JPH0741860A - Production of grain-oriented silicon steel sheet - Google Patents

Production of grain-oriented silicon steel sheet

Info

Publication number
JPH0741860A
JPH0741860A JP5185873A JP18587393A JPH0741860A JP H0741860 A JPH0741860 A JP H0741860A JP 5185873 A JP5185873 A JP 5185873A JP 18587393 A JP18587393 A JP 18587393A JP H0741860 A JPH0741860 A JP H0741860A
Authority
JP
Japan
Prior art keywords
strip
steel sheet
roll
grain
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5185873A
Other languages
Japanese (ja)
Other versions
JP3359385B2 (en
Inventor
Kenji Kosuge
健司 小菅
Shinji Ueno
伸二 上野
Haruo Fukazawa
晴雄 深沢
Tadao Kiriyama
忠夫 切山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18587393A priority Critical patent/JP3359385B2/en
Publication of JPH0741860A publication Critical patent/JPH0741860A/en
Application granted granted Critical
Publication of JP3359385B2 publication Critical patent/JP3359385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet high in magnetic flux density, in the temp. raising stage in decarburizing annealing for a strip having a specified compsn. rolled into a final prduct thickness, by specifying the deheating amt. in the strip in a roll on the heated side. CONSTITUTION:A strip S having a compsn. contg., by weight, <=0.10% C, 2.5 to 7.0% Si and ordinary, inhibitor components, and the balance Fe with inevitable impurities and rolled into a final product thickness is heated electrically between two pairs of upper and lower rolls R1 and R2 in the temp. raising stage in decarburizing annealing. At this time, the strip S is cooled at a P point by the roll R2 on the heated side, the deheating amt. in the strip S at the outlet side roll R2 is regulated to <=200 deg.C, and the strip S is heated and is thereafter subjected to decarburizing and finish annealing. Thus, the grain- oriented silicon steel sheet having good magnetic properties is stably obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜7.0%のS
iを含み、磁束密度が高い一方向性電磁鋼板の製造方法
に関するものである。
BACKGROUND OF THE INVENTION The present invention has an S content of 2.5 to 7.0%.
The present invention relates to a method for producing a grain-oriented electrical steel sheet containing i and having a high magnetic flux density.

【0002】[0002]

【従来の技術】一般に、一方向性電磁鋼板の磁気特性は
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める磁器の小型化に有効で
ある。一方鉄損特性を少なくすることは、電気機器とし
て使用する際、熱エネルギーとして失われるものを少な
くし、消費電力を節約できる点で有効である。さらに、
製品の結晶粒の〈100〉軸を圧延方向に揃えること
は、磁化特性を高め、鉄損特性も低くすることができ、
近年特にこの面で多くの研究が重ねられ、様々な製造技
術が開発された。
2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are evaluated by both the iron loss property and the excitation property. Increasing the excitation characteristics is effective for downsizing the porcelain that increases the design magnetic flux density. On the other hand, reducing the iron loss characteristics is effective in reducing the loss of heat energy when used as an electric device and saving the power consumption. further,
Aligning the <100> axes of the crystal grains of the product in the rolling direction can improve the magnetization characteristics and lower the iron loss characteristics.
In recent years, much research has been conducted especially in this respect, and various manufacturing techniques have been developed.

【0003】この結果、現在、工業生産されている代表
的な一方向性電磁鋼板の製造技術において高い磁束密度
を得るため、2つの代表的な製造技術がある。第一の技
術として、特公昭40−15644号が開示された。こ
れは、AlN+MnSをインヒビターとして機能させ、
最終冷延工程における圧延率が80%を超える強圧下と
する製造技術である。この方法により二次再結晶粒の
(110)〔001〕方位の集積度が高く、B8 が1.
870(T)以上の高磁束密度を有する方向性電磁鋼板
が得られる。さらに、第二の技術として、特公昭51−
13469号に開示された、MnS又はMnSe+Sb
をインヒビターとして機能させる、2回冷延工程による
製造技術が開発された。
As a result, there are two typical manufacturing techniques for obtaining a high magnetic flux density in the typical industrially manufactured grain-oriented electrical steel sheet manufacturing techniques. As a first technique, Japanese Examined Patent Publication No. 40-15644 was disclosed. This makes AlN + MnS act as an inhibitor,
This is a manufacturing technique in which the rolling ratio in the final cold rolling step is a strong reduction exceeding 80%. By this method, the degree of integration of the (110) [001] orientation of the secondary recrystallized grains is high, and B 8 is 1.
A grain-oriented electrical steel sheet having a high magnetic flux density of 870 (T) or higher is obtained. Furthermore, as a second technique, Japanese Patent Publication No.
MnS or MnSe + Sb disclosed in 13469.
A manufacturing technology has been developed in which the double cold-rolling process is used to function as an inhibitor.

