JPH1096029A - Manufacture of grain-oriented silicon steel sheet having high magnetic flux density - Google Patents

Manufacture of grain-oriented silicon steel sheet having high magnetic flux density

Info

Publication number
JPH1096029A
JPH1096029A JP24695096A JP24695096A JPH1096029A JP H1096029 A JPH1096029 A JP H1096029A JP 24695096 A JP24695096 A JP 24695096A JP 24695096 A JP24695096 A JP 24695096A JP H1096029 A JPH1096029 A JP H1096029A
Authority
JP
Japan
Prior art keywords
hot
rolling
steel sheet
annealing
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24695096A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Takehide Senuma
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24695096A priority Critical patent/JPH1096029A/en
Publication of JPH1096029A publication Critical patent/JPH1096029A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture method for grain-oriented silicon steel sheet having a high magnetic flux density and used for an iron core material for electrical equipment. SOLUTION: A slab, having a composition consisting of, by weight, 0.035-0.10% C, 2.5-4.5% Si, 0.010-0.040% S, 0.010-0.050% sol-Al, 0.0030-0.0150% N, 0.020-0.40% Mn, and the balance Fe with inevitable impurities, is heated to >=1280 deg.C, hot-rolled, and subjected, before cold rolling, to hot rolled plate annealing and to cooling, and the resultant steel plate is rolled once or rolled two or more times while process-annealed between the rolling stages to >=80% final rolling rate, and, after decarburizing annealing and application of a separation agent at annealing, secondary recrystallization and purification are carried out by means of finish annealing, by which the grain oriented silicon steel sheet can be manufactured. At this time, the average coefficient of friction between a hot roll and a steel plate at the tie of finish hot rolling is regulated to >=0.25. Moreover, at the time of finish hot rolling, 0.5-20% of fats and fatty oils, as a lubricant, are mixed, in an emulsified state, into hot roll cooling water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が高い方向性電磁鋼板の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density, which is used as an iron core material of electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板は二次再結晶により鋼板
の結晶粒を特定方位に高度に配向させた成品であり、圧
延面に{110}面、圧延方向に<100>軸を有する
ゴス方位を持つ結晶粒により構成されている。
2. Description of the Related Art A grain-oriented electrical steel sheet is a product in which crystal grains of a steel sheet are highly oriented in a specific direction by secondary recrystallization and has a {110} plane on a rolling surface and a <100> axis in a rolling direction. It is composed of crystal grains having an orientation.

【0003】方向性電磁鋼板は軟磁性材料として主にト
ランスその他の電気機器の鉄心材料に使用されるもの
で、近年省エネルギー、省資源への社会的要求がますま
す厳しくなっていることから、一方向性電磁鋼板の鉄損
低減、磁化特性改善への要求も厳しくなってきている。
このため磁気特性、特に良好な励磁特性と鉄損特性が求
められるようになってきている。
[0003] Grain-oriented electrical steel sheets are mainly used as soft magnetic materials for core materials of transformers and other electric equipment. In recent years, social demands for energy saving and resource saving have become more and more severe. Demands for reduction of iron loss and improvement of magnetization characteristics of grain-oriented electrical steel sheets have also become severe.
For this reason, magnetic characteristics, particularly good excitation characteristics and iron loss characteristics, have been required.

【0004】方向性電磁鋼板の励磁特性を示す指標とし
ては、通常磁束密度B8(磁場の強さ800A/mにお
ける磁束密度)が用いられている。また鉄損特性を示す
指標としては、W17/50(50Hzで1.7Tまで
磁化させたときの単位重量あたりの鉄損)等が用いられ
ている。
A magnetic flux density B8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index indicating the excitation characteristics of a grain-oriented electrical steel sheet. As an index indicating the iron loss characteristics, W17 / 50 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) and the like are used.

【0005】鉄損は渦電流損とヒステリシス損からな
り、渦電流損は鋼板の電気抵抗率、板厚、結晶粒度、磁
区の形態、鋼板表面の皮膜張力等の因子により支配され
ている。一方、ヒステリシス損は磁束密度を支配する鋼
板の結晶方位、純度、内部歪等により支配される。
Iron loss consists of eddy current loss and hysteresis loss. The eddy current loss is governed by factors such as the electrical resistivity of the steel sheet, the thickness of the steel sheet, the grain size, the form of magnetic domains, and the film tension on the steel sheet surface. On the other hand, the hysteresis loss is governed by the crystal orientation, purity, internal strain and the like of the steel sheet that governs the magnetic flux density.

【0006】これらの因子を制御することによる鉄損低
減の試みとして、鋼板の電気抵抗を大きくするためにS
i含有量を高めることが行われてきたが、Si含有量を
高めると二次再結晶が不安定になるという問題ととも
に、製造工程及び製品での加工性が劣化するため限界に
きているのが現状である。
As an attempt to reduce iron loss by controlling these factors, in order to increase the electric resistance of
Increasing the i content has been performed, but increasing the Si content is accompanied by the problem that the secondary recrystallization becomes unstable, and the workability of the manufacturing process and products is degraded. Is the current situation.

【0007】一方、鋼板の純度、内部歪については製造
工程において検討が重ねられてきており、これらの低減
による鉄損の低減については限界近くにまで到達してい
る。板厚を薄くして渦電流損を低減させる試みもなされ
てきているが、製造の立場からは薄手化に伴い二次再結
晶の制御が困難になる問題点があり、需要家サイドでは
変圧器製造時のコストが増加するため、鉄損値が同等で
あれば厚手の材料が好まれて使用されている。
On the other hand, the purity and internal strain of the steel sheet have been studied in the manufacturing process, and the reduction of iron loss due to these reductions has reached the limit. Attempts have been made to reduce the eddy current loss by reducing the plate thickness, but from the manufacturing standpoint, there is a problem in that secondary thinning becomes difficult to control as the thickness becomes thinner. Since the cost at the time of manufacturing increases, thick materials are preferably used if the iron loss values are equal.

