JPH10280041A - Production of grain-oriented silicon steel sheet having extremely excellent core loss characteristic - Google Patents
Production of grain-oriented silicon steel sheet having extremely excellent core loss characteristicInfo
- Publication number
- JPH10280041A JPH10280041A JP9084217A JP8421797A JPH10280041A JP H10280041 A JPH10280041 A JP H10280041A JP 9084217 A JP9084217 A JP 9084217A JP 8421797 A JP8421797 A JP 8421797A JP H10280041 A JPH10280041 A JP H10280041A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- steel sheet
- temperature
- annealing
- strip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、2.5〜7.0%
のSiを含み、良好な鋼板形状をもち、かつ、極めて優
れた鉄損特性を有する高磁束密度一方向性電磁鋼板の製
造方法に関するものである。BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high magnetic flux density unidirectional magnetic steel sheet which contains Si, has a good steel sheet shape, and has extremely excellent iron loss characteristics.
【0002】[0002]
【従来の技術】一方向性電磁鋼板の磁気特性は一般に、
鉄損特性と励磁特性の両方で評価される。励磁特性を高
めることは設計磁束密度を高める機器の小型化が可能と
なり、一方、鉄損特性を少なくすることは、電気機器と
して使用する際、熱エネルギーとして失われるものを少
なくし、消費電力を節約できる点で有効である。さら
に、製品の結晶粒の<100>軸を圧延方向に揃えるこ
とは、磁化特性を高め、鉄損特性も低くすることができ
るため、近年特にこの面で多くの研究が重ねられ、様々
な製造技術が開発された。2. Description of the Related Art Generally, the magnetic properties of a grain-oriented electrical steel sheet are as follows.
It is evaluated based on both iron loss characteristics and excitation characteristics. Increasing the excitation characteristics makes it possible to reduce the size of equipment that increases the design magnetic flux density.On the other hand, reducing the iron loss characteristics reduces the amount of heat energy lost when used as electrical equipment and reduces power consumption. This is effective in saving money. Furthermore, aligning the <100> axis of the crystal grains of the product in the rolling direction can enhance the magnetic properties and lower the iron loss properties. Technology was developed.
【0003】たとえば、特公昭40−15644号公報
には高い磁束密度を得るために、方向性電磁鋼板の製造
方法が開示されている。これは、AlN+MnSをイン
ヒビターとして機能させ、最終冷延工程における圧下率
が80%を超える強圧下とする製造方法である。この方
法によれば二次再結晶粒の{110}<001>方位の
集積度が高く、B8 が1.870T以上の高磁束密度を
有する方向性電磁鋼板が得られる。For example, Japanese Patent Publication No. 40-15644 discloses a method for manufacturing a grain-oriented electrical steel sheet in order to obtain a high magnetic flux density. This is a production method in which AlN + MnS is made to function as an inhibitor, and the rolling reduction in the final cold rolling step is a strong rolling exceeding 80%. According to this method, a grain-oriented electrical steel sheet having a high degree of integration of secondary recrystallized grains in the {110} <001> orientation and having a high magnetic flux density of B8 of 1.870 T or more can be obtained.
【0004】しかし、この製造方法はある程度の鉄損の
低減は図れるのであるが、二次再結晶マクロの粒径が1
0mmオーダと大きいため、鉄損に影響する因子である渦
電流損を減らすことができず、良好な鉄損値が得られて
いなかった。これを改善するために、特公昭57−22
52号公報に開示されている鋼板にレーザ処理を施す方
法、さらに特公昭58−2569号公報には鋼板に機械
的な歪みを加える方法など、磁区を細分化する様々な方
法が開示されている。However, although this manufacturing method can reduce iron loss to some extent, the particle size of the secondary recrystallized macro is 1%.
Since it was as large as 0 mm, eddy current loss, which is a factor affecting iron loss, could not be reduced, and a good iron loss value could not be obtained. In order to improve this, Japanese Patent Publication No. 57-22
No. 52 discloses a method of subjecting a steel sheet to laser treatment, and Japanese Patent Publication No. 58-2569 discloses various methods of subdividing magnetic domains, such as a method of applying mechanical strain to a steel sheet. .
