JPH1096028A - Manufacture of grain-oriented silicon steel sheet having high magnetic flux density - Google Patents

Manufacture of grain-oriented silicon steel sheet having high magnetic flux density

Info

Publication number
JPH1096028A
JPH1096028A JP24694996A JP24694996A JPH1096028A JP H1096028 A JPH1096028 A JP H1096028A JP 24694996 A JP24694996 A JP 24694996A JP 24694996 A JP24694996 A JP 24694996A JP H1096028 A JPH1096028 A JP H1096028A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
rolling
grain
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24694996A
Other languages
Japanese (ja)
Inventor
Ryutaro Kawamata
竜太郎 川又
Yoshiyuki Ushigami
義行 牛神
Kenichi Murakami
健一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24694996A priority Critical patent/JPH1096028A/en
Publication of JPH1096028A publication Critical patent/JPH1096028A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture method for grain-oriented silicon steel sheet having a high magnetic flux density and used for an iron core material for electrical equipment. SOLUTION: A slab, having a composition consisting of, by weight, 0.025-0.075% C, 2.5-4.5% Si, <=0.015% S, 0.010-0.050% sol-Al, 0.0010-0.0120% N, 0.050-0.45% Mn, and the balance Fe with inevitable impurities, is heated to <=1200 deg.C, hot-rolled, and subjected to hot rolled plate annealing, and the resultant plate is rolled once or is rolled two or more times while process- annealed between the rolling stages to >=80% final rolling rate, and then, nitriding treatment is applied to the resultant steel sheet in the course between the completion of decarburizing annealing and the initiation of secondary recrystallization at finish annealing, by which the grain oriented silicon steel sheet can be manufactured. At this time, the average coefficient of friction between a hot roll and a steel plate at the time of finish hot rolling is regulated to <=0.25. Moreover, at the time of finish hot rolling, 0.5-20% of fats and fatty oils, as a lubricant, are mixed, in an emulsified state, into hot roll cooling water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が高い方向性電磁鋼板の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density, which is used as an iron core material of electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板は二次再結晶により鋼板
の結晶粒を特定方位に高度に配向させた成品であり、圧
延面に{110}面、圧延方向に<100>軸を有する
ゴス方位を持つ結晶粒により構成されている。
2. Description of the Related Art A grain-oriented electrical steel sheet is a product in which crystal grains of a steel sheet are highly oriented in a specific direction by secondary recrystallization and has a {110} plane on a rolling surface and a <100> axis in a rolling direction. It is composed of crystal grains having an orientation.

【0003】方向性電磁鋼板は軟磁性材料として主にト
ランスその他の電気機器の鉄心材料に使用されるもの
で、近年省エネルギー、省資源への社会的要求がますま
す厳しくなっていることから、一方向性電磁鋼板の鉄損
低減、磁化特性改善への要求も厳しくなってきている。
このため磁気特性、特に良好な励磁特性と鉄損特性が求
められるようになってきている。
[0003] Grain-oriented electrical steel sheets are mainly used as soft magnetic materials for core materials of transformers and other electric equipment. In recent years, social demands for energy saving and resource saving have become more and more severe. Demands for reduction of iron loss and improvement of magnetization characteristics of grain-oriented electrical steel sheets have also become severe.
For this reason, magnetic characteristics, particularly good excitation characteristics and iron loss characteristics, have been required.

【0004】方向性電磁鋼板の励磁特性を示す指標とし
ては、通常磁束密度B8(磁場の強さ800A/mにお
ける磁束密度)が用いられている。また鉄損特性を示す
指標としては、W17/50(50Hzで1.7Tまで
磁化させたときの単位重量あたりの鉄損)等が用いられ
ている。
A magnetic flux density B8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index indicating the excitation characteristics of a grain-oriented electrical steel sheet. As an index indicating the iron loss characteristics, W17 / 50 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) and the like are used.

【0005】鉄損は渦電流損とヒステリシス損からな
り、渦電流損は鋼板の電気抵抗率、板厚、結晶粒度、磁
区の形態、鋼板表面の皮膜張力等の因子により支配され
ている。一方、ヒステリシス損は磁束密度を支配する鋼
板の結晶方位、純度、内部歪等により支配される。
Iron loss consists of eddy current loss and hysteresis loss. The eddy current loss is governed by factors such as the electrical resistivity of the steel sheet, the thickness of the steel sheet, the grain size, the form of magnetic domains, and the film tension on the steel sheet surface. On the other hand, the hysteresis loss is governed by the crystal orientation, purity, internal strain and the like of the steel sheet that governs the magnetic flux density.

【0006】これらの因子を制御することによる鉄損低
減の試みとして、鋼板の電気抵抗を大きくするためにS
i含有量を高めることが行われてきたが、Si含有量を
高めると二次再結晶が不安定になるという問題ととも
に、製造工程および製品での加工性が劣化するため限界
にきているのが現状である。
As an attempt to reduce iron loss by controlling these factors, in order to increase the electric resistance of
Increasing the i content has been performed, but increasing the Si content is accompanied by the problem that the secondary recrystallization becomes unstable, and the processability in the manufacturing process and the product is degraded. Is the current situation.

【0007】一方、鋼板の純度、内部歪については製造
工程において検討が重ねられてきており、これらの低減
による鉄損の低減については限界近くにまで到達してい
る。板厚を薄くして渦電流損を低減させる試みもなされ
てきているが、製造の立場からは薄手化に伴い二次再結
晶の制御が困難になる問題点があり、需要家サイドでは
変圧器製造時のコストが増加するため、鉄損値が同等で
あれば厚手の材料が好まれて使用されている。
On the other hand, the purity and internal strain of the steel sheet have been studied in the manufacturing process, and the reduction of iron loss due to these reductions has reached the limit. Attempts have been made to reduce the eddy current loss by reducing the plate thickness, but from the manufacturing standpoint, there is a problem in that secondary thinning becomes difficult to control as the thickness becomes thinner. Since the cost at the time of manufacturing increases, thick materials are preferably used if the iron loss values are equal.