【0008】特開昭57−9419号公報には、鉄損低
減の手段としては二次再結晶粒径を小さくすることも有
効であることが記載されている。しかしながら、二次再
結晶粒径を小さくすると、その方位集積度が低下して高
磁束密度を得にくいという問題点があった。
JP-A-57-9419 describes that it is effective to reduce the secondary recrystallized grain size as a means of reducing iron loss. However, when the secondary recrystallized grain size is reduced, there is a problem that the degree of azimuthal integration is reduced and it is difficult to obtain a high magnetic flux density.

【0009】皮膜張力の効果と方向性電磁鋼板の磁束密
度の間には、J.Appl.Phys.,vol.4
1,no.7,p2981−2984(1970)に指
摘されているように、磁束密度B8の値が高いほどその
鉄損低減効果が大きいことが知られている。また磁区細
分化による鉄損低減法は特開昭58−5968号公報、
特開昭58−26405号公報に記載されているが、磁
区細分化処理前のプレーン材の磁束密度が高いほどその
効果が大きいことが知られている。
The relationship between the effect of the film tension and the magnetic flux density of the grain-oriented electrical steel sheet is described in J. Am. Appl. Phys. , Vol. 4
1, no. 7, p2981-2984 (1970), it is known that the higher the value of the magnetic flux density B8, the greater the effect of reducing iron loss. Further, a method for reducing iron loss by magnetic domain refining is disclosed in JP-A-58-5968,
As described in JP-A-58-26405, it is known that the higher the magnetic flux density of the plain material before the magnetic domain refining process, the greater the effect.

【0010】このように鉄損を低減させる試みとして
は、その影響因子である電気抵抗率、板厚、結晶粒度、
純度、内部歪等の改善が従来技術において限界に近づい
てきていることから、二次再結晶方位の集積度を向上さ
せ、磁束密度を高めることにより、皮膜張力の効果、磁
区細分化の効果を一層向上させることで鉄損を低減する
ことが重要となってきている。
Attempts to reduce iron loss in this way include electrical resistivity, plate thickness, grain size,
Since the improvement of purity, internal strain, etc. is approaching the limit in the conventional technology, by improving the degree of integration of the secondary recrystallization orientation and increasing the magnetic flux density, the effect of the film tension and the effect of domain segmentation can be improved. It has become important to reduce iron loss by further improving.

【0011】二次再結晶を安定して発現させるとともに
その方位集積度を高め、磁束密度を向上させる因子とし
て、インヒビターの役割が重要である。この目的のた
め、従来はMnS、AlN、MnSe等がインヒビター
として用いられてきている。
The role of the inhibitor is important as a factor for stably expressing secondary recrystallization, increasing the degree of azimuth integration, and improving magnetic flux density. For this purpose, conventionally, MnS, AlN, MnSe, etc. have been used as inhibitors.

【0012】従来の方向性電磁鋼板の製造方法は、二次
再結晶方位制御に用いられるインヒビターの種類により
大きく3種類に大別される。
Conventional methods for manufacturing grain-oriented electrical steel sheets are roughly classified into three types depending on the type of inhibitor used for controlling the secondary recrystallization orientation.

【0013】まず第一に、M.F.Littmannに
より特公昭30−3651号公報に開示されている方法
はインヒビターにMnSを用い、二回冷延法で製造する
方法である。次に、特公昭40−15644号公報に田
口、坂倉らにより開示された、MnSに加えてAlNを
インヒビターとする製造方法により、方向性電磁鋼板の
磁束密度は1.870T以上に向上し、磁気特性の改善
による省エネルギーに多大な貢献を果たした。第三に、
特公昭51−13469号公報に今中等により開示され
たMnSとSbもしくはMnS、MnSeとSbを用
い、二回冷延法により製造する方法がある。
First of all, M.I. F. The method disclosed by Littmann in Japanese Patent Publication No. 30-3651 is a method in which MnS is used as an inhibitor and is produced by a double cold rolling method. Next, the magnetic flux density of the grain-oriented electrical steel sheet is improved to 1.870 T or more by a manufacturing method disclosed in Taguchi and Sakakura et al. In Japanese Patent Publication No. 40-15644 using AlN as an inhibitor in addition to MnS. It made a great contribution to energy saving by improving characteristics. Third,
Japanese Patent Publication No. 51-13469 discloses a method in which MnS and Sb or MnS or MnSe and Sb are used and are produced by a double cold rolling method.

【0014】これらの従来の製造方法においては、良好
な磁束密度を得るためにはインヒビターの析出制御を目
的として、高温スラブ加熱により一旦インヒビターを構
成する析出物を溶体化し、これを熱延工程であるいは特
公昭46−23820号公報に開示されているように熱
延板焼鈍時に微細に析出させることが必要である。この
ように従来法では製鋼段階での成分調整と熱延の段階で
ほぼ製品の特性が決定されるため、上工程での材質造り
込みの安定性確立が重要な課題であった。
In these conventional manufacturing methods, in order to obtain a good magnetic flux density, for the purpose of controlling the precipitation of the inhibitor, the precipitate constituting the inhibitor is once dissolved in solution by high-temperature slab heating, and this is subjected to a hot rolling process. Alternatively, as disclosed in JP-B-46-23820, it is necessary to precipitate finely during hot-rolled sheet annealing. As described above, in the conventional method, the properties of the product are almost determined at the stage of the component adjustment at the steel making stage and at the stage of hot rolling. Therefore, it is an important issue to establish the stability of the material building in the upper process.