【0004】以上のように、一方向性電磁鋼板の製造方
法に関しては、従来から多くの検討が加えられており、
基本的なプロセスは概ね定まってきた。しかしながら省
エネルギーの観点から、電気機器の高効率化、小型化の
要求はますます厳しくなっており、これに応えて良好な
磁気特性を有する一方向性電磁鋼板を工業的に安定し
て、しかも安価に製造する技術は未だ完成されていな
い。一方向性電磁鋼板の製造プロセスにおいて磁気特性
の改善と安定化、生産性の向上を実現する一つの鍵は、
脱炭焼鈍工程が握っている。
As described above, many studies have been made on the production method of the grain-oriented electrical steel sheet,
The basic process has been largely defined. However, from the viewpoint of energy saving, the demand for high efficiency and miniaturization of electrical equipment is becoming more and more stringent, and in response to this, unidirectional electrical steel sheet with good magnetic properties is industrially stable and inexpensive. The technology for manufacturing is not yet completed. One of the keys to improving and stabilizing magnetic properties and improving productivity in the manufacturing process of unidirectional electrical steel sheets is
Decarburization annealing process is in control.

【0005】本発明者らは、脱炭焼鈍工程を効率的で省
エネルギー化により処理する方法を考え、従来のガス加
熱による方式から電気エネルギーを用いた効率的な加熱
方法を、特に昇温段階に適用することを検討してきた。
電気加熱の適用には、一般に誘導加熱方式と直接通電加
熱方式とがある。このなかで誘導加熱方式を中心として
適用の拡大が取り組まれている。
The inventors of the present invention have considered a method for treating the decarburization annealing step efficiently and by saving energy, and have changed the conventional heating method using gas energy from an efficient heating method using electric energy, particularly to a heating step. I have considered applying it.
Generally, there are an induction heating method and a direct current heating method for applying electric heating. Among these, efforts are being made to expand the application centered on the induction heating method.

【0006】この誘導加熱方式の効率は約60%である
が、直接通電加熱方式の効率は約85%で省エネルギー
の観点から望ましい。そこで、本発明者らは、電気加熱
のなかでも効率の良い、直接通電加熱方式を適用するこ
とに取り組んできた。この代表的な方法としてストリッ
プを二対のロール間に通板することにより、連続的に通
電加熱する方法がある。しかし、この方法では、従来の
ガス加熱法と比較して、磁気特性、特に磁束密度が低い
問題があった。
The efficiency of the induction heating method is about 60%, but the efficiency of the direct current heating method is about 85%, which is desirable from the viewpoint of energy saving. Therefore, the present inventors have been working on applying a direct electric heating method, which is efficient even among electric heating. As a typical method for this, there is a method in which a strip is passed between two pairs of rolls to continuously heat by energizing. However, this method has a problem that the magnetic properties, particularly the magnetic flux density, are lower than those of the conventional gas heating method.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記脱炭焼鈍
の昇温段階において電気エネルギーを用いた効率的な加
熱方法を用いて、工業的に安定して良好な磁気特性を有
する一方向性電磁鋼板を得る方法を提供することにあ
る。
DISCLOSURE OF THE INVENTION The present invention uses an efficient heating method using electric energy in the heating stage of the above decarburization annealing, which is industrially stable and has a good magnetic property. It is to provide a method for obtaining an electromagnetic steel sheet.