【0008】特開昭57−9419号公報には、鉄損低
減の手段としては二次再結晶粒径を小さくすることも有
効であることが記載されている。しかしながら、二次再
結晶粒径を小さくすると、その方位集積度が低下して高
磁束密度を得にくいという問題点があった。
JP-A-57-9419 describes that it is effective to reduce the secondary recrystallized grain size as a means of reducing iron loss. However, when the secondary recrystallized grain size is reduced, there is a problem that the degree of azimuthal integration is reduced and it is difficult to obtain a high magnetic flux density.

【0009】皮膜張力の効果と方向性電磁鋼板の磁束密
度の間には、J.Appl.Phys.,vol.4
1.no.7.p2981−2984(1970)に指
摘されているように、磁束密度B8の値が高いほどその
鉄損低減効果が大きいことが知られている。また磁区細
分化による鉄損低減法は特開昭58−5968号公報、
特開昭58−26405号公報に記載されているが、磁
区細分化処理前のプレーン材の磁束密度が高いほどその
効果が大きいことが知られている。
The relationship between the effect of the film tension and the magnetic flux density of the grain-oriented electrical steel sheet is described in J. Am. Appl. Phys. , Vol. 4
1. no. 7. As pointed out in p2981-2984 (1970), it is known that the higher the value of the magnetic flux density B8, the greater the effect of reducing iron loss. Further, a method for reducing iron loss by magnetic domain refining is disclosed in JP-A-58-5968,
As described in JP-A-58-26405, it is known that the higher the magnetic flux density of the plain material before the magnetic domain refining process, the greater the effect.

【0010】このように鉄損を低減させる試みとして
は、その影響因子である電気抵抗率、板厚、結晶粒度、
純度、内部歪等の改善が従来技術において限界に近づい
てきていることから、二次再結晶方位の集積度を向上さ
せ、磁束密度を高めることにより、皮膜張力の効果、磁
区細分化の効果を一層向上させることで鉄損を低減する
ことが重要となってきている。
Attempts to reduce iron loss in this way include electrical resistivity, plate thickness, grain size,
Since the improvement of purity, internal strain, etc. is approaching the limit in the conventional technology, by improving the degree of integration of the secondary recrystallization orientation and increasing the magnetic flux density, the effect of the film tension and the effect of domain segmentation can be improved. It has become important to reduce iron loss by further improving.

【0011】二次再結晶を安定して発現させるとともに
その方位集積度を高め、磁束密度を向上させる因子とし
て、インヒビターの役割が重要である。この目的のた
め、従来はMnS、AlN、MnSe等がインヒビター
として用いられてきている。
The role of the inhibitor is important as a factor for stably expressing secondary recrystallization, increasing the degree of azimuth integration, and improving magnetic flux density. For this purpose, conventionally, MnS, AlN, MnSe, etc. have been used as inhibitors.

【0012】従来の方向性電磁鋼板の製造方法は、二次
再結晶方位制御に用いられるインヒビターの種類により
大きく3種類に大別される。
Conventional methods for manufacturing grain-oriented electrical steel sheets are roughly classified into three types depending on the type of inhibitor used for controlling the secondary recrystallization orientation.

【0013】まず第一に、M.F.Littmannに
より特公昭30−3651号公報に開示されている方法
はインヒビターにMnSを用い、二回冷延法で製造する
方法である。次に、特公昭40−15644号公報に田
口、坂倉らにより開示された、MnSに加えてAlNを
インヒビターとする製造方法により、方向性電磁鋼板の
磁束密度は1.92T程度にまで向上し、磁気特性の改
善による省エネルギーに多大な貢献を果たした。第三
に、特公昭51−13469号公報に今中等により開示
されたMnSとSbもしくはMnS、MnSeとSbを
用い、二回冷延法により製造する方法がある。
First of all, M.I. F. The method disclosed by Littmann in Japanese Patent Publication No. 30-3651 is a method in which MnS is used as an inhibitor and is produced by a double cold rolling method. Next, by the manufacturing method disclosed in Japanese Patent Publication No. 40-15644 by Taguchi, Sakakura et al. Using AlN as an inhibitor in addition to MnS, the magnetic flux density of the grain-oriented electrical steel sheet is improved to about 1.92T, It made a great contribution to energy saving by improving magnetic properties. Third, there is a method in which MnS and Sb or MnS, or MnSe and Sb, disclosed in JP-B-51-13469, are manufactured by a double cold rolling method.

【0014】しかしながらこれらの従来の製造方法にお
いては、良好な磁束密度を得るためにはインヒビターの
析出制御に高温スラブ加熱を必要とする。すなわち、ス
ラブ加熱時に一旦インヒビターを構成する析出物を溶体
化し、これを熱延工程であるいは特公昭46−2382
0号公報に開示されているように熱延板焼鈍時に微細に
析出させることが必要である。この高温スラブ加熱時に
ノロが発生し、その処理が問題となっており、さらに製
鋼段階での成分調整と熱延の段階でほぼ製品の特性が決
定されてしまい、後行程での磁気特性の調整が困難であ
り、製造工程のフレキシビリティの点で問題を残してい
た。
However, in these conventional manufacturing methods, high-temperature slab heating is required for controlling inhibitor precipitation in order to obtain a good magnetic flux density. That is, at the time of slab heating, the precipitate constituting the inhibitor is once turned into a solution, and this is subjected to a hot rolling process or a process disclosed in JP-B-46-2382.
As disclosed in Japanese Patent Publication No. 0, it is necessary to precipitate finely during annealing of a hot-rolled sheet. Slag occurs when this high-temperature slab is heated, and the treatment is a problem.Furthermore, component adjustment in the steel making stage and the characteristics of the product are almost determined in the hot rolling stage, and adjustment of the magnetic characteristics in the subsequent process And there remains a problem in the flexibility of the manufacturing process.