【0015】この目的のために、方向性電磁鋼板の熱延
工程においては析出物制御をより安定的に行う観点か
ら、粗圧延後のシートバーへの保熱カバー使用、ランア
ウトテーブル上での冷却制御等の対策により、コイル長
手方向の析出物制御に多大の努力が払われてきた。しか
しながら、依然として方向性電磁鋼板の熱延条件の変動
が成品の磁気特性に与える影響は大きく、熱延条件の安
定性の点で課題を残していた。
For this purpose, in the hot rolling process of a grain-oriented electrical steel sheet, from the viewpoint of more stably controlling precipitates, use of a heat retaining cover for a sheet bar after rough rolling, cooling on a run-out table. A great deal of effort has been put into controlling the precipitates in the longitudinal direction of the coil by measures such as control. However, the variation of the hot rolling conditions of the grain-oriented electrical steel sheet still has a large effect on the magnetic properties of the product, and there remains a problem in the stability of the hot rolling conditions.

【0016】さらに昨今の省エネルギーに対する市場の
要請には厳しいものがあり、エネルギー消費量を節約
し、環境改善に役立てるために、鉄心として使用される
電磁鋼板に対しては磁束密度の向上、鉄損の低減の要求
が増してきている。
Further, there is a severe demand in the market for energy saving these days, and in order to save energy consumption and contribute to environmental improvement, an electromagnetic steel sheet used as an iron core has an increased magnetic flux density and an increased iron loss. There is an increasing demand for reduction.

【0017】回転機等に使用される電磁鋼板と異なり、
トランス等の用途で使用される方向性電磁鋼板は常に通
電した状態で使用されるため、稼働率からみた損失低減
の重要性は非常に重大である。このためその磁気特性改
善による省エネルギー効果は非常に大きいものがあり、
需要家がコストアップを出来るだけ押さえながら鉄心を
高効率化するため、より磁束密度の高い成品の供給が求
められていた。
Unlike electromagnetic steel sheets used for rotating machines,
Since the grain-oriented electrical steel sheets used in applications such as transformers are always used in an energized state, the importance of loss reduction is very important from the viewpoint of operation rate. For this reason, the energy saving effect by the improvement of the magnetic properties is very large,
In order to increase the efficiency of the iron core while reducing costs as much as possible, the supply of products with higher magnetic flux density was required.

【0018】本発明者はこの様な高温スラブ加熱による
方向性電磁鋼板の熱延条件の成品の磁気特性に対する影
響を緩和し、安定的に方向性電磁鋼板を製造しうる技術
を開発することを目的に、熱延工程の検討を行った。
The present inventor has developed a technique for reducing the influence of the hot rolling conditions of the grain-oriented electrical steel sheet by the high-temperature slab heating on the magnetic properties of the product and stably producing the grain-oriented electrical steel sheet. For the purpose, the hot rolling process was studied.

【0019】さらに発明者は昨今の省エネルギーに対す
る需要家の厳しい要請に応えるために、従来技術による
改良では行き詰まり状態にある低鉄損到達技術の限界を
打破するため、高磁束密度方向性電磁鋼板製造方法を開
発するため検討を重ねた。
Furthermore, the inventor of the present invention has been trying to meet the severe demands of consumers for energy saving in recent years, and to overcome the limitations of the technology for achieving low iron loss which is in a deadlock state by the improvement of the prior art. The study was repeated to develop a method.

【0020】[0020]

【発明が解決しようとする課題】本発明はこのような昨
今の市場の要請に応え、従来技術における高温スラブ加
熱による方向性電磁鋼板製造上の熱延条件に対する成品
磁気特性の安定性の問題を解決しつつ、さらに磁束密度
が高い方向性電磁鋼板の製造方法を提供することを目的
とするものである。
SUMMARY OF THE INVENTION The present invention meets the demands of the market in recent years and solves the problem of the stability of the magnetic properties of a product to the hot rolling conditions in the production of grain-oriented electrical steel sheets by high-temperature slab heating in the prior art. It is an object of the present invention to provide a method for manufacturing a grain-oriented electrical steel sheet having a higher magnetic flux density while solving the problems.

【0021】[0021]

【課題を解決するための手段】本発明は、重量%で、 0.035 %≦ C ≦0.10 %、 2.5 %≦ Si ≦4.5 %、 0.010 %≦ S ≦0.040 %、 0.010 %≦sol−Al≦0.050 %、 0.0030%≦ N ≦0.0150%、 0.020 %≦ Mn ≦0.40 % を含有し、残部Feおよび不可避的不純物からなるスラ
ブを、1280℃以上の温度に加熱した後熱延し、冷間
圧延前に熱延板焼鈍を施し冷却し、1回または中間焼鈍
をはさむ2回以上の圧延で最終圧延率80%以上とし、
次いで脱炭焼鈍し焼鈍分離材を塗布し、仕上焼鈍により
二次再結晶および純化を行う方向性電磁鋼板の製造方法
において、仕上熱間圧延時の熱延ロールと鋼板との平均
摩擦係数を0.25以下とすることを特徴とする磁束密
度が高い方向性電磁鋼板の製造方法である。この際、仕
上熱延時に潤滑剤として熱延ロール冷却水に0.5〜2
0%の油脂をエマルジョン状態で混入すること、粗圧延
後のシートバーを仕上熱延前に先行するシートバーに接
合し、当該シートバーを2本以上連続して仕上熱延に供
することが好ましい。
According to the present invention, 0.035% ≦ C ≦ 0.10%, 2.5% ≦ Si ≦ 4.5%, 0.010% ≦ S ≦ 0% by weight. 040%, 0.010% ≦ sol-Al ≦ 0.050%, 0.0030% ≦ N ≦ 0.0150%, 0.020% ≦ Mn ≦ 0.40%, with the balance being Fe and unavoidable impurities Is heated to a temperature of 1280 ° C. or more, hot rolled, subjected to hot rolled sheet annealing and cooled before cold rolling, and subjected to one or two or more rollings including an intermediate annealing to a final rolling reduction of 80%. Above
Next, in a method for producing a grain-oriented electrical steel sheet in which a decarburizing annealing and annealing separator is applied and secondary recrystallization and purification are performed by finish annealing, the average friction coefficient between the hot-rolled roll and the steel sheet during the finish hot rolling is set to 0. .25 or less, which is a method for producing a grain-oriented electrical steel sheet having a high magnetic flux density. At this time, 0.5 to 2 times as much
It is preferable to mix 0% of fats and oils in an emulsion state, to join the sheet bar after rough rolling to the preceding sheet bar before finish hot rolling, and to continuously apply two or more sheet bars to finish hot rolling. .