【0008】[0008]

【課題を解決するための手段】本発明は、重量でC:
0.10%以下、Si:2.5〜7.0%ならびに通常
のインヒビター成分を含み、残余はFeおよび不可避的
不純物よりなる溶鋼を出発素材として、最終製品厚まで
圧延されたストリップを、脱炭焼鈍の昇温過程において
ロール間で通電加熱処理し、続いて脱炭焼鈍および最終
仕上焼鈍をするに際し、加熱された側のロールにおける
ストリップの抜熱量が200℃以下であることにより、
磁束密度の高い一方向性電磁鋼板が得られることを見い
出した。加えて、ロール間で通電する際のストリップの
昇温速度が80℃/s以上であることにより、さらに磁束
密度の高い一方向性電磁鋼板が得られることを見い出し
た。
The present invention provides C by weight:
Starting from a molten steel containing 0.10% or less, Si: 2.5 to 7.0% and a usual inhibitor component, and the balance Fe and unavoidable impurities as a starting material, a strip rolled to a final product thickness is removed. In the heating process of the charcoal annealing, an electric heating treatment is performed between the rolls, and subsequently, when performing decarburization annealing and final finishing annealing, the heat removal amount of the strip on the heated side roll is 200 ° C. or less,
It has been found that a grain-oriented electrical steel sheet having a high magnetic flux density can be obtained. In addition, it has been found that when the temperature rising rate of the strip when electricity is applied between the rolls is 80 ° C./s or more, a grain-oriented electrical steel sheet having a higher magnetic flux density can be obtained.

【0009】以下に本発明を詳細に説明する。一方向性
電磁鋼板は、その製造工程の最終焼鈍中に二次再結晶を
充分に起こさせ、所謂ゴス集合組織を得ることにより製
造できる。このゴス集合組織を得るためには、一次再結
晶粒の成長粗大化を抑制し、(110)〈001〉方位
の再結晶粒のみをある温度範囲で選択的に成長させる。
すなわち、二次再結晶させるような素地を作ってやるこ
とが必要である。
The present invention will be described in detail below. The unidirectional electrical steel sheet can be manufactured by sufficiently causing secondary recrystallization during the final annealing in the manufacturing process to obtain a so-called Goss texture. In order to obtain this Goss texture, growth coarsening of the primary recrystallized grains is suppressed, and only the recrystallized grains of the (110) <001> orientation are selectively grown in a certain temperature range.
That is, it is necessary to make a base material for secondary recrystallization.

【0010】しかし、従来の通電ロール方式を用いた加
熱では、この二次再結晶させるような素地が十分でな
く、磁気特性、特に磁束密度が低下する問題が発生し
た。この原因について、詳細に調査した結果、通電ロー
ル方式によると加熱途中で鋼板中に歪みが導入され、こ
れが駆動力となって一次再結晶挙動を変化させ、圧延方
向に揃った(110)〈001〉方位の一次再結晶粒の
存在を少なくし、磁束密度を低下させていることがわか
った。この鋼板中に歪みが導入される箇所を検討した結
果、ストリップが加熱された直後に出側ロールの抜熱に
より急速冷却され、鋼板中に微小な歪みが残存すること
を突き止めた。そこで、抜熱量に対する磁気特性への影
響について調査した。その結果、抜熱量が200℃以下
であると、あまり磁束密度の劣化が起こらないことが判
明した。
However, in the heating using the conventional energizing roll method, the base material for secondary recrystallization is not sufficient, and there arises a problem that the magnetic characteristics, particularly the magnetic flux density is lowered. As a result of detailed investigation of this cause, according to the energizing roll method, strain was introduced into the steel sheet during heating, which acted as a driving force to change the primary recrystallization behavior and was aligned in the rolling direction (110) <001. It was found that the existence of primary recrystallized grains in the <> direction was reduced and the magnetic flux density was reduced. As a result of studying the location where strain is introduced into the steel sheet, it was found that the strip was rapidly cooled immediately after the strip was heated by the heat removal of the exit roll, and a minute strain remained in the steel sheet. Therefore, the influence of the heat removal amount on the magnetic characteristics was investigated. As a result, it was found that when the heat removal amount was 200 ° C. or less, the magnetic flux density did not deteriorate much.