【0005】一方、二次再結晶粒をより小さくして磁気
特性を向上する方法として特公平6−51187号公報
がある。すなわち、該公報には、常温で圧延された鋼板
(ストリップ)に140℃/秒以上の加熱速度で657
℃以上の温度へ超急速焼きなまし処理を施し、該鋼板を
脱炭素処理し、最終高温焼きなまし処理を施して二次成
長を行い、それによって前記鋼板が低減した寸法の二次
粒子および応力除去焼きなまし処理後も有意な変化なし
に持続する改善された鉄損を持つ製造法が開示されてい
る。On the other hand, Japanese Patent Publication No. 6-51187 discloses a method for improving the magnetic characteristics by making the secondary recrystallized grains smaller. That is, the publication states that a steel sheet (strip) rolled at room temperature is heated at a heating rate of 140 ° C./sec or more to 657.
The steel sheet is subjected to ultra-rapid annealing to a temperature of not less than ℃, the steel sheet is decarbonized, subjected to a final high-temperature annealing treatment to perform secondary growth, whereby the steel sheet has a reduced secondary particle size and stress relief annealing treatment. Manufacturing methods with improved iron loss that persists without significant change thereafter are disclosed.
【0006】しかし、この製造方法により単に二次粒子
を微細化するだけでは、従来の磁区細分化なみの鉄損を
得ることは困難である。特に鋼板が急速加熱で急激に高
温に曝されるにより、異なった組成の酸化被膜が形成さ
れ(ファイアライト(2MgO・SiO2 )が優先的に
形成されるようになる)、最終焼鈍においてMgO塗布
によるフォルステライト(2MgO・SiO2 )の形成
が必ずしも良好とならず、十分な被膜張力により優れた
磁気特性が得られないという問題がある。[0006] However, it is difficult to obtain iron loss comparable to the conventional magnetic domain refining simply by making the secondary particles finer by this manufacturing method. In particular, when the steel sheet is rapidly exposed to a high temperature by rapid heating, an oxide film having a different composition is formed (firelite (2MgO.SiO 2 ) is preferentially formed), and MgO is applied in the final annealing. The formation of forsterite (2MgO.SiO 2 ) is not always good, and there is a problem that sufficient magnetic properties cannot be obtained due to sufficient film tension.
【0007】本発明者らは、かかる問題を解決するため
に、最終板厚まで圧延されたストリップを脱炭焼鈍する
直前、若しくは脱炭焼鈍の加熱段階として、P H2 O /
P H2 が0.2以下の非酸化性雰囲気中で100℃/秒
以上の加熱速度で700℃以上の温度へ加熱処理する方
法を提案し、特開平7−62436号公報に開示してい
る。また、急速加熱の具体例として2対の直接通電加熱
ロールを用いることも提示している。[0007] In order to solve such a problem, the present inventors have proposed that PH 2 O /
P H 2 is proposed a method of heating treatment to 0.2 or less non-oxidizing atmosphere a temperature of more than 700 ° C. at 100 ° C. / sec or more heating speeds in, it is disclosed in JP-A-7-62436 . It also proposes using two pairs of direct-current heating rolls as a specific example of rapid heating.
【0008】この製造方法では、確かに良好な磁気特性
が得られるが、急速加熱中に鋼板表面に緻密な酸化層を
形成する場合があることが分かった。この酸化層が形成
されるとこれがバリヤーとなり脱炭作用に影響する。す
なわち、製品板での炭素含有量の低減が図れず、その結
果、磁気時効により製品磁気特性の劣化を生じてしま
う。また、十分な脱炭を行うために脱炭時間を長くすれ
ば、磁気時効の問題は解決されるが、脱炭時間を延長す
ることは製造コストアップになるので好ましくない。[0008] It has been found that, although good magnetic properties can be obtained by this manufacturing method, a dense oxide layer may be formed on the steel sheet surface during rapid heating. When this oxide layer is formed, it becomes a barrier and affects the decarburizing action. That is, the carbon content in the product plate cannot be reduced, and as a result, the magnetic properties of the product deteriorate due to magnetic aging. In addition, if the decarburization time is increased for sufficient decarburization, the problem of magnetic aging can be solved. However, extending the decarburization time is not preferable because the production cost increases.
【0009】鋼帯の連続熱処理において、上記した急速
加熱に2対の通電ロールを用いる方法にも種々の提案が
ある。例えば、特開平7−292423号公報には鋼帯
の形状を得るために必要な板張力(最大7kg/mm2 )を
通電体ロール間に付与することが開示されている。該公
報記載の発明では磁気特性を対象にしていないが、板張
力を最大7kg/mm2 まで許容しており、この様な大きな
板張力を付与することは磁束密度の劣化を来たす。In the continuous heat treatment of a steel strip, there are various proposals for a method of using two pairs of energizing rolls for the rapid heating described above. For example, Japanese Patent Application Laid-Open No. Hei 7-292423 discloses that a plate tension (maximum 7 kg / mm 2 ) necessary for obtaining the shape of a steel strip is applied between current-carrying rolls. Although the invention described in this publication does not target the magnetic properties, the plate tension is allowed up to 7 kg / mm 2 , and applying such a large plate tension results in the deterioration of the magnetic flux density.