【0022】発明者は、従来検討の主眼とされたインヒ
ビター制御技術以外の製造上の検討課題として、熱延条
件を制御する熱延板の造り込みによる磁束密度の高い方
向性電磁鋼板の製造方法について検討した結果、仕上熱
延時に潤滑条件を制御することにより、仕上熱延機のワ
ークロールと鋼板との間の摩擦係数が0.25以下の低
摩擦圧延を行うことで、成品における磁束密度が向上す
ることを見出し、発明に至った。
The inventor of the present invention has another problem to be studied in manufacturing other than the inhibitor control technique, which has been the main focus of the conventional study, as a method of manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density by forming a hot-rolled sheet for controlling hot-rolling conditions. As a result of studying, the lubrication conditions were controlled during the hot-rolling process, and the low-friction rolling with a friction coefficient of 0.25 or less between the work roll of the finishing hot-rolling machine and the steel sheet was performed. Was found to be improved, and the present invention was achieved.

【0023】また、操業上の観点からは、本発明のよう
な低摩擦圧延を安定して実施するために、粗圧延後のシ
ートバーを先行するシートバーに接合し、2本以上のシ
ートバーを連続して仕上熱延に供することが有効である
ことも見出した。
Further, from the viewpoint of operation, in order to stably perform the low friction rolling as in the present invention, the sheet bar after the rough rolling is joined to the preceding sheet bar, and two or more sheet bars are joined. It has been found that it is effective to continuously provide hot rolling for finishing.

【0024】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0025】まず、成分について説明する。First, the components will be described.

【0026】Si含有量は電磁鋼板の固有抵抗を介して
鉄損特性を大きく左右するが、2.5%未満では固有抵
抗が小さく渦電流損が増大する。また、4.5%超では
加工性が劣化するので製造、製品加工が困難になる。
The Si content greatly affects the iron loss characteristics through the specific resistance of the magnetic steel sheet, but if it is less than 2.5%, the specific resistance is small and the eddy current loss increases. On the other hand, if the content exceeds 4.5%, the workability deteriorates, so that production and product processing become difficult.

【0027】C含有量が0.035%未満になると二次
再結晶が不安定となり、磁束密度が著しく低下するので
0.035%以上とする。一方、0.10%を超えると
脱炭焼鈍に要する時間が長くなりすぎ、不経済であるの
で0.10%以下とする。
When the C content is less than 0.035%, secondary recrystallization becomes unstable and the magnetic flux density is remarkably reduced. On the other hand, if it exceeds 0.10%, the time required for decarburization annealing becomes too long, which is uneconomical.

【0028】S含有量が0.010%未満であるとイン
ヒビター析出量が不足し、二次再結晶が不安定となるの
で0.010%以上とする。一方、0.040%超とな
ると析出物が過度に粗大化してインヒビター効果が損な
われ、磁束密度が低下するので、0.040%以下とす
る。
If the S content is less than 0.010%, the amount of inhibitor deposited becomes insufficient, and secondary recrystallization becomes unstable. On the other hand, if the content exceeds 0.040%, the precipitate is excessively coarsened, the inhibitor effect is impaired, and the magnetic flux density is reduced.

【0029】sol.AlはNと化合してインヒビター
であるAlNを形成する。含有量が0.010%未満で
あるとインヒビター析出量が不足し、二次再結晶が不安
定となるので0.010%以上とする。一方、0.05
0%超となると析出状態が粗大化し、インヒビター効果
が損なわれ磁束密度が低下するので、0.050%以下
とする。
Sol. Al combines with N to form AlN, an inhibitor. If the content is less than 0.010%, the amount of inhibitor precipitation becomes insufficient, and secondary recrystallization becomes unstable. Therefore, the content is set to 0.010% or more. On the other hand, 0.05
If the content exceeds 0%, the precipitation state becomes coarse, the inhibitor effect is impaired, and the magnetic flux density is reduced.

【0030】Nは0.0030%以上0.0150%以
下にする必要がある。0.0150%を超えるとブリス
ターと呼ばれる鋼板表面の膨れが発生するとともに、一
次再結晶組織の調整が困難となるので0.0150%以
下とする。一方、0.0030%未満であると二次再結
晶の発現が困難になるので、N含有量は0.0030%
以上とする。
N needs to be not less than 0.0030% and not more than 0.0150%. If it exceeds 0.0150%, blisters called “blisters” occur on the steel sheet surface, and it becomes difficult to adjust the primary recrystallization structure. On the other hand, if it is less than 0.0030%, it becomes difficult to develop secondary recrystallization, so the N content is 0.0030%.
Above.

【0031】Mn含有量が0.40%を超えると成品の
磁束密度が低下し、一方0.020%未満であると二次
再結晶が不安定となるので、Mn含有量は0.020%
以上0.40%以下とする。
When the Mn content exceeds 0.40%, the magnetic flux density of the product is reduced, while when it is less than 0.020%, the secondary recrystallization becomes unstable.
At least 0.40%.

【0032】なお、二次再結晶の安定化その他の目的の
ために微量のSn、Cu、P、Tiを鋼中に含有させる
ことは本発明の効果を何ら損なうものではない。
It should be noted that the inclusion of trace amounts of Sn, Cu, P and Ti in steel for stabilization of secondary recrystallization and other purposes does not impair the effects of the present invention at all.