【0011】図2に出側ロールの抜熱量と磁束密度の関
係を示す。この時の板の到達温度は850℃でロール径
は200mm、昇温速度は20℃/sである。抜熱量が20
0℃以上で磁束密度の大きな劣化が見られ、200℃以
下であると従来のガス加熱の磁気特性と同等のレベルが
得られる。ここで、磁束密度を高めるため、ロール出側
での抜熱量を200℃以下に抑えることに加えて、ロー
ル間で通電する際のストリップの昇温速度を80℃/s以
上にすることにより良好な磁気特性が得られる。
FIG. 2 shows the relationship between the heat removal amount of the exit roll and the magnetic flux density. At this time, the temperature reached by the plate was 850 ° C., the roll diameter was 200 mm, and the temperature rising rate was 20 ° C./s. 20 heat removal
When the temperature is 0 ° C or higher, the magnetic flux density is significantly deteriorated, and when the temperature is 200 ° C or lower, the same level as the magnetic characteristics of conventional gas heating can be obtained. Here, in order to increase the magnetic flux density, in addition to suppressing the heat removal amount on the roll exit side to 200 ° C. or less, it is preferable to set the temperature rising rate of the strip when energizing between the rolls to 80 ° C./s or more. Magnetic characteristics are obtained.

【0012】図2に、加熱速度が200℃/sでの出側ロ
ールの抜熱量と磁束密度の関係を示す。抜熱量が200
℃以上で磁束密度の大きな劣化が見られ,200℃以下
であると従来のガス加熱の磁気特性以上のレベルが得ら
れる。この急速加熱による磁気特性向上の効果として
は、一次再結晶集合組織での(110)面の増加が、後
の二次再結晶に大きく影響しているものと考えられる。
FIG. 2 shows the relationship between the heat removal amount of the exit roll and the magnetic flux density when the heating rate is 200 ° C./s. The heat removal amount is 200
A large deterioration of the magnetic flux density is observed at temperatures above ℃, and a level above the conventional magnetic characteristics of gas heating is obtained at temperatures below 200 ℃. As an effect of improving the magnetic properties by the rapid heating, it is considered that the increase of the (110) plane in the primary recrystallization texture has a great influence on the subsequent secondary recrystallization.

【0013】[0013]

【作用】次に本発明において、鋼組成および製造条件を
前記のように限定した理由を、詳細に説明する。この鋼
成分の限定理由は下記のとおりである。Cについての上
限0.10%は、これ以上多くなると脱炭所要時間が長
くなり、経済的に不利となるので限定した。
In the present invention, the reason why the steel composition and manufacturing conditions are limited as described above will be explained in detail. The reasons for limiting the steel composition are as follows. The upper limit of 0.10% for C is limited because if the amount exceeds C, the time required for decarburization becomes long, which is economically disadvantageous.

【0014】Siは鉄損を良くするために下限を2.5
%とするが、多すぎると冷間圧延の際に割れ易く加工が
困難となるので上限を7.0%とする。さらに、一方向
性電磁鋼板を製造するために、通常のインヒビター成分
として以下の成分元素を添加することが好ましい。イン
ヒビターとしてMnSを利用する場合は、MnとSを添
加する。Mnは、MnSの適当な分散状態を得るため、
0.02〜0.15%が望ましい。SはMnS,(Mn
・Fe)Sを形成するために必要な元素で、適当な分散
状態を得るため、0.001〜0.05%が望ましい。
Si has a lower limit of 2.5 in order to improve iron loss.
%, But if it is too large, it easily cracks during cold rolling and processing becomes difficult, so the upper limit is made 7.0%. Furthermore, in order to manufacture the grain-oriented electrical steel sheet, it is preferable to add the following component elements as usual inhibitor components. When using MnS as an inhibitor, Mn and S are added. Mn is used to obtain an appropriate dispersed state of MnS.
0.02-0.15% is desirable. S is MnS, (Mn
-Fe) S is an element necessary for forming and is preferably 0.001 to 0.05% in order to obtain an appropriate dispersed state.

【0015】さらに、インヒビターとしてAlNを利用
する場合は、酸可溶性AlとNを添加する。酸可溶性A
l,AlNの適正な分散状態を得るため0.01〜0.
04%が望ましい。NもAlNの適正な分散状態を得る
ため0.003〜0.02%が望ましい。その他、C
u,Sn,Sb,Cr,Biはインヒビターを強くする
目的で1.0%以下において少なくとも1種添加しても
良い。
Further, when AlN is used as an inhibitor, acid-soluble Al and N are added. Acid soluble A
In order to obtain a proper dispersion state of Al and AlN, 0.01-0.
04% is desirable. N is also preferably 0.003 to 0.02% in order to obtain a proper dispersed state of AlN. Other, C
At least one of u, Sn, Sb, Cr and Bi may be added in an amount of 1.0% or less for the purpose of strengthening the inhibitor.