【0010】また、特開平5−54958号公報には通
電ロールの高温側ロールと被加熱体(鋼帯)との単位面
積辺りの圧下力を被加熱体の降伏点応力からユニット張
力を差し引いた値とすることが記載されている。該公報
記載の発明は通電ロールの磨耗防止と板形状劣化を防止
することを目的としており、磁気特性については対象と
していない。すなわち、圧下力の付与は磁気特性と無関
係に規制されている。さらに、特開平6−293934
号公報では、冷延鋼板を通電ロールを用いて連続焼鈍す
る際に、高温側通電ロールと接触する冷延鋼板の温度降
下量を板厚との関係で規制してる。これも前記公報記載
の発明と同様に、磁気特性を対象とするものでなく、磁
気特性と無関係に規制されている。従って、上記したこ
れらの通電ロールを用いた加熱処理は、一方向性電磁鋼
板の製造に適用できない。In Japanese Patent Application Laid-Open No. 5-54958, the rolling force per unit area between the high-temperature side roll of the current-carrying roll and the heated body (steel strip) is obtained by subtracting the unit tension from the yield point stress of the heated body. It is described as a value. The invention described in this publication is aimed at preventing the wear of the energizing roll and preventing the plate shape from deteriorating, and does not cover magnetic characteristics. That is, the application of the rolling force is regulated irrespective of the magnetic characteristics. Further, JP-A-6-293934
In the publication, when a cold-rolled steel sheet is continuously annealed using a current-carrying roll, the amount of temperature drop of the cold-rolled steel sheet that comes into contact with the high-temperature-side current-carrying roll is regulated in relation to the sheet thickness. As with the invention described in the above-mentioned publication, this is not intended for the magnetic characteristics and is regulated independently of the magnetic characteristics. Therefore, the above-described heat treatment using these energizing rolls cannot be applied to the production of a grain-oriented electrical steel sheet.
【0011】[0011]
【発明が解決しようとする課題】以上の従来の通電ロー
ルを用いる熱処理法は通常の冷延鋼板に関するものであ
り、これより磁気特性を向上させる手法を導き出すこと
は困難である。また一方向性電磁鋼板の製造法の脱炭焼
鈍前の急速加熱に適用される通電加熱では、脱炭性が課
題であった。本発明はこのような技術の現状にかんがみ
てなされたものであり、従来の問題点を解決して、十分
に低い鉄損をもつ高磁束密度一方向性電磁鋼板を安定し
て得る製造方法を提供するものである。The above-mentioned conventional heat treatment method using a current-carrying roll relates to a normal cold-rolled steel sheet, and it is difficult to derive a method for improving the magnetic properties from this. In addition, in the electric heating applied to the rapid heating before the decarburization annealing in the method for producing a grain-oriented electrical steel sheet, decarburization was an issue. The present invention has been made in view of the current situation of such a technology, and solves the conventional problems to provide a manufacturing method for stably obtaining a high magnetic flux density unidirectional magnetic steel sheet having a sufficiently low iron loss. To provide.
【0012】[0012]
【課題を解決するための手段】本発明は、上記課題を解
決すべくなされたものであり、以下の構成を要旨とす
る。すなわち、重量で、C:0.10%以下、Si:
2.5〜7.0%ならびに通常のインヒビター成分を含
み、残余はFeおよび不可避的不純物よりなる鋼を通常
の方法で処理し、ほぼ最終製品厚まで圧延されたストリ
ップを脱炭焼鈍し、最終仕上焼鈍を施す工程を含む一方
向性電磁鋼熱延板の製造方法において、ストリップを脱
炭焼鈍する際に、その直前で、或いは脱炭焼鈍の昇温段
階での急速加熱を通電ロールを用いて行い、該通電体ロ
ールにおける低温側ロールと高温側ロール間の板張力を
1.0〜4.0kg/mm2 、高温側ロールでの圧下力を線
圧で1.0〜4.0kg/mm、高温側ロールの温度を20
0℃以上にすることを特徴とする極めて優れた鉄損特性
を有する高磁束密度一方向性電磁鋼板の製造方法であ
る。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has the following constitution. That is, C: 0.10% or less by weight, Si:
The steel, containing 2.5-7.0% and the usual inhibitor components, the balance consisting of Fe and unavoidable impurities, is treated in the usual way, and the strip rolled to approximately the final product thickness is decarburized and annealed, In the method for producing a hot-rolled unidirectional electromagnetic steel sheet including a step of performing a finish annealing, when the strip is decarburized and annealed, immediately before or during the heating stage of the decarburization annealing, a current-carrying roll is used. The plate tension between the low-temperature roll and the high-temperature roll is 1.0 to 4.0 kg / mm 2 , and the rolling force of the high-temperature roll is 1.0 to 4.0 kg / mm. mm, set the temperature of the hot roll to 20
This is a method for producing a high magnetic flux density unidirectional magnetic steel sheet having extremely excellent iron loss characteristics, which is characterized by being set to 0 ° C. or higher.