【0033】次に、以上の成分のスラブの処理について
説明する。
Next, the slab processing of the above components will be described.

【0034】電磁鋼スラブは、転炉または電気炉等の溶
解炉で鋼を溶製し、必要に応じて真空脱ガス処理し、次
いで連続鋳造により、あるいは造塊後分塊圧延すること
によって得られる。
The electromagnetic steel slab is obtained by smelting steel in a melting furnace such as a converter or an electric furnace, subjecting the steel to vacuum degassing if necessary, and then performing continuous casting or slab rolling after ingot making. Can be

【0035】その後、熱間圧延に先立ちスラブ加熱が行
われる。本発明においては、スラブの加熱温度は128
0℃以上として主要インヒビターであるMnS、AlN
を鋼中に再固溶させることが肝要である。このスラブを
熱延して所定の厚みの熱延板とする。
Thereafter, slab heating is performed prior to hot rolling. In the present invention, the heating temperature of the slab is 128.
Main inhibitor MnS, AlN at 0 ° C or higher
It is important to re-dissolve in steel. This slab is hot-rolled into a hot-rolled sheet having a predetermined thickness.

【0036】仕上熱延において、仕上熱延機のワークロ
ールと鋼板との間の摩擦係数を低減するために、潤滑剤
として油脂をロール冷却水中に混入するか、あるいは専
用ノズルでロールに油脂を散布する。油脂と冷却水が分
離することを防止するために、必要に応じて界面活性剤
を加えてもよい。仕上熱延時にロール冷却水中に混入す
る油脂の量は体積比で0.5%〜20%とする。ロール
冷却水中の湯脂量が0.5%未満であると潤滑による摩
擦係数の低下が十分でなく、20%を超えるとその効果
が飽和し不経済となるので20%以下とする。
In the finishing hot rolling, in order to reduce the friction coefficient between the work roll of the finishing hot rolling machine and the steel sheet, fat or oil is mixed into the roll cooling water as a lubricant, or the fat or oil is added to the roll by a special nozzle. Spray. If necessary, a surfactant may be added to prevent separation of the oil and fat from the cooling water. The amount of fats and oils mixed into the roll cooling water at the time of finish hot rolling is 0.5% to 20% by volume ratio. If the amount of fat or oil in the roll cooling water is less than 0.5%, the reduction of the friction coefficient due to lubrication is not sufficient, and if it exceeds 20%, the effect is saturated and uneconomical.

【0037】仕上熱延の摩擦係数と成品磁束密度との関
係について、実験結果に基づき説明する。
The relationship between the friction coefficient of the finished hot rolling and the product magnetic flux density will be described based on experimental results.

【0038】C:0.075%、Si:3.25%、M
n:0.08%、S:0.024%、sol−Al:
0.027%、N:0.0090%を含有し、残部Fe
および不可避的不純物からなる電磁鋼スラブを1340
℃に加熱後、粗圧延機により75mm厚のシートバーと
した。その後、このシートバーを仕上圧延機により2.
3mm厚みの熱延板とした。その際、仕上熱延機の冷却
水中に潤滑油をエマルジョン状態で混入させることによ
り、鋼板と仕上熱延ロールとの摩擦係数を変化させた。
摩擦係数は実測の先進率より計算により求め、各スタン
ドの計算値を平均したものを用いた。
C: 0.075%, Si: 3.25%, M
n: 0.08%, S: 0.024%, sol-Al:
0.027%, N: 0.0090%, balance Fe
And 1340 electromagnetic steel slabs consisting of unavoidable impurities
After heating to ° C., a roughing mill was used to form a 75 mm thick sheet bar. Thereafter, the sheet bar is subjected to 2.
It was a hot-rolled sheet having a thickness of 3 mm. At that time, the lubricating oil was mixed in the emulsion state into the cooling water of the finishing hot rolling machine to change the friction coefficient between the steel sheet and the finishing hot rolling roll.
The friction coefficient was obtained by calculation from the actually measured advanced rate, and the average of the calculated values of the respective stands was used.

【0039】得られた熱延板に1100℃×2分半の熱
延板焼鈍を施し、100℃の湯中で冷却し、その後酸洗
し0.30mmまで冷延し、次いで830℃120秒の
脱炭焼鈍を実施した。その後MgOを主成分とする焼鈍
分離材を塗布し、1200℃×20時間の仕上焼鈍を行
った。仕上熱延時の鋼板と熱延ロールとの間の平均摩擦
係数と成品磁束密度B8の関係について図1に示す。
The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at 1100 ° C. × 2.5 minutes, cooled in hot water at 100 ° C., then pickled, cold-rolled to 0.30 mm, and then at 830 ° C. for 120 seconds. Was subjected to decarburization annealing. Thereafter, an annealing separator containing MgO as a main component was applied, and finish annealing was performed at 1200 ° C. for 20 hours. FIG. 1 shows the relationship between the average coefficient of friction between the steel sheet and the hot-rolled roll at the time of finish hot-rolling and the product magnetic flux density B8.

【0040】図1より、仕上熱延時の鋼板と熱延ロール
との間の全スタンドの摩擦係数の平均が0.25以下の
場合に、磁束密度が向上することがわかる。
FIG. 1 shows that the magnetic flux density is improved when the average of the friction coefficients of all the stands between the steel sheet and the hot rolling roll at the time of finishing hot rolling is 0.25 or less.