【0015】特公平6−86631号公報等には、従来
の高温スラブ加熱法による方向性電磁鋼板製造の問題点
を解決する手段として、1200℃以下の低温スラブ加
熱と脱炭焼鈍後二次再結晶開始までの間の窒化によりイ
ンヒビターを形成させる行程を含む方法が開示されてい
る。
Japanese Patent Publication No. 6-86631 discloses a means for solving the problem of the production of grain-oriented electrical steel sheets by the conventional high-temperature slab heating method. A method is disclosed that includes the step of forming an inhibitor by nitridation until the onset of crystallization.

【0016】この方法により、従来製鋼段階での成分調
整と熱延の段階でほぼその性質が決定し、後行程での調
整が困難であったインヒビターを後天的に作り込むこと
が可能となり、高温スラブ加熱の問題が解決できただけ
でなく、磁気特性の向上により方向性電磁鋼板の製造方
法において一つの確実な進歩をもたらした。
[0016] According to this method, the properties are determined substantially at the time of the component adjustment in the conventional steel making stage and the hot rolling stage, and it is possible to obtain the inhibitor which was difficult to adjust in the subsequent process, and to obtain the inhibitor at a high temperature. Not only did the problem of slab heating be solved, but the improvement of magnetic properties has brought a certain advance in the manufacturing method of grain-oriented electrical steel sheets.

【0017】しかしながら、昨今の省エネルギーに対す
る市場の要請にはさらに厳しいものがあり、エネルギー
消費量を節約し、環境改善に役立てるために、鉄心とし
て使用される電磁鋼板に対しては磁束密度の向上、鉄損
の低減の要求が増してきている。
However, the market demands for energy savings in recent years are even more stringent. In order to save energy consumption and contribute to environmental improvement, the magnetic steel sheet used as an iron core has an increased magnetic flux density. The demand for reduction of iron loss is increasing.

【0018】回転機等に使用される電磁鋼板と異なり、
トランス等の用途で使用される方向性電磁鋼板は常に通
電した状態で使用されるため、稼働率からみた損失低減
の重要性は非常に重大である。このためその磁気特性改
善による省エネルギー効果は非常に大きいものがあり、
需要家がコストアップを出来るだけ押さえながら鉄心を
高効率化するため、より磁束密度の高い成品の供給が求
められていた。
Unlike electromagnetic steel plates used for rotating machines,
Since the grain-oriented electrical steel sheets used in applications such as transformers are always used in an energized state, the importance of loss reduction is very important from the viewpoint of operation rate. For this reason, the energy saving effect by the improvement of the magnetic properties is very large,
In order to increase the efficiency of the iron core while reducing costs as much as possible, the supply of products with higher magnetic flux density was required.

【0019】[0019]

【発明が解決しようとする課題】本発明はこのような昨
今の市場の要請に応え、従来技術における方向性電磁鋼
板製造上の問題を解決しつつ、さらに磁束密度が高い方
向性電磁鋼板の製造方法を提供することを目的とするも
のである。
SUMMARY OF THE INVENTION The present invention meets the demands of the market in recent years and solves the problems in the prior art for manufacturing grain-oriented electrical steel sheets while producing grain-oriented electrical steel sheets having a higher magnetic flux density. It is intended to provide a method.

【0020】[0020]

【課題を解決するための手段】本発明は、重量%で、 0.025 %≦ C ≦0.075 %、 2.5 %≦ Si ≦4.5 %、 S ≦0.015 %、 0.010 %≦sol−Al≦0.050 %、 0.0010%≦ N ≦0.0120%、 0.050 %≦ Mn ≦0.45 % を含有し、残部Feおよび不可避的不純物からなるスラ
ブを、1200℃以下の温度に加熱した後熱延し、熱延
板焼鈍を施し、1回または中間焼鈍をはさむ2回以上の
圧延で最終圧延率80%以上とし、次いで脱炭焼鈍完了
後以降、仕上焼鈍の二次再結晶開始までの間に鋼板に窒
化処理を施す方向性電磁鋼板の製造方法において、仕上
熱間圧延時の熱延ロールと鋼板との平均摩擦係数を0.
25以下とすることを特徴とする磁束密度が高い方向性
電磁鋼板の製造方法である。この際、仕上熱延時に潤滑
剤として熱延ロール冷却水に0.5〜20%の油脂をエ
マルジョン状態で混入すること、粗圧延後のシートバー
を仕上熱延前に先行するシートバーに接合し、当該シー
トバーを2本以上連続して仕上熱延に供することが好ま
しい。
According to the present invention, 0.025% ≦ C ≦ 0.075%, 2.5% ≦ Si ≦ 4.5%, S ≦ 0.015%, and 0.025% ≦ C ≦ 0.075% by weight. A slab containing 010% ≦ sol-Al ≦ 0.050%, 0.0010% ≦ N ≦ 0.0120%, 0.050% ≦ Mn ≦ 0.45%, and the balance being Fe and inevitable impurities, After being heated to a temperature of 1200 ° C. or less, hot rolling is performed, hot-rolled sheet annealing is performed, and a final rolling reduction of 80% or more is performed by one or two or more rollings including an intermediate annealing. In the method for producing a grain-oriented electrical steel sheet in which the steel sheet is subjected to nitriding treatment before the start of the secondary recrystallization of annealing, the average friction coefficient between the hot-rolled roll and the steel sheet during finish hot rolling is set to 0.
This is a method for producing a grain-oriented electrical steel sheet having a high magnetic flux density, characterized by being 25 or less. At this time, 0.5 to 20% of fats and oils are mixed in the form of an emulsion into the hot roll cooling water as a lubricant at the time of finishing hot rolling, and the sheet bar after rough rolling is joined to the preceding sheet bar before finishing hot rolling. Then, it is preferable that two or more of the sheet bars are continuously subjected to hot rolling for finishing.