【0016】次に、上記の溶鋼を通常の鋳塊鋳造法また
は連続鋳造法、熱間圧延により中間厚のストリップを得
る。この時ストリップ鋳造法も本発明に適用することが
可能である。さらに、インヒビターとして窒化物を必要
とする場合は、AlN等の析出のために950〜120
0℃で30秒〜30分の中間焼鈍を行うことが望まし
い。
Next, the above molten steel is subjected to a conventional ingot casting method or continuous casting method, and hot rolling to obtain a strip having an intermediate thickness. At this time, the strip casting method can also be applied to the present invention. Furthermore, when a nitride is required as an inhibitor, it is necessary to deposit 950 to 120 because of precipitation of AlN or the like.
It is desirable to perform intermediate annealing for 30 seconds to 30 minutes at 0 ° C.

【0017】次に、1回ないし中間焼鈍を含む2回以上
の圧延により最終製品厚のストリップを得る。この時の
最終圧下率は高いゴス集積度をもつ製品を得るため、圧
下率50%以上が必要となる。下限50%はこれ以下で
は必要なゴス核が得られない。
Next, a strip having a final product thickness is obtained by rolling once or twice or more including intermediate annealing. The final rolling reduction at this time requires a rolling reduction of 50% or more in order to obtain a product having a high degree of Goss accumulation. If the lower limit is 50%, the necessary Goss nucleus cannot be obtained below this range.

【0018】このように最終製品厚まで圧延されたスト
リップを、脱炭焼鈍の昇温過程において、通電ロール法
により加熱する。この時、加熱された側のロールにおけ
るストリップの抜熱量が200℃以下であることが必要
である。上限値200℃は、これ以上では磁束密度の劣
化が起こるので限定した。図1に本発明での一つの実施
例の概略図を示す。ストリップSを挟む上下一対のロー
ルを二組設け、ロールR1 ,R2 間のストリップSに通
電することにより、ストリップSを加熱し、さらに加熱
された側のロールR2 によりP点で冷却が施される。こ
の際、出側ロールR2 でのストリップの抜熱量を200
℃以内にする必要がある。この方策としては、加熱され
たストリップとロールR2 との温度差をできるだけ少な
くするため、ロールR2 を誘導加熱装置により余熱する
方法がある。
The strip thus rolled to the final product thickness is heated by the current-rolling method in the temperature rising process of decarburization annealing. At this time, it is necessary that the heat removal amount of the strip on the heated roll is 200 ° C. or less. The upper limit value of 200 ° C. is limited because the magnetic flux density deteriorates above this value. FIG. 1 shows a schematic diagram of one embodiment of the present invention. Two pairs of upper and lower rolls sandwiching the strip S are provided, and the strip S between the rolls R 1 and R 2 is energized to heat the strip S, and the roll R 2 on the heated side cools at the point P. Is given. At this time, the heat removal amount of the strip on the exit roll R 2 is set to 200
Must be within ℃. As a measure for this, there is a method of preheating the roll R 2 with an induction heating device in order to minimize the temperature difference between the heated strip and the roll R 2 .

【0019】また、できるだけ板の抜熱を少なくするた
め、ロールR2 表面に特種な金属、セラミックなどを、
100〜300μm程、溶射処理などによりコーティン
グを施すことによりロールの熱伝達係数を抑え、板の抜
熱を少なくする方法がある。さらに、上記二つの方法を
合わせて実施することも可能である。
Further, in order to reduce the heat removal of the plate as much as possible, a special metal, ceramic or the like is applied to the surface of the roll R 2 .
There is a method in which the heat transfer coefficient of the roll is suppressed and the heat removal of the plate is reduced by applying a coating by thermal spraying or the like to about 100 to 300 μm. Furthermore, it is possible to combine the above two methods.

【0020】これにより出側ロールR2 でのストリップ
の抜熱量を200℃以内に抑えられ、高い磁束密度を有
する一方向性電磁鋼板が得られる。なお、以上の処理は
皮膜形成などの問題から、装置ボックスBはできるだけ
非酸化雰囲気中で実施することが望ましい。なお、出側
ロールでの板の抜熱量を200℃以下にすると、板形状
が非常に良好になる効果もある。
As a result, the heat removal amount of the strip on the output side roll R 2 can be suppressed within 200 ° C., and a grain-oriented electrical steel sheet having a high magnetic flux density can be obtained. Note that it is desirable to carry out the above processing in the apparatus box B in a non-oxidizing atmosphere as much as possible, because of problems such as film formation. In addition, if the heat removal amount of the plate on the delivery side roll is set to 200 ° C. or less, there is also an effect that the plate shape becomes very good.