【0041】高潤滑状態で仕上熱延を実施することが本
発明の磁束密度向上効果をもたらすことについてその詳
細な理由は定かでないが、Met.Sci.vol.1
8,No.2,page57−65(1984)に指摘
されているように、二次再結晶の核形成に鋼板表層の変
形組織が重要な役割を果たすことから、摩擦係数の低下
により熱延鋼板表層の結晶組織、集合組織が変化し、そ
の結果二次再結晶粒の核となる方位を制御できることが
その原因ではないかと発明者らは推測する。
Although the detailed reason why performing the finish hot rolling in a highly lubricated state brings about the effect of improving the magnetic flux density of the present invention is not clear, Met. Sci. vol. 1
8, No. 2, page 57-65 (1984), since the deformation structure of the surface layer of the steel sheet plays an important role in the nucleation of secondary recrystallization, the crystal structure of the surface layer of the hot-rolled steel sheet is reduced due to the decrease in the coefficient of friction. The inventors presume that the cause is that the texture changes and, as a result, the orientation of the nuclei of the secondary recrystallized grains can be controlled.

【0042】摩擦係数の下限については特に定めない
が、摩擦係数が過度に小さくなると鋼板とロール間にス
リップが生じて圧延不能となる事態が生じるので、安定
して熱延を実施するためには、摩擦係数は0.05以上
であることが好ましい。
The lower limit of the friction coefficient is not particularly defined. However, if the friction coefficient is excessively small, a slip occurs between the steel sheet and the roll and rolling cannot be performed. The coefficient of friction is preferably 0.05 or more.

【0043】本発明のように仕上熱間圧延を低摩擦率で
行う場合、仕上熱延機へのシートバーの噛み込み時のシ
ートバーの噛み込み不良の発生や、仕上熱延中のロール
と鋼板の間のスリップが生じ、圧延ロールの寿命を著し
く縮めるとともに、鋼板表層に深い圧延疵を生じさせる
場合がある。この様な低摩擦率の仕上熱間圧延における
問題点を解決し、安定的に操業を行う方法として、粗圧
延後のシートバーを仕上熱間圧延前に先行するシートバ
ーに接合し、当該シートバーを連続して仕上熱間圧延に
供することが特に有効である。
In the case where the finishing hot rolling is performed at a low friction rate as in the present invention, the sheet bar does not bite properly when the sheet bar is bitten into the finishing hot rolling machine, or the roll during the finishing hot rolling is not rolled. Slip occurs between the steel sheets, which significantly shortens the life of the rolling rolls and may cause deep rolling flaws on the surface layer of the steel sheets. As a method of solving such problems in the finish hot rolling with a low friction coefficient and stably operating, the sheet bar after the rough rolling is joined to the preceding sheet bar before the finish hot rolling, and It is particularly effective to subject the bars to finish hot rolling continuously.

【0044】熱延以降の行程については、析出物制御を
目的として熱延板焼鈍を行っても良い。酸洗後、1回も
しくは中間焼鈍を含む2回以上の冷間圧延により最終板
厚とする。最終冷延率が80%未満であると高い磁束密
度B8を得ることができないので、最終冷延率は80%
以上とする。特性はやや劣るものの、コスト低減のため
に熱延板焼鈍を省略してもよい。最終製品の結晶粒径を
小さくし鉄損を低減するために中間焼鈍を含む2回以上
の圧延で最終板厚としてもよい。
[0044] In the process after hot rolling, hot rolled sheet annealing may be performed for the purpose of controlling precipitates. After the pickling, the final thickness is obtained by cold rolling once or twice or more including intermediate annealing. If the final cold rolling reduction is less than 80%, a high magnetic flux density B8 cannot be obtained, so the final cold rolling reduction is 80%.
Above. Although the properties are slightly inferior, the hot rolled sheet annealing may be omitted for cost reduction. In order to reduce the crystal grain size of the final product and reduce iron loss, the final thickness may be obtained by performing rolling twice or more including intermediate annealing.

【0045】次に湿水素あるいは湿水素、窒素混合雰囲
気ガス中で脱炭焼鈍をする。このときの温度は特に本発
明では定めないが、800℃から900℃が好ましい。
Next, decarburizing annealing is performed in wet hydrogen or a mixed gas of wet hydrogen and nitrogen. The temperature at this time is not particularly defined in the present invention, but is preferably from 800 ° C to 900 ° C.

【0046】次いで焼鈍分離材を塗布し仕上焼鈍を行
い、二次再結晶および引き続いて純化を行う。このため
焼鈍温度は通常1100℃から1200℃の高温とす
る。二次再結晶完了後の純化焼鈍は水素雰囲気中で実施
する。
Next, an annealing separator is applied and finish annealing is performed, and secondary recrystallization and subsequent purification are performed. For this reason, the annealing temperature is usually set to a high temperature of 1100 ° C to 1200 ° C. The purification annealing after the completion of the secondary recrystallization is performed in a hydrogen atmosphere.

【0047】[0047]

【実施例1】表1の成分を含有し、残部Feおよび不可
避的不純物からなる電磁鋼スラブを1320℃に加熱
後、粗圧延機により70mm厚のシートバーとした。そ
の後、このシートバーを仕上圧延機により2.1mm厚
みの熱延板とした。その際、仕上熱延機の冷却水中に潤
滑油をエマルジョン状態で混入させることにより、鋼板
と仕上熱延ロールとの摩擦係数を変化させた。摩擦係数
は実測の先進率より計算により求め、各スタンドの計算
値を平均したものを用いた。
EXAMPLE 1 An electromagnetic steel slab containing the components shown in Table 1 and consisting of the balance Fe and unavoidable impurities was heated to 1320 ° C. and formed into a 70 mm-thick sheet bar by a rough rolling mill. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 2.1 mm by a finishing mill. At that time, the lubricating oil was mixed in the emulsion state into the cooling water of the finishing hot rolling machine to change the friction coefficient between the steel sheet and the finishing hot rolling roll. The friction coefficient was obtained by calculation from the actually measured advanced rate, and the average of the calculated values of the respective stands was used.