【0021】発明者は、従来検討の主眼とされたインヒ
ビター制御技術以外の製造上の検討課題として、熱延条
件を制御する熱延板の造り込みによる磁束密度の高い方
向性電磁鋼板の製造方法について検討した結果、仕上熱
延時に潤滑条件を制御することにより、仕上熱延機のワ
ークロールと鋼板との間の摩擦係数が0.25以下の低
摩擦圧延を行うことで、成品における磁束密度が向上す
ることを見いだし、発明に至った。
The inventor of the present invention has another problem to be studied in manufacturing other than the inhibitor control technique, which has been the main focus of the conventional study, as a method of manufacturing a grain-oriented electrical steel sheet having a high magnetic flux density by forming a hot-rolled sheet for controlling hot-rolling conditions. As a result of studying, the lubrication conditions were controlled during the hot-rolling process, and the low-friction rolling with a friction coefficient of 0.25 or less between the work roll of the finishing hot-rolling machine and the steel sheet was performed. Have been found to be improved, leading to the invention.

【0022】また、操業上の観点からは、本発明のよう
な低摩擦圧延を安定して実施するために、粗圧延後のシ
ートバーを先行するシートバーに接合し、仕上熱間圧延
を連続して実施することが有効であることも見出した。
Further, from the viewpoint of operation, in order to stably perform the low friction rolling as in the present invention, the sheet bar after the rough rolling is joined to the preceding sheet bar, and the finish hot rolling is continuously performed. It was also found that it was effective to carry out.

【0023】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0024】まず、成分について説明する。First, the components will be described.

【0025】Si含有量は電磁鋼板の固有抵抗を介して
鉄損特性を大きく左右するが、2.5%未満では固有抵
抗が小さく渦電流損が増大する。また、4.5%超では
加工性が劣化するので製造、製品加工が困難になる。
The Si content greatly affects the iron loss characteristics through the specific resistance of the magnetic steel sheet, but if it is less than 2.5%, the specific resistance is small and the eddy current loss increases. On the other hand, if the content exceeds 4.5%, the workability deteriorates, so that production and product processing become difficult.

【0026】C含有量が0.025%未満になると二次
再結晶が不安定となり、磁束密度が著しく低下するので
0.025%以上とする。一方、0.075%を超える
と脱炭焼鈍に要する時間が長くなりすぎ、不経済である
ので0.075%以下とする。
When the C content is less than 0.025%, the secondary recrystallization becomes unstable and the magnetic flux density is remarkably reduced. On the other hand, if it exceeds 0.075%, the time required for decarburization annealing becomes too long, which is uneconomical.

【0027】Sの含有量規定は、従来の方向性電磁鋼板
製造技術と本発明の異なる点の一つである。なぜなら、
本発明ではインヒビターとしては主として(Al,S
i)Nを用いるので、MnSは特に必要とせず、むしろ
磁気特性上は有害である。従って、S含有量は0.01
5%以下、好ましくは0.007%以下にする。
The regulation of the S content is one of the differences between the conventional technology for manufacturing grain-oriented electrical steel sheets and the present invention. Because
In the present invention, the inhibitor is mainly (Al, S
i) Since N is used, MnS is not particularly required and is rather detrimental to magnetic properties. Therefore, the S content is 0.01
5% or less, preferably 0.007% or less.

【0028】sol.AlはNと化合してインヒビター
であるAlNを形成するが、本発明においては脱炭焼鈍
後から二次再結晶開始までの間に窒化を行い(Al,S
i)Nを形成させるので、フリーのAlNが一定以上必
要である。このため0.010%以上0.050%以下
添加する。
Sol. Although Al combines with N to form AlN, which is an inhibitor, in the present invention, nitriding is performed after decarburizing annealing until the start of secondary recrystallization (Al, S).
i) Since N is formed, a certain amount of free AlN is required. For this reason, 0.010% or more and 0.050% or less are added.

【0029】Nは0.0120%以下にする必要があ
る。これを超えるとブリスターと呼ばれる鋼板表面の膨
れが発生するとともに、一次再結晶組織の調整が困難と
なるので0.0120%以下とする。一方、N含有量が
0.0010%未満であると二次再結晶の発現が困難に
なるので、N含有量は0.0010%以上とする。
N needs to be 0.0120% or less. If it exceeds this, blisters called blisters are generated on the surface of the steel sheet, and it becomes difficult to adjust the primary recrystallization structure. On the other hand, if the N content is less than 0.0010%, it becomes difficult to develop secondary recrystallization, so the N content is set to 0.0010% or more.

【0030】Mn含有量が0.45%を超えると成品の
磁束密度が低下し、一方0.050%未満であると二次
再結晶が不安定となるので、Mn含有量は0.050%
以上0.45%以下とする。
If the Mn content exceeds 0.45%, the magnetic flux density of the product is reduced, while if it is less than 0.050%, the secondary recrystallization becomes unstable, so the Mn content is 0.050%
At least 0.45%.

【0031】なお、二次再結晶の安定化その他の目的の
ために微量のSn、Cu、Cr、P、Tiを鋼中に含有
させることは本発明の効果を何ら損なうものではない。
It should be noted that the inclusion of trace amounts of Sn, Cu, Cr, P and Ti in steel for stabilization of secondary recrystallization and other purposes does not impair the effects of the present invention.

