non-oriented magnetic steel sheet having low iron loss and high magnetic permeability
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3451652B2 (en) Method for producing unidirectional silicon steel sheet
JPS61124526A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JP3338257B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
WO2023063426A1 (en) Aging treatment method and oriented electromagnetic steel sheet manufacturing method
JPH1096029A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
JPH04289121A (en) Production of thin grain-oriented silicon steel sheet having stable magnetic property
JPH02104619A (en) Production of non-oriented magnetic steel sheet having excellent iron loss characteristic
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11