【0048】[0048]

【表1】 [Table 1]

【0049】得られた熱延板に1100℃×2分の熱延
板焼鈍を施し、100℃の湯中で冷却し、その後酸洗し
0.23mmまで冷延し、次いで830℃90秒の脱炭
焼鈍を露点50℃の湿水素、窒素雰囲気中で実施した。
その後MgOにTiO2 を混入した焼鈍分離材を塗布
し、1200℃×20時間の仕上焼鈍を行った。
The obtained hot rolled sheet was annealed at 1100 ° C. for 2 minutes, cooled in hot water at 100 ° C., then pickled, cold rolled to 0.23 mm, and then heated at 830 ° C. for 90 seconds. The decarburization annealing was performed in a wet hydrogen and nitrogen atmosphere at a dew point of 50 ° C.
Thereafter, an annealing separator in which TiO 2 was mixed with MgO was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0050】仕上熱延時の平均摩擦係数と仕上焼鈍後の
磁気特性との関係を表2に示す。表2より、仕上熱延時
の熱延ロールと鋼板の間の平均摩擦係数が0.25以下
の場合に磁束密度が高くなっていることがわかる。
Table 2 shows the relationship between the average friction coefficient at the time of finish hot rolling and the magnetic properties after finish annealing. From Table 2, it can be seen that the magnetic flux density is high when the average friction coefficient between the hot-rolled roll and the steel sheet at the time of finish hot rolling is 0.25 or less.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【実施例2】表3の成分を含有し、残部Feおよび不可
避的不純物からなる電磁鋼スラブを1330℃に加熱
後、粗圧延機により75mm厚のシートバーとした。そ
の後、このシートバーを仕上圧延機により2.3mm厚
みの熱延板とした。その際、仕上熱延機の冷却水中に潤
滑油をエマルジョン状態で混入させることにより、鋼板
と仕上熱延ロールとの摩擦係数を変化させた。摩擦係数
は実測の先進率より計算により求め、各スタンドの計算
値を平均したものを用いた。
Example 2 An electromagnetic steel slab containing the components shown in Table 3 and consisting of the balance Fe and unavoidable impurities was heated to 1330 ° C., and then formed into a 75 mm-thick sheet bar by a rough rolling mill. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 2.3 mm by a finishing mill. At that time, the lubricating oil was mixed in the emulsion state into the cooling water of the finishing hot rolling machine to change the friction coefficient between the steel sheet and the finishing hot rolling roll. The friction coefficient was obtained by calculation from the actually measured advanced rate, and the average of the calculated values of the respective stands was used.

【0053】[0053]

【表3】 [Table 3]

【0054】得られた熱延板に1100℃×2分半の熱
延板焼鈍を施し、100℃の湯中で冷却し、その後酸洗
し0.30mmまで冷延し、次いで830℃120秒の
脱炭焼鈍を露点50℃の湿水素、窒素雰囲気中で実施し
た。その後MgOにTiO2を混入した焼鈍分離材を塗
布し、1200℃×20時間の仕上焼鈍を行った。
The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at 1100 ° C. × 2 and a half minutes, cooled in hot water at 100 ° C., then pickled and cold-rolled to 0.30 mm, and then at 830 ° C. for 120 seconds. Was carried out in a wet hydrogen and nitrogen atmosphere at a dew point of 50 ° C. Thereafter, an annealing separator in which TiO 2 was mixed with MgO was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0055】仕上熱延時の平均摩擦係数と仕上焼鈍後の
磁気特性との関係を表4に示す。表4より、仕上熱延時
の熱延ロールと鋼板の間の平均摩擦係数が0.25以下
の場合に磁束密度が高くなっていることがわかる。
Table 4 shows the relationship between the average coefficient of friction during hot rolling and the magnetic properties after finish annealing. Table 4 shows that the magnetic flux density is high when the average coefficient of friction between the hot-rolled roll and the steel sheet at the time of finishing hot rolling is 0.25 or less.

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【実施例3】表5の成分を含有し、残部Feおよび不可
避的不純物からなる電磁鋼スラブを1340℃に加熱
後、粗圧延機により70mm厚のシートバーとした。そ
の後、このシートバーを仕上圧延機により2.1mm厚
みの熱延板とした。その際、仕上熱延機の冷却水中に潤
滑油をエマルジョン状態で混入させることにより、鋼板
と仕上熱延ロールとの摩擦係数を変化させた。摩擦係数
は実測の先進率より計算により求め、各スタンドの計算
値を平均したものを用いた。
Example 3 An electromagnetic steel slab containing the components shown in Table 5 and consisting of the balance Fe and unavoidable impurities was heated to 1340 ° C., and then formed into a 70 mm-thick sheet bar by a rough rolling mill. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 2.1 mm by a finishing mill. At that time, the lubricating oil was mixed in the emulsion state into the cooling water of the finishing hot rolling machine to change the friction coefficient between the steel sheet and the finishing hot rolling roll. The friction coefficient was obtained by calculation from the actually measured advanced rate, and the average of the calculated values of the respective stands was used.

【0058】[0058]

【表5】 [Table 5]

【0059】得られた熱延板に1100℃×2分の熱延
板焼鈍を施し、100℃の湯中で冷却し、その後酸洗し
0.23mmまで冷延し、次いで830℃90秒の脱炭
焼鈍を露点50℃の湿水素、窒素雰囲気中で実施した。
その後MgOにTiO2 を混入した焼鈍分離材を塗布
し、1200℃×20時間の仕上焼鈍を行った。
The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at 1100 ° C. × 2 minutes, cooled in hot water at 100 ° C., then pickled, cold-rolled to 0.23 mm, and then heated at 830 ° C. for 90 seconds. The decarburization annealing was performed in a wet hydrogen and nitrogen atmosphere at a dew point of 50 ° C.
Thereafter, an annealing separator in which TiO 2 was mixed with MgO was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0060】仕上熱延時の平均摩擦係数と仕上焼鈍後の
磁気特性との関係を表6に示す。表6より、仕上熱延時
の熱延ロールと鋼板の間の平均摩擦係数が0.25以下
の場合に磁束密度が高くなっていることがわかる。
Table 6 shows the relationship between the average friction coefficient at the time of finish hot rolling and the magnetic properties after finish annealing. Table 6 shows that the magnetic flux density is high when the average friction coefficient between the hot-rolled roll and the steel sheet during the finish hot-rolling is 0.25 or less.