【0013】上記のように本発明は、前記急速加熱を通
電体ロールを用いて行う場合に、低温側ロールと高温側
ロール間の板張力、および高温側ロールでの圧下力(線
圧)、並びに高温側ロールの温度を上記した範囲に規制
することにより、ストリップの板形状を良好にすると共
に、ストリップに適正な歪みを付与して、二次再結晶の
核となる一次再結晶後での{110}<001>方位粒
の生成を促進し、微細な二次再結晶粒を形成して、B8
が1.91(T)以上の高磁束密度と共にW17/50 で
0.82W/kg以下の極めて優れた鉄損特性を有する一
方向性電磁鋼板を得ることができる。このように本発明
は良好な板形状と優れた磁気特性とを両立させた一方向
性電磁鋼板の製造方法を提供するものである。As described above, according to the present invention, when the rapid heating is carried out by using a current-carrying roll, the plate tension between the low-temperature roll and the high-temperature roll, the rolling force (linear pressure) at the high-temperature roll, In addition, by regulating the temperature of the high-temperature side roll to the above-described range, the plate shape of the strip is improved, and an appropriate strain is imparted to the strip, and the primary recrystallization after the primary recrystallization becomes the core of the secondary recrystallization. The formation of {110} <001> oriented grains is promoted, and fine secondary recrystallized grains are formed.
It is possible to obtain a grain-oriented electrical steel sheet having a high magnetic flux density of 1.91 (T) or more and extremely excellent iron loss characteristics of W17 / 50 and 0.82 W / kg or less. As described above, the present invention provides a method for manufacturing a grain-oriented electrical steel sheet that achieves both good sheet shape and excellent magnetic properties.
【0014】[0014]
【発明の実施の形態】以下に本発明をさらに詳細に説明
する。図1は本発明に用いられる通電加熱装置の1例を
模式的に示したもので、ストリップ1は、各押えロール
5,6と対になり、導電性部材2で接続された低温側通
電体ロール3と高温側通電体ロール4とにより通電さ
れ、加熱される。7は圧下力調整装置でありストリップ
の延伸を調整する。8は外部電源と接続される環状トラ
ンスである。この通電加熱装置は脱炭焼鈍の前、或い脱
炭焼鈍の加熱段階に組込んで設置することができる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. FIG. 1 schematically shows an example of an electric heating device used in the present invention. A strip 1 is paired with each of the press rolls 5 and 6 and is connected to a low-temperature side electric conductor connected by a conductive member 2. Electric current is supplied by the roll 3 and the high-temperature-side current-carrying roll 4 and heated. Reference numeral 7 denotes a rolling force adjusting device for adjusting the stretching of the strip. Reference numeral 8 denotes an annular transformer connected to an external power supply. The electric heating device can be installed before the decarburizing annealing or incorporated in a heating step of the decarburizing annealing.
【0015】前記したように、ストリップを通電ロール
で加熱することは知られているが、本発明は磁気特性を
向上させるために、脱炭焼鈍に際して、急速加熱時に用
いる通電ロールの実施条件を適性に選択する。すなわち
本発明は、通電加熱するに際し、低温側ロールと高温側
ロールの間でストリップに板張を付与して適宜延伸さ
せ、板形状を良好にする。すなわち全幅方向に亘って平
坦化するのであるが、そのためには1.0kg/mm2 以上
の張力が必要である。一方、ロール間張力が高くなり過
ぎると、一時再結晶後の集合組織(100)<025>
が増加する傾向にあり、これが二次再結晶方位の圧延方
向への先鋭性に影響し、磁束密度を低下させる。従っ
て、最終製品の磁束密度B8が1.91(T)以上にな
るようにするためには張力が4kg/mm2 を超えないよう
にする必要がある。好ましくは1.5〜3.0kg/mm2
とするのがよい。As described above, it is known that the strip is heated by a current-carrying roll. However, in order to improve magnetic properties, the present invention requires that the conditions of the current-carrying roll used during rapid heating during decarburization annealing be adjusted appropriately. To choose. That is, in the present invention, the strip is flattened between the low-temperature side roll and the high-temperature side roll and stretched appropriately when heating by energization, thereby improving the plate shape. That is, flattening is performed over the entire width direction, and for this purpose, a tension of 1.0 kg / mm 2 or more is required. On the other hand, when the inter-roll tension becomes too high, the texture (100) <025> after the temporary recrystallization.