【0032】次に、以上の成分のスラブの処理について
説明する。
Next, the slab processing of the above components will be described.

【0033】電磁鋼スラブは、転炉または電気炉等の溶
解炉で鋼を溶製し、必要に応じて真空脱ガス処理し、次
いで連続鋳造により、あるいは造塊後分塊圧延すること
によって得られる。
The electromagnetic steel slab is obtained by melting steel in a melting furnace such as a converter or an electric furnace, subjecting the steel to vacuum degassing if necessary, and then performing continuous casting or slab rolling after ingot making. Can be

【0034】その後、熱間圧延に先立ちスラブ加熱が行
われる。本発明においては、スラブの加熱温度は120
0℃以下の低いものとして熱源単位を節約するととも
に、鋼中のAlNを完全には固溶させずに不完全固溶状
態とする。
Thereafter, slab heating is performed prior to hot rolling. In the present invention, the heating temperature of the slab is 120
As a low temperature of 0 ° C. or less, the heat source unit is saved, and the AlN in the steel is not completely dissolved to form an incomplete solid solution state.

【0035】このスラブを熱延して所定の厚みの熱延板
とする。
This slab is hot-rolled into a hot-rolled sheet having a predetermined thickness.

【0036】仕上熱延において、仕上熱延機のワークロ
ールと鋼板との間の摩擦係数を低減するために、潤滑剤
として油脂をロール冷却水中に混入するか、あるいは専
用ノズルでロールに油脂を散布する。油脂と冷却水が分
離することを防止するために、必要に応じて界面活性剤
を加えてもよい。仕上熱延時にロール冷却水中に混入す
る油脂の量は体積比で0.5%〜20%とする。ロール
冷却水中の湯脂量が0.5%未満であると潤滑による摩
擦係数の低下が十分でなく、20%を超えるとその効果
が飽和し不経済となるので20%以下とする。
In the finishing hot rolling, in order to reduce the friction coefficient between the work roll of the finishing hot rolling machine and the steel sheet, fat or oil is mixed into the roll cooling water as a lubricant, or the fat or oil is added to the roll by a special nozzle. Spray. If necessary, a surfactant may be added to prevent separation of the oil and fat from the cooling water. The amount of fats and oils mixed into the roll cooling water at the time of finish hot rolling is 0.5% to 20% by volume ratio. If the amount of fat or oil in the roll cooling water is less than 0.5%, the reduction of the friction coefficient due to lubrication is not sufficient, and if it exceeds 20%, the effect is saturated and uneconomical.

【0037】仕上熱延の摩擦係数と成品磁束密度との関
係について、実験結果に基づき説明する。
The relationship between the friction coefficient of the finished hot rolling and the product magnetic flux density will be described based on experimental results.

【0038】C:0.056%、Si:3.2%、M
n:0.12%、S:0.007%、sol−Al:
0.027%、N:0.0080%、Cr:0.12%
を含有し、残部Feおよび不可避的不純物からなる電磁
鋼スラブを1150℃に加熱後、粗圧延機により60m
m厚のシートバーとした。その後、このシートバーを仕
上圧延機により2.3mm厚みの熱延板とした。その
際、仕上熱延機の冷却水中に潤滑油をエマルジョン状態
で混入させることにより、鋼板と仕上熱延ロールとの摩
擦係数を変化させた。摩擦係数は実測の先進率より計算
により求め、各スタンドの計算値を平均したものを用い
た。
C: 0.056%, Si: 3.2%, M
n: 0.12%, S: 0.007%, sol-Al:
0.027%, N: 0.0080%, Cr: 0.12%
Is heated to 1150 ° C. and then 60 m by a rough rolling mill.
m-thick sheet bar. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 2.3 mm by a finishing mill. At that time, the lubricating oil was mixed in the emulsion state into the cooling water of the finishing hot rolling machine to change the friction coefficient between the steel sheet and the finishing hot rolling roll. The friction coefficient was obtained by calculation from the actually measured advanced rate, and the average of the calculated values of the respective stands was used.

【0039】得られた熱延板に1120℃×2分+90
0℃×2分の熱延板焼鈍を施し、100℃の湯中で冷却
し、その後酸洗し0.30mmまで冷延し、次いで83
0℃120秒の脱炭焼鈍を実施した。次いで窒化処理を
アンモニア1%を含む水素、窒素ガス中で750℃×3
0秒行った。その後MgOにTiO2 を混入した焼鈍分
離材を塗布し、1200℃×20時間の仕上焼鈍を行っ
た。仕上熱延時の鋼板と熱延ロールとの間の摩擦係数と
成品磁束密度B8の関係について図1に示す。
1120 ° C. × 2 minutes + 90
A hot rolled sheet is annealed at 0 ° C. × 2 minutes, cooled in hot water at 100 ° C., then pickled, cold rolled to 0.30 mm, and then
Decarburization annealing was performed at 0 ° C. for 120 seconds. Next, nitriding treatment is performed at 750 ° C. × 3 in a hydrogen or nitrogen gas containing 1% of ammonia.
Performed for 0 seconds. Thereafter, an annealing separator in which TiO 2 was mixed with MgO was applied, and finish annealing was performed at 1200 ° C. for 20 hours. FIG. 1 shows the relationship between the coefficient of friction between the steel sheet and the hot rolling roll during finish hot rolling and the product magnetic flux density B8.

【0040】図1より、仕上熱延時の鋼板と熱延ロール
との間の全スタンドの摩擦係数の平均が0.25以下の
場合に、磁束密度が向上することがわかる。
FIG. 1 shows that the magnetic flux density is improved when the average of the friction coefficients of all the stands between the steel sheet and the hot rolling roll at the time of finishing hot rolling is 0.25 or less.