【0061】[0061]

【表6】 [Table 6]

【0062】[0062]

【発明の効果】本発明によれば、磁束密度が高く磁気特
性に優れた方向性電磁鋼板を製造することが可能であ
る。
According to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上熱延時の鋼板と熱延ロールの間の平均摩擦
係数と成品の磁束密度の関係を示す図である。
FIG. 1 is a view showing a relationship between an average coefficient of friction between a steel sheet and a hot rolling roll during finish hot rolling and a magnetic flux density of a product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 0.035 %≦ C ≦0.10 %、 2.5 %≦ Si ≦4.5 %、 0.010 %≦ S ≦0.040 %、 0.010 %≦sol−Al≦0.050 %、 0.0030%≦ N ≦0.0150%、 0.020 %≦ Mn ≦0.40 % を含有し、残部Feおよび不可避的不純物からなるスラ
ブを、1280℃以上の温度に加熱した後熱延し、冷間
圧延前に熱延板焼鈍を施し冷却し、1回または中間焼鈍
をはさむ2回以上の圧延で最終圧延率80%以上とし、
次いで脱炭焼鈍し焼鈍分離材を塗布し、仕上焼鈍により
二次再結晶および純化を行う方向性電磁鋼板の製造方法
において、 仕上熱間圧延時の熱延ロールと鋼板との平均摩擦係数を
0.25以下とすることを特徴とする磁束密度が高い方
向性電磁鋼板の製造方法。
1. In% by weight, 0.035% ≦ C ≦ 0.10%, 2.5% ≦ Si ≦ 4.5%, 0.010% ≦ S ≦ 0.040%, 0.010% ≦ A slab containing sol-Al ≦ 0.050%, 0.0030% ≦ N ≦ 0.0150%, 0.020% ≦ Mn ≦ 0.40%, the balance being Fe and unavoidable impurities is 1280 ° C. or more. After hot-rolling after heating to a temperature of not more than 1, hot-rolled sheet annealing is performed before cold rolling and cooled, and a final rolling reduction of 80% or more is achieved by rolling once or twice or more with intermediate annealing,
Next, in a method for producing a grain-oriented electrical steel sheet in which a decarburizing annealing and annealing separator is applied and subjected to secondary recrystallization and purification by finish annealing, the average friction coefficient between the hot-rolled roll and the steel sheet during the finish hot rolling is reduced to 0. 25. A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density, characterized by being at most 25.
【請求項2】 仕上熱延時に潤滑剤として熱延ロール冷
却水に0.5〜20%の油脂をエマルジョン状態で混入
することを特徴とする請求項1記載の磁束密度が高い方
向性電磁鋼板の製造方法。
2. A grain-oriented electrical steel sheet having a high magnetic flux density according to claim 1, wherein 0.5 to 20% of fats and oils are mixed in a hot-roll roll cooling water as a lubricant at the time of finishing hot rolling in an emulsion state. Manufacturing method.
【請求項3】 粗圧延後のシートバーを仕上熱延前に先
行するシートバーに接合し、当該シートバーを2本以上
連続して仕上熱延に供することを特徴とする請求項1ま
たは2記載の磁束密度が高い方向性電磁鋼板の製造方
法。
3. The sheet bar after the rough rolling is joined to a preceding sheet bar before the hot rolling, and two or more sheet bars are continuously subjected to the hot rolling. A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density as described.
JP24695096A 1996-07-30 1996-08-30 Manufacture of grain-oriented silicon steel sheet having high magnetic flux density Pending JPH1096029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24695096A JPH1096029A (en) 1996-07-30 1996-08-30 Manufacture of grain-oriented silicon steel sheet having high magnetic flux density

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-215954 1996-07-30
JP21595496 1996-07-30
JP24695096A JPH1096029A (en) 1996-07-30 1996-08-30 Manufacture of grain-oriented silicon steel sheet having high magnetic flux density

Publications (1)

Publication Number Publication Date
JPH1096029A true JPH1096029A (en) 1998-04-14

Family

ID=26521140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24695096A Pending JPH1096029A (en) 1996-07-30 1996-08-30 Manufacture of grain-oriented silicon steel sheet having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH1096029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418697C (en) * 2006-05-18 2008-09-17 武汉科技大学 High magentic induction oriented electrical steel sheet and its manufacturing method
CN100436042C (en) * 2006-05-18 2008-11-26 武汉科技大学 Thin slab process high magnetic induction oriented electrical steel sheet and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418697C (en) * 2006-05-18 2008-09-17 武汉科技大学 High magentic induction oriented electrical steel sheet and its manufacturing method
CN100436042C (en) * 2006-05-18 2008-11-26 武汉科技大学 Thin slab process high magnetic induction oriented electrical steel sheet and its manufacturing method

Similar Documents

Publication Publication Date Title
EP0837149B1 (en) Grain-oriented electromagnetic steel sheet and process for producing the same
KR20150109486A (en) Production method for grain-oriented electrical steel sheets
JP2019183185A (en) Nonoriented electromagnetic steel sheet
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP2008156741A (en) Method for manufacturing non-oriented electromagnetic steel sheet with high magnetic flux density
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JPH03229820A (en) Production of nonoriented silicon steel sheet
JPH1096029A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
JP3331478B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH1096028A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH02104620A (en) Production of non-oriented magnetic steel sheet having low iron loss
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS61124526A (en) Manufacture of grain oriented silicon steel sheet having good electromagnetic characteristic
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP4163773B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608