【0021】さらに必要に応じて、脱炭焼鈍の生産性を
高めるため、また磁気特性を良好にするため、ロール出
側での抜熱量を200℃以内に抑えることに加えて、ロ
ール間で通電する際のストリップの昇温速度を80℃/s
以上にする。この昇温速度の下限値80℃/sは、これ以
下では従来のガス加熱よりも磁束密度の向上が望めない
ので限定した。
Further, if necessary, in order to enhance the productivity of decarburization annealing and to improve the magnetic characteristics, the heat removal amount on the roll outlet side is kept within 200 ° C. The heating rate of the strip is 80 ℃ / s
More than that. The lower limit value of 80 ° C./s of this temperature rising rate is limited because the improvement of the magnetic flux density cannot be expected as compared with the conventional gas heating below this.

【0022】上記のように、ストリップを加熱した後、
湿水素雰囲気中で脱炭焼鈍を行う。この時製品での磁気
特性を劣化させないためCは0.005%以下に低減さ
れなければならない。ここで、熱延でのスラブ加熱温度
が低く、AlNのみをインヒビターとして利用する場合
は、アンモニア雰囲気中で窒化処理を施すこともある。
さらに、MgOなどの焼鈍分離剤を塗布して、二次再結
晶と純化のため1100℃以上の仕上焼鈍を行うこと
で、極めて低い鉄損特性を有する一方向性電磁鋼板が製
造される。以上得られた製品に、さらに鉄損を良好にす
るため、上記一方向性電磁鋼板に、磁区を細分化するた
めの処理を施すことも可能である。
After heating the strip as described above,
Decarburization annealing is performed in a wet hydrogen atmosphere. At this time, C must be reduced to 0.005% or less so as not to deteriorate the magnetic properties of the product. Here, when the slab heating temperature in hot rolling is low and only AlN is used as an inhibitor, nitriding treatment may be performed in an ammonia atmosphere.
Furthermore, by applying an annealing separator such as MgO and performing finish annealing at 1100 ° C. or higher for secondary recrystallization and purification, a grain-oriented electrical steel sheet having extremely low iron loss characteristics is manufactured. In order to further improve the iron loss of the obtained product, it is possible to subject the unidirectional electrical steel sheet to a treatment for subdividing magnetic domains.

【0023】[0023]

【実施例】【Example】

〔実施例1〕表1に示す成分組成を含む溶鋼を鋳造し、
スラブ加熱後、熱間圧延を行い、2.2mmの熱延鋼板を
得た。次に1100℃で5分間焼鈍を行い、さらに酸洗
したのち、冷間圧延により0.27mm厚にした。続い
て、脱炭焼鈍の昇温過程において、圧延された鋼板を図
に示す直接通電ロール加熱装置により種々の条件で加熱
した。この時、加熱直後に出側ロールを誘導加熱装置で
予熱することにより、種々の抜熱を施した。この時の出
側板温度測定による板抜熱量を表2に示す。この時のロ
ール径は200mmφ、通板速度は20mpm であった。何
も予熱を施さない場合の板の抜熱量は300℃であっ
た。なお、比較として従来のガス加熱による方法も示す
(実施例A、20℃/s加熱速度)。
[Example 1] A molten steel containing the composition shown in Table 1 was cast,
After heating the slab, hot rolling was performed to obtain a 2.2 mm hot rolled steel sheet. Next, it was annealed at 1100 ° C. for 5 minutes, further pickled, and then cold rolled to a thickness of 0.27 mm. Then, in the temperature rising process of decarburization annealing, the rolled steel sheet was heated under various conditions by a direct current roll heating device shown in the figure. At this time, various heat removals were performed by preheating the outlet roll with an induction heating device immediately after heating. Table 2 shows the amount of heat removed from the output side plate temperature at this time. At this time, the roll diameter was 200 mmφ and the plate passing speed was 20 mpm. The amount of heat removed from the plate when no preheating was performed was 300 ° C. For comparison, a conventional gas heating method is also shown (Example A, 20 ° C./s heating rate).