【0041】高潤滑状態で仕上熱延を実施することが本
発明の磁束密度向上効果をもたらす理由は定かでない
が、摩擦係数の低下により、熱延鋼板表層の集合組織が
変化し、その結果二次再結晶粒の核となる方位を制御で
きることがその原因ではないかと発明者は推測する。
It is not clear why performing the finishing hot rolling in a highly lubricated state has the effect of improving the magnetic flux density of the present invention. However, the texture of the surface layer of the hot rolled steel sheet changes due to the decrease in the coefficient of friction. The inventor speculates that the control of the orientation serving as the nucleus of the next recrystallized grain may be the cause.

【0042】摩擦係数の下限については特に定めない
が、摩擦係数が過度に小さくなると鋼板とロール間にス
リップが生じて圧延不能となる事態が生じるので、安定
して熱延を実施するためには、摩擦係数は0.05以上
であることが好ましい。
The lower limit of the friction coefficient is not particularly defined. However, if the friction coefficient is excessively small, a slip occurs between the steel sheet and the roll and rolling cannot be performed. The coefficient of friction is preferably 0.05 or more.

【0043】本発明のように仕上熱間圧延を低摩擦率で
行う場合、仕上熱延機へのシートバーの噛み込み時のシ
ートバーの噛み込み不良の発生や、仕上熱延中のロール
と鋼板の間のスリップが生じ、圧延ロールの寿命を著し
く縮めるとともに、鋼板表層に深い圧延疵を生じさせる
場合がある。この様な低摩擦率の仕上熱間圧延における
問題点を解決し、安定的に操業を行う方法として、粗圧
延後のシートバーを仕上熱間圧延前に先行するシートバ
ーに接合し、当該シートバーを連続して仕上熱間圧延に
供することが特に有効である。
In the case where the finishing hot rolling is performed at a low friction rate as in the present invention, the sheet bar does not bite properly when the sheet bar is bitten into the finishing hot rolling machine, or the roll during the finishing hot rolling is not rolled. Slip occurs between the steel sheets, which significantly shortens the life of the rolling rolls and may cause deep rolling flaws on the surface layer of the steel sheets. As a method of solving such problems in the finish hot rolling with a low friction coefficient and stably operating, the sheet bar after the rough rolling is joined to the preceding sheet bar before the finish hot rolling, and It is particularly effective to subject the bars to finish hot rolling continuously.

【0044】熱延以降の行程については、析出物制御を
目的として熱延板焼鈍を行っても良い。酸洗後、1回も
しくは中間焼鈍をはさむ2回以上の冷間圧延を施して最
終板厚とするが、最終圧延率が80%未満であると磁束
密度B8の値が低下するので、冷延率は80%以上にす
る。特性はやや劣るものの、コスト低減のために熱延板
焼鈍を省略してもよい。最終製品の結晶粒径を小さくし
鉄損を低減するために中間焼鈍を含む2回以上の圧延で
最終板厚としてもよい。
[0044] In the process after hot rolling, hot rolled sheet annealing may be performed for the purpose of controlling precipitates. After pickling, cold rolling is performed once or twice or more with intermediate annealing to obtain a final sheet thickness. If the final rolling reduction is less than 80%, the value of the magnetic flux density B8 decreases. The rate should be 80% or more. Although the properties are slightly inferior, the hot rolled sheet annealing may be omitted for cost reduction. In order to reduce the crystal grain size of the final product and reduce iron loss, the final thickness may be obtained by performing rolling twice or more including intermediate annealing.

【0045】次に湿水素あるいは湿水素、窒素混合雰囲
気ガス中で脱炭焼鈍をする。このときの温度は特に本発
明では定めないが、800℃から900℃が好ましい。
Next, decarburizing annealing is performed in wet hydrogen or a mixed gas of wet hydrogen and nitrogen. The temperature at this time is not particularly defined in the present invention, but is preferably from 800 ° C to 900 ° C.

【0046】次いで焼鈍分離材を塗布し仕上焼鈍を行
い、二次再結晶および引き続いて純化を行う。このため
焼鈍温度は通常1100℃から1200℃の高温とす
る。二次再結晶完了後の純化焼鈍は水素雰囲気中で実施
する。
Next, an annealing separator is applied and finish annealing is performed, and secondary recrystallization and subsequent purification are performed. For this reason, the annealing temperature is usually set to a high temperature of 1100 ° C to 1200 ° C. The purification annealing after the completion of the secondary recrystallization is performed in a hydrogen atmosphere.

【0047】本発明では脱炭焼鈍の完了後、仕上焼鈍の
二次再結晶開始までの間に鋼板に窒化処理を施し、微細
な(Al,Si)Nを鋼板内に形成させる。その実施形
態としては、脱炭焼鈍時均熱以降で窒化能のある気体の
雰囲気で窒化するか、または、脱炭焼鈍後別途設けたN
3 等の雰囲気を有する熱処理炉を通過させて窒化する
か、あるいは仕上焼鈍の際に焼鈍分離材中にMnN、C
rN等を適量配合するか、仕上焼鈍の昇温過程において
窒化能のあるNH3 等の気体を雰囲気に含有させてもよ
い。さらに、以上の方法の組み合わせによって窒化を行
ってもよい。
In the present invention, after the completion of the decarburizing annealing, the steel sheet is subjected to a nitriding treatment until the start of the secondary recrystallization of the finish annealing to form fine (Al, Si) N in the steel sheet. As an embodiment thereof, nitriding is performed in a gas atmosphere having a nitriding ability after soaking during decarburizing annealing, or N 2 provided separately after decarburizing annealing.
Nitriding by passing through a heat treatment furnace having an atmosphere such as H 3 or MnN, C
An appropriate amount of rN or the like may be blended, or a gas such as NH 3 having nitriding ability may be contained in the atmosphere during the temperature raising process of the finish annealing. Further, nitriding may be performed by a combination of the above methods.