Tend to increase, which affects the sharpness of the secondary recrystallization orientation in the rolling direction and lowers the magnetic flux density. Therefore, in order to make the magnetic flux density B8 of the final product not less than 1.91 (T), it is necessary that the tension does not exceed 4 kg / mm 2 . Preferably 1.5 to 3.0 kg / mm 2
It is good to do.
【0016】また本発明では高温側ロールに負荷する圧
下力を規制する。すなわち、線圧で1.0〜4.0kg/
mmとする。通電ロールの表面には異物が付着したり磨耗
によって凹凸が形成されることがあり、線圧が小さいと
接触が不均一になりストリップとの接点でスパークを起
こすことがある。これを防ぐために線圧1.0kg/mm以
上の圧下力とすることがよく、また板形状も良好とな
る。しかし、余り大きな線圧を負荷することは、高温加
熱されたストリップは変形抵抗が小さく変形しやすいた
め、形状性に好ましくなく、さらに一時再結晶後に10
0面が増加したり、二次再結晶の安定性に影響し、磁束
密度や鉄損を劣化させる原因になる。そのために線圧は
4.0kg/mmが限界であり、これを上限とする。好まし
くは1.5〜3.0kg/mmとするのがよい。In the present invention, the rolling force applied to the high-temperature roll is regulated. That is, a linear pressure of 1.0 to 4.0 kg /
mm. Foreign matter may adhere to the surface of the energizing roll or irregularities may be formed due to abrasion. If the linear pressure is low, the contact becomes uneven and sparks may occur at the contact point with the strip. In order to prevent this, the rolling force is preferably set to a linear pressure of 1.0 kg / mm or more, and the plate shape becomes good. However, applying an excessively large linear pressure is not preferable for the shape because the strip heated at a high temperature has low deformation resistance and is easily deformed.
The zero plane increases, affects the stability of secondary recrystallization, and causes magnetic flux density and iron loss to deteriorate. Therefore, the linear pressure is limited to 4.0 kg / mm, and this is set as the upper limit. Preferably, the pressure is 1.5 to 3.0 kg / mm.
【0017】図2は板厚0.22mmの一方向性電磁鋼板
を製造する過程において、脱炭焼鈍の昇熱段階で行う急
速加熱を通電ロールで実施し、得られた製品の、ロール
間張力毎に高温側ロールと磁気特性(B8 )との関係を
示したものである。すなわち、図2の製品は、C:0.
077(wt)%、Si:3.25%、Mn:0.08
%、P:0.01%、S:0.03%、Al:0.03
%、N:0.01%、Cu:0.08%、Sn:0.0
%、残部が実質的にFeよりなる連続鋳造スラブを熱間
圧延して2.4mm厚さの熱延板とし、1120℃×1分
の焼鈍を施した後、途中段階で220℃×1分間保持の
冷延により0.26mmの板厚に仕上げた。この冷延板を
脱炭焼鈍するに際し、その昇温段階を図1に示す通電ロ
ールを用いて行い、脱炭焼鈍を840℃×180秒で行
った。その後焼鈍分離材を塗布し、仕上げ焼鈍を120
0℃×24時間実施して得たものである。FIG. 2 shows that in the process of manufacturing a grain-oriented electrical steel sheet having a thickness of 0.22 mm, rapid heating performed in a heating stage of decarburization annealing is performed by a current-carrying roll. In each case, the relationship between the high-temperature side roll and the magnetic characteristics (B8) is shown. That is, the product of FIG.
077 (wt)%, Si: 3.25%, Mn: 0.08
%, P: 0.01%, S: 0.03%, Al: 0.03
%, N: 0.01%, Cu: 0.08%, Sn: 0.0
%, With the balance being substantially Fe, a continuous cast slab is hot-rolled into a 2.4 mm thick hot-rolled sheet, annealed at 1120 ° C for 1 minute, and then at 220 ° C for 1 minute on the way. The sheet was finished to a sheet thickness of 0.26 mm by cold rolling. When the cold rolled sheet was decarburized and annealed, the temperature was raised using a current-carrying roll shown in FIG. 1, and decarburization annealing was performed at 840 ° C. × 180 seconds. After that, an annealing separator is applied and finish annealing is performed for 120 minutes.