【0024】続いて湿潤水素中で脱炭焼鈍し、アンモニ
ア雰囲気中で窒化処理を実施し、MgO粉を塗布した
後、1200℃に10時間、水素ガス雰囲気中で高温焼
鈍を行った。表2に、得られた製品の磁気特性を示す。
製品の磁気特性は、最高温度に到達後の板の抜熱量が2
00℃以内のもので、良好な磁気特性を有する一方向性
電磁鋼板が得られている。
Subsequently, decarburization annealing was performed in wet hydrogen, nitriding treatment was performed in an ammonia atmosphere, MgO powder was applied, and then high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Table 2 shows the magnetic properties of the obtained products.
The magnetic property of the product is that the heat removal amount of the plate after reaching the maximum temperature is 2
A grain-oriented electrical steel sheet having a good magnetic property within a temperature range of 00 ° C. has been obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】〔実施例2〕表3に示す成分組成を含む溶
鋼を鋳造し、スラブ加熱後、熱間圧延を行い、2.3mm
の熱延鋼板を得た。これを、1100℃で5分間焼鈍を
行い、さらに酸洗したのち、冷間圧延により0.22mm
厚にした。圧延された鋼板を二対の直接通電加熱ロール
により250℃/sの加熱速度で850℃まで加熱した。
この時のロール径は200mmφ、通板速度は30mpm で
あった。出側ロールは、(A)通常のカーボン材、
(B)カーボン表面にCo基金属を200μm表面処理
を施したものの2種類を用いた。この時の出側の板の抜
熱量は(A)では300℃、(B)では50℃であっ
た。次にそのまま冷却せず、さらに850℃まで15℃
/sで加熱し湿潤水素中で脱炭焼鈍した。
Example 2 A molten steel containing the chemical composition shown in Table 3 was cast, heated to a slab, and hot-rolled to 2.3 mm.
The hot-rolled steel sheet of was obtained. This is annealed at 1100 ° C for 5 minutes, pickled, and then cold rolled to 0.22 mm.
Made thick. The rolled steel sheet was heated to 850 ° C. at a heating rate of 250 ° C./s with two pairs of direct current heating rolls.
At this time, the roll diameter was 200 mmφ and the sheet passing speed was 30 mpm. The exit roll is (A) normal carbon material,
(B) Two types were used, one having a Co-based metal surface-treated with 200 μm on the carbon surface. At this time, the heat removal amount of the output side plate was 300 ° C. in (A) and 50 ° C. in (B). Next, do not cool as it is.
It was heated at / s and decarburized and annealed in wet hydrogen.

【0028】以上2通りの脱炭焼鈍板にMgO粉を塗布
した後、1200℃に10時間、水素ガス雰囲気中で高
温焼鈍を行った。表4に、得られた製品の磁気特性を示
す。製品の磁性は、抜熱量が小さい通電ロール方式で満
足できるものが得られた。
After the MgO powder was applied to the above two types of decarburized annealed plates, high temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Table 4 shows the magnetic properties of the obtained products. As for the magnetism of the product, it was possible to obtain satisfactory magnetism by the energizing roll method with a small heat removal amount.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】本発明によれば、省エネルギーのため脱
炭焼鈍の昇温過程において通電加熱法を適用することに
より、磁束密度の高い一方向性電磁鋼板を製造すること
ができるので、産業上の貢献するところが極めて大であ
る。
Industrial Applicability According to the present invention, a unidirectional electrical steel sheet having a high magnetic flux density can be manufactured by applying an electric heating method in the temperature rising process of decarburization annealing for energy saving, which is industrially possible. The contribution of is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による通電加熱ロール法の実施例の概略
図である。
FIG. 1 is a schematic view of an embodiment of an electric heating roll method according to the present invention.