【0048】[0048]

【実施例1】表1の成分を含有し、残部Feおよび不可
避的不純物からなる電磁鋼スラブを1150℃に加熱
後、粗圧延機により60mm厚のシートバーとした。そ
の後、このシートバーを仕上圧延機により2.1mm厚
みの熱延板とした。その際、仕上熱延機の冷却水中に潤
滑油をエマルジョン状態で混入させることにより、鋼板
と仕上熱延ロールとの摩擦係数を変化させた。摩擦係数
は実測の先進率より計算により求め、各スタンドの計算
値を平均したものを用いた。
Example 1 An electromagnetic steel slab containing the components shown in Table 1 and consisting of the balance of Fe and unavoidable impurities was heated to 1150 ° C., and then formed into a sheet bar having a thickness of 60 mm by a rough rolling mill. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 2.1 mm by a finishing mill. At that time, the lubricating oil was mixed in the emulsion state into the cooling water of the finishing hot rolling machine to change the friction coefficient between the steel sheet and the finishing hot rolling roll. The friction coefficient was obtained by calculation from the actually measured advanced rate, and the average of the calculated values of the respective stands was used.

【0049】[0049]

【表1】 [Table 1]

【0050】得られた熱延板に1120℃×2分+90
0℃×2分の熱延板焼鈍を施し、100℃の湯中で冷却
し、その後酸洗し0.23mmまで冷延し、次いで83
0℃90秒の脱炭焼鈍を露点58℃の湿水素、窒素雰囲
気中で実施した。次いで窒化処理をアンモニア1%を含
む水素、窒素ガス中で750℃×30秒行った。その後
MgOにTiO2 を混入した焼鈍分離材を塗布し、12
00℃×20時間の仕上焼鈍を行った。
The obtained hot rolled sheet was heated at 1120 ° C. × 2 minutes + 90
A hot rolled sheet is annealed at 0 ° C. × 2 minutes, cooled in hot water at 100 ° C., then pickled, cold rolled to 0.23 mm, and then
Decarburization annealing at 0 ° C. for 90 seconds was performed in a wet hydrogen and nitrogen atmosphere at a dew point of 58 ° C. Next, a nitriding treatment was performed at 750 ° C. for 30 seconds in a hydrogen or nitrogen gas containing 1% of ammonia. Then, an annealing separator mixed with TiO 2 in MgO is applied, and 12
Finish annealing was performed at 00 ° C. × 20 hours.

【0051】仕上熱延時の平均摩擦係数と仕上焼鈍後の
磁気特性との関係を表2に示す。表2より、仕上熱延時
の熱延ロールと鋼板の間の平均摩擦係数が0.25以下
の場合に磁束密度が高くなっていることがわかる。
Table 2 shows the relationship between the average coefficient of friction during hot rolling and the magnetic properties after finish annealing. From Table 2, it can be seen that the magnetic flux density is high when the average friction coefficient between the hot-rolled roll and the steel sheet at the time of finish hot rolling is 0.25 or less.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【実施例2】表3の成分を含有し、残部Feおよび不可
避的不純物からなる電磁鋼スラブを1150℃に加熱
後、粗圧延機により65mm厚のシートバーとした。そ
の後、このシートバーを仕上圧延機により2.3mm厚
みの熱延板とした。その際、仕上熱延機の冷却水中に潤
滑油をエマルジョン状態で混入させることにより、鋼板
と仕上熱延ロールとの摩擦係数を変化させた。摩擦係数
は実測の先進率より計算により求め、各スタンドの計算
値を平均したものを用いた。
Example 2 An electromagnetic steel slab containing the components shown in Table 3 and consisting of the balance Fe and unavoidable impurities was heated to 1150 ° C., and then formed into a sheet bar having a thickness of 65 mm by a rough rolling mill. Thereafter, the sheet bar was formed into a hot-rolled sheet having a thickness of 2.3 mm by a finishing mill. At that time, the lubricating oil was mixed in the emulsion state into the cooling water of the finishing hot rolling machine to change the friction coefficient between the steel sheet and the finishing hot rolling roll. The friction coefficient was obtained by calculation from the actually measured advanced rate, and the average of the calculated values of the respective stands was used.

【0054】[0054]

【表3】 [Table 3]

【0055】得られた熱延板に1120℃×2分半+9
00℃×2分の熱延板焼鈍を施し、100℃の湯中で冷
却し、その後酸洗し0.30mmまで冷延し、次いで8
30℃120秒の脱炭焼鈍を実施した。次いで窒化処理
をアンモニア1%を含む水素、窒素ガス中で750℃×
30秒行った。その後MgOにTiO2 を混入した焼鈍
分離材を塗布し、1200℃×20時間の仕上焼鈍を行
った。
The obtained hot rolled sheet was subjected to 1120 ° C. × 2 and a half minutes + 9
A hot rolled sheet is annealed at 00 ° C. for 2 minutes, cooled in hot water at 100 ° C., then pickled, cold rolled to 0.30 mm, and then
Decarburization annealing was performed at 30 ° C. for 120 seconds. Next, nitriding treatment is performed at 750 ° C. in hydrogen and nitrogen gas containing 1% of ammonia.
Performed for 30 seconds. Thereafter, an annealing separator in which TiO 2 was mixed with MgO was applied, and finish annealing was performed at 1200 ° C. for 20 hours.