It was obtained by performing at 0 ° C. × 24 hours.
【0018】図2から明らかのように、1.91(T)
以上の高磁束密度(B8 )を得るためには、ロール間張
力を4kg/mm2 以下、高温側の線圧を4kg/mm以下にす
ればよいことが分かる。As is apparent from FIG. 2, 1.91 (T)
It can be seen that in order to obtain the above high magnetic flux density (B8), the inter-roll tension should be 4 kg / mm 2 or less, and the linear pressure on the high temperature side should be 4 kg / mm or less.
【0019】さらに本発明においては、高温側ロールの
温度を200℃以上にすることによって、通電体加熱さ
れた高温ストリップからの抜熱を抑制し、磁気特性の劣
化を防止する。すなわち、高温側ロールの温度が200
℃に達しない低温では、これと接触する高温ストリップ
が抜熱によって形状変化を起こすと共に、導入される歪
みにより集合組織が変化し、二次再結晶方位の板面に対
する適正な潜り角度が得られず、磁束密度、鉄損共に劣
化するからである。好ましくは300℃以上とするのが
よい。高温側ロールの昇温は適宜の加熱手段、例えば誘
導加熱手段等により行うことができる。Further, in the present invention, by setting the temperature of the high-temperature side roll to 200 ° C. or more, heat removal from the high-temperature strip heated by the current-carrying member is suppressed, and deterioration of magnetic properties is prevented. That is, when the temperature of the high-temperature side roll is 200
At low temperatures below ℃, the hot strip that comes in contact with it causes a shape change due to heat removal, and the introduced strain changes the texture to obtain an appropriate dive angle of the secondary recrystallization orientation to the plate surface. This is because both magnetic flux density and iron loss deteriorate. Preferably, the temperature is 300 ° C. or higher. The temperature of the high-temperature side roll can be raised by an appropriate heating means, for example, an induction heating means.
【0020】以下に本発明の製造工程をさらに詳細に説
明する。先ず鋼成分の限定理由は下記の通りである。C
の含有は0.10%以下とする。これ以上多くなると脱
炭所要時間が長くなり、経済的に不利となるからであ
る。Siは鉄損を良くするために下限を2.5%とする
が、多すぎると冷間圧延の際に割れ易く加工が困難とな
るので7.0%を上限とする。Hereinafter, the production process of the present invention will be described in more detail. First, the reasons for limiting the steel components are as follows. C
Is 0.10% or less. If the amount is more than this, the time required for decarburization becomes longer, which is economically disadvantageous. The lower limit of Si is set to 2.5% in order to improve iron loss, but if it is too large, it is likely to break during cold rolling and processing becomes difficult, so the upper limit is set to 7.0%.
【0021】さらに、一方向性電磁鋼板を製造するため
に、通常のインヒビター成分として以下の成分元素を添
加することができる。インヒビターとしてMnSを利用
する場合は、MnとSを添加する。Mnは、MnSの適
当な分散状態を得るため、0.015〜0.15%が望
ましい。SはMnS,(Mn・Fe)Sを形成するため
に必要な元素で、適当な分散状態を得るため、0.00
1〜0.05%が望ましい。Sの代わりにSeを添加し
ても良く、また両方添加しても構わない。Further, in order to manufacture a grain-oriented electrical steel sheet, the following component elements can be added as ordinary inhibitor components. When MnS is used as an inhibitor, Mn and S are added. Mn is desirably 0.015 to 0.15% in order to obtain an appropriate dispersion state of MnS. S is an element necessary for forming MnS and (Mn · Fe) S.
1-0.05% is desirable. Se may be added instead of S, or both may be added.
【0022】さらに、インヒビターとしてAlNを利用
する場合は、酸可溶性AlとNを添加する。酸可溶性A
lはAlNの適正な分散状態を得るため0.01〜0.
04%が望ましい。Nも、AlNを得るため0.003
〜0.02%が望ましい。その他、Cu,Sn,Sb,
Cr,Bi,Moはインヒビターを強くする目的で1.
0%以下において少なくとも1種添加してもよい。When AlN is used as an inhibitor, acid-soluble Al and N are added. Acid soluble A
l is 0.01 to 0.1 in order to obtain a proper dispersion state of AlN.
04% is desirable. N is also 0.003 to obtain AlN.