【図2】出側ロールでの板抜熱量と磁束密度との関係を
示す図表である。
FIG. 2 is a chart showing the relationship between the amount of heat drawn from a plate and the magnetic flux density in the exit roll.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 切山 忠夫 姫路市広畑区富士町1番地 新日本製鐵株 式会社広畑製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadao Kiriyama 1 Fuji-machi, Hirohata-ku, Himeji City Nippon Steel Co., Ltd. Hirohata Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量でC:0.10%以下、Si:2.
5〜7.0%ならびに通常のインヒビター成分を含み、
残余はFeおよび不可避的不純物よりなり、最終製品厚
まで圧延されたストリップを、脱炭焼鈍の昇温過程にお
いてロール間で通電加熱処理し、続いて脱炭焼鈍および
最終仕上焼鈍をするに際し、加熱された側のロールにお
けるストリップの抜熱量を200℃以下とすることを特
徴とする一方向性電磁鋼板の製造方法。
1. C: 0.10% or less by weight, Si: 2.
5 to 7.0% as well as the usual inhibitor components,
The balance consists of Fe and unavoidable impurities, and the strip rolled to the final product thickness is subjected to an electric heating treatment between rolls in the temperature rising process of decarburization annealing, followed by heating during decarburization annealing and final finishing annealing. The method for producing a grain-oriented electrical steel sheet, wherein the heat removal amount of the strip on the rolled side is 200 ° C. or less.
【請求項2】 加熱された側のロール表面に金属、セラ
ミックなどの表面処理を施すことによりストリップの抜
熱量を200℃以下とする請求項1記載の方法。
2. The method according to claim 1, wherein the heat removal amount of the strip is 200 ° C. or less by subjecting the surface of the roll on the heated side to a surface treatment of metal, ceramic or the like.
【請求項3】 加熱された側のロールに誘導加熱装置な
どにより予熱処理を施すことによりストリップの抜熱量
を200℃以下とする請求項1記載の方法。
3. The method according to claim 1, wherein the heat removal amount of the strip is 200 ° C. or less by subjecting the heated roll to preheat treatment by an induction heating device or the like.
【請求項4】 ロール間で通電する際のストリップの昇
温速度が80℃/s以上である請求項1又は2又は3記載
の方法。
4. The method according to claim 1, 2 or 3, wherein the rate of temperature rise of the strip when energized between the rolls is 80 ° C./s or more.
【請求項5】 請求項1又は2又は3又は4記載の一方
向性電磁鋼板に、磁区を細分化するための処理を施し、
優れた磁気特性を得ることを特徴とする一方向性電磁鋼
板の製造方法。
5. The unidirectional electrical steel sheet according to claim 1, 2 or 3 or 4 is subjected to a treatment for subdividing a magnetic domain,
A method for producing a grain-oriented electrical steel sheet, which is characterized by obtaining excellent magnetic properties.
JP18587393A 1993-07-28 1993-07-28 Manufacturing method of unidirectional electrical steel sheet Expired - Lifetime JP3359385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18587393A JP3359385B2 (en) 1993-07-28 1993-07-28 Manufacturing method of unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18587393A JP3359385B2 (en) 1993-07-28 1993-07-28 Manufacturing method of unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH0741860A true JPH0741860A (en) 1995-02-10
JP3359385B2 JP3359385B2 (en) 2002-12-24

Family

ID=16178376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18587393A Expired - Lifetime JP3359385B2 (en) 1993-07-28 1993-07-28 Manufacturing method of unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3359385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280041A (en) * 1997-04-02 1998-10-20 Nippon Steel Corp Production of grain-oriented silicon steel sheet having extremely excellent core loss characteristic
JP2006328447A (en) * 2005-05-24 2006-12-07 Nippon Steel Corp Method for electrical heating steel strip
WO2013015297A1 (en) 2011-07-28 2013-01-31 Jfeスチール株式会社 Method for heating steel plate, and heating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280041A (en) * 1997-04-02 1998-10-20 Nippon Steel Corp Production of grain-oriented silicon steel sheet having extremely excellent core loss characteristic
JP2006328447A (en) * 2005-05-24 2006-12-07 Nippon Steel Corp Method for electrical heating steel strip
WO2013015297A1 (en) 2011-07-28 2013-01-31 Jfeスチール株式会社 Method for heating steel plate, and heating apparatus
KR20140015570A (en) 2011-07-28 2014-02-06 제이에프이 스틸 가부시키가이샤 Method for heating steel plate, and heating apparatus
US10455648B2 (en) 2011-07-28 2019-10-22 Jfe Steel Corporation Method and apparatus for heating steel sheet

Also Published As

Publication number Publication date
JP3359385B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR0182802B1 (en) Grain-oriented electrical steel sheet with very low core loss and method of producing the same
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3359385B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JP2562259B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JPH09118921A (en) Manufacture of grain-oriented magnetic steel sheet having extremely low iron loss

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101011

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111011

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

EXPY Cancellation because of completion of term