【0056】仕上熱延時の平均摩擦係数と仕上焼鈍後の
磁気特性との関係を表4に示す。表4より、仕上熱延時
の熱延ロールと鋼板の間の平均摩擦係数が0.25以下
の場合に磁束密度が高くなっていることがわかる。
Table 4 shows the relationship between the average coefficient of friction during hot rolling and the magnetic properties after finish annealing. Table 4 shows that the magnetic flux density is high when the average coefficient of friction between the hot-rolled roll and the steel sheet at the time of finishing hot rolling is 0.25 or less.

【0057】[0057]

【表4】 [Table 4]

【0058】[0058]

【発明の効果】本発明によれば、磁束密度が高く磁気特
性に優れた方向性電磁鋼板を製造することが可能であ
る。
According to the present invention, it is possible to manufacture a grain-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】仕上熱延時の鋼板と熱延ロールの平均摩擦係数
と成品の磁束密度との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the average friction coefficient of a steel sheet and a hot-rolled roll at the time of finish hot rolling and the magnetic flux density of a product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 0.025 %≦ C ≦0.075 %、 2.5 %≦ Si ≦4.5 %、 S ≦0.015 %、 0.010 %≦sol−Al≦0.050 %、 0.0010%≦ N ≦0.0120%、 0.050 %≦ Mn ≦0.45 % を含有し、残部Feおよび不可避的不純物からなるスラ
ブを、1200℃以下の温度に加熱した後熱延し、熱延
板焼鈍を施し、1回または中間焼鈍をはさむ2回以上の
圧延で最終圧延率80%以上とし、次いで脱炭焼鈍完了
後以降、仕上焼鈍の二次再結晶開始までの間に鋼板に窒
化処理を施す方向性電磁鋼板の製造方法において、 仕上熱間圧延時の熱延ロールと鋼板との平均摩擦係数を
0.25以下とすることを特徴とする磁束密度が高い方
向性電磁鋼板の製造方法。
1. In% by weight, 0.025% ≦ C ≦ 0.075%, 2.5% ≦ Si ≦ 4.5%, S ≦ 0.015%, 0.010% ≦ sol-Al ≦ 0 A slab containing 0.050%, 0.0010% ≦ N ≦ 0.0120%, 0.050% ≦ Mn ≦ 0.45%, and the balance consisting of Fe and unavoidable impurities was heated to a temperature of 1200 ° C. or less. After hot-rolling, hot-rolled sheet annealing is applied, and the final rolling reduction is 80% or more by rolling once or twice or more including intermediate annealing. Then, after the completion of decarburizing annealing, until the start of secondary recrystallization of finish annealing A method for producing a grain-oriented electrical steel sheet, wherein a steel sheet is subjected to nitriding treatment during a hot rolling process, wherein an average coefficient of friction between the hot-rolled roll and the steel sheet at the time of finish hot rolling is set to 0.25 or less. Manufacturing method of grain-oriented electrical steel sheet.
【請求項2】 仕上熱延時に潤滑剤として熱延ロール冷
却水に0.5〜20%の油脂をエマルジョン状態で混入
することを特徴とする請求項1記載の磁束密度が高い方
向性電磁鋼板の製造方法。
2. A grain-oriented electrical steel sheet having a high magnetic flux density according to claim 1, wherein 0.5 to 20% of fats and oils are mixed in a hot-roll roll cooling water as a lubricant at the time of finishing hot rolling in an emulsion state. Manufacturing method.
【請求項3】 粗圧延後のシートバーを仕上熱延前に先
行するシートバーに接合し、当該シートバーを2本以上
連続して仕上熱延に供することを特徴とする請求項1ま
たは2記載の磁束密度が高い方向性電磁鋼板の製造方
法。
3. The sheet bar after the rough rolling is joined to a preceding sheet bar before the hot rolling, and two or more sheet bars are continuously subjected to the hot rolling. A method for producing a grain-oriented electrical steel sheet having a high magnetic flux density as described.
JP24694996A 1996-07-30 1996-08-30 Manufacture of grain-oriented silicon steel sheet having high magnetic flux density Pending JPH1096028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24694996A JPH1096028A (en) 1996-07-30 1996-08-30 Manufacture of grain-oriented silicon steel sheet having high magnetic flux density

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21595396 1996-07-30
JP8-215953 1996-07-30
JP24694996A JPH1096028A (en) 1996-07-30 1996-08-30 Manufacture of grain-oriented silicon steel sheet having high magnetic flux density

Publications (1)

Publication Number Publication Date
JPH1096028A true JPH1096028A (en) 1998-04-14

Family

ID=26521139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24694996A Pending JPH1096028A (en) 1996-07-30 1996-08-30 Manufacture of grain-oriented silicon steel sheet having high magnetic flux density

Country Status (1)

Country Link
JP (1) JPH1096028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034622A (en) * 2016-07-29 2019-04-02 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for directional electric steel sheet, manufacturing method thereof, and manufacturing method of directional electric steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034622A (en) * 2016-07-29 2019-04-02 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for directional electric steel sheet, manufacturing method thereof, and manufacturing method of directional electric steel sheet
EP3492613A4 (en) * 2016-07-29 2019-08-07 JFE Steel Corporation Hot-rolled steel sheet for grain-oriented magnetic steel sheet and production method therefor, and production method for grain-oriented magnetic steel sheet

Similar Documents

Publication Publication Date Title
EP0837149B1 (en) Grain-oriented electromagnetic steel sheet and process for producing the same
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
WO1991016462A1 (en) Process for producing unidirectional magnetic steel sheet excellent in magnetic characteristics
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3056970B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties
JPH1096028A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
JP3536812B2 (en) Method for producing grain-oriented electrical steel sheet with few edge cracks and good coating properties and excellent magnetic properties
JPH1096029A (en) Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
JP2019178377A (en) Manufacturing method of oriented electromagnetic steel sheet
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
WO2022250113A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH06184640A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH0741860A (en) Production of grain-oriented silicon steel sheet
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608