-0.02% is desirable. In addition, Cu, Sn, Sb,
Cr, Bi, and Mo are used to strengthen inhibitors.
At 0% or less, at least one kind may be added.
【0023】次に、上記したような成分を含有する溶鋼
を通常の鋳塊鋳造法または連続鋳造法で鋳片とし、これ
を熱間圧延して中間厚のストリップを得る。また、スト
リップ鋳造法も本発明に適用することも可能である。Next, the molten steel containing the above-mentioned components is made into a slab by a usual ingot casting method or a continuous casting method, and is hot-rolled to obtain an intermediate-thick strip. Further, a strip casting method can also be applied to the present invention.
【0024】次に、熱延板焼鈍を施した後、1回乃至中
間焼鈍を含む2回以上の冷間圧延により最終製品厚のス
トリップを得る。または、熱延板焼鈍を施すことなく、
中間焼鈍を含む2回以上の冷間圧延により最終製品厚の
ストリップを得るこもできる。中間焼鈍を含む2回以上
の冷間圧延をする際の、一回目の圧延は圧下率5〜50
%、熱延板焼鈍および中間焼鈍は950〜1200℃で
30秒〜30分の焼鈍を行うことが望ましい。次の最終
冷延圧下率は圧下率85%以上が望ましい。下限85%
は、これ以下では{110}<001>方位が圧延方向
に高い集積度をもつゴス核が得られないからである。Next, after performing hot-rolled sheet annealing, a strip having a final product thickness is obtained by performing cold rolling twice or more including one to intermediate annealing. Or, without applying hot-rolled sheet annealing,
Strips of the final product thickness can also be obtained by two or more cold rollings including intermediate annealing. When performing two or more cold rollings including intermediate annealing, the first rolling is performed with a rolling reduction of 5 to 50.
%, Hot-rolled sheet annealing and intermediate annealing are preferably performed at 950 to 1200 ° C. for 30 seconds to 30 minutes. The next final cold rolling reduction is preferably 85% or more. 85% lower limit
This is because below this, a Goss nucleus having a {110} <001> orientation with a high degree of integration in the rolling direction cannot be obtained.
【0025】なお、冷間圧延工程では、冷間圧延中に複
数回のパスにより各板厚段階を経て最終板厚となるが、
磁気特性を向上させるため、そのパスの少なくとも一回
以上の途中板厚段階において、鋼板に100℃以上の温
度範囲で1分以上の時間保持する熱効果を与えても構わ
ない。In the cold rolling process, the final thickness is obtained through each thickness step by a plurality of passes during the cold rolling.
In order to improve the magnetic properties, the steel sheet may be given a thermal effect of maintaining the steel sheet at a temperature range of 100 ° C. or more for 1 minute or more in at least one or more sheet thickness stages in the pass.
【0026】以上の最終製品厚まで圧延されたストリッ
プには加熱処理を施す。この加熱処理は、前記した通電
体ロールを用いて行われ、先ずストリップを100℃/
秒以上の加熱速度で700℃以上の温度へ急速加熱す
る。この時の加熱速度の下限を100℃/秒としたの
は、これ以下では二次再結晶の核となる一次再結晶後で
の{110}<001>方位粒が減少し、微細な二次再
結晶粒が得られないからである。また、加熱処理の下限
温度を700℃としたのは、これ以下では再結晶が開始
されないからである。The strip rolled to the final product thickness is subjected to a heat treatment. This heat treatment is performed by using the above-described current-carrying roll.
Rapid heating to a temperature of 700 ° C. or more at a heating rate of at least seconds. The lower limit of the heating rate at this time is set to 100 ° C./sec. Below this, the {110} <001> orientation grains after the primary recrystallization, which are the nucleus of the secondary recrystallization, decrease, and the fine secondary This is because recrystallized grains cannot be obtained. The lower limit temperature of the heat treatment is set to 700 ° C. because recrystallization does not start below this temperature.
【0027】なお、この急速加熱処理は脱炭性の問題か
ら、鋼板の雰囲気をP H2 O /P H2 ≦4.2の湿水素
雰囲気中とすることが好ましい。このような雰囲気以外
では、鋼板表面に緻密な酸化層が形成され、続いて行わ
れる脱炭焼鈍での脱炭性を低下させてしまう。すなわ
ち、一方向性電磁鋼板の製造工程での脱炭焼鈍工程で
は、磁気時効を起こさないために炭素含有量を20ppm
以下にまで脱炭しなければならない。そのためには、鋼
板表面に形成される緻密な酸化層の形成を抑制し、炭素
と酸素との反応を抑制しないようにしなければならな
い。In this rapid heating treatment, the atmosphere of the steel sheet is preferably in a wet hydrogen atmosphere of P H 2 O / P H 2 ≤ 4.2 due to the problem of decarburization. Except for such an atmosphere, a dense oxide layer is formed on the surface of the steel sheet, and the decarburization property in the subsequent decarburization annealing is reduced. That is, in the decarburizing annealing step in the manufacturing process of the grain-oriented electrical steel sheet, the carbon content is set to 20 ppm in order to prevent magnetic aging.
You have to decarburize to: For that purpose, it is necessary to suppress the formation of a dense oxide layer formed on the surface of the steel sheet and not to suppress the reaction between carbon and oxygen.
【0028】従来、脱炭焼鈍均熱時の雰囲気P H2 O /
P H2 を0.15〜0.75にすることが知られている
が、加熱段階での雰囲気に関する知見は、特開平7−6
2436号公報に開示された発明のみで、100℃/s
以上の加熱速度の時にP H2O /P H2 ≦0.2にする
ことが開示されている。Conventionally, the atmosphere P H 2 O /
It is known that the P H 2 in 0.15 to 0.75, knowledge of the atmosphere in the heating step, JP-A-7-6
100 ° C./s only with the invention disclosed in Japanese Patent No. 2436
It is disclosed that PH 2 O / P H 2 ≦ 0.2 at the above heating rate.
【0029】しかし、急速加熱処理を施す場合、この雰
囲気では、鋼板表面に形成される緻密な酸化層の形成を
十分に抑制することができない。このような問題を解決
するため、急速加熱処理をP H2 O /P H2 ≦4.2の
湿水素雰囲気とすることにより、鋼板表面に形成される
緻密な酸化層の形成を抑制し、脱炭性が非常に良好なも
のとなる。なお、上記目的を達成するためにP H2 O /
P H2 の下限は0.4とすることが好ましい。However, when a rapid heating treatment is performed, the formation of a dense oxide layer formed on the surface of the steel sheet cannot be sufficiently suppressed in this atmosphere. In order to solve such a problem, the rapid heat treatment is performed in a wet hydrogen atmosphere of P H 2 O / P H 2 ≦ 4.2, thereby suppressing the formation of a dense oxide layer formed on the steel sheet surface. Very good decarburization. In addition, in order to achieve the above object, PH 2 O /
The lower limit of P H 2 is preferably set to 0.4.
【0030】また、この通電加熱では、電気機器を用い
るために雰囲気を常温に保つ必要がある。この場合に
は、水素による爆発の危険性を伴うために雰囲気に水素
は1〜3%程度しかいれることができない。このように
水素量が1〜3%と少ない場合には、露点を高くするこ
とが望ましいが、露点を30℃以上にすることは、電気
機器に結露等の悪影響を与えるために制限することが望
ましいことからも上記雰囲気とするのがよい。In this energization heating, the atmosphere needs to be kept at room temperature in order to use electric equipment. In this case, only about 1 to 3% of hydrogen can be contained in the atmosphere due to the danger of explosion due to hydrogen. In the case where the amount of hydrogen is as small as 1 to 3%, it is desirable to increase the dew point. However, setting the dew point to 30 ° C. or higher may be limited because electric appliances may have an adverse effect such as dew condensation. It is preferable to use the above atmosphere from the viewpoint of desirability.
【0031】上記の急速加熱処理は、次に施される脱炭
焼鈍前に行われても、脱炭焼鈍の加熱段階として脱炭焼
鈍工程に組み込むことも可能であるが、後者の方が工程
数が少ないので好ましい。なお、熱延でのスラブ加熱温
度を低温とし、AlNのみをインヒビターとして利用す
るプロセスの場合は、アンモニア雰囲気中で窒化処理を
付加することもある。The above-mentioned rapid heating treatment can be carried out before the decarburizing annealing to be performed next, or it can be incorporated in the decarburizing annealing step as a heating step of the decarburizing annealing. It is preferable because the number is small. In the case of a process in which the slab heating temperature in hot rolling is set to a low temperature and only AlN is used as an inhibitor, a nitriding treatment may be added in an ammonia atmosphere.
【0032】さらに、MgO等の焼鈍分離剤を塗布し
て、二次再結晶と純化のため1100℃以上の仕上げ焼
鈍を行うことで、フォルステライトなどの良好な皮膜を
鋼板表面に形成した微細な二次再結晶粒を得る。フォル
ステライトなどの皮膜の上に、さらに絶縁皮膜を塗布す
ることにより極めて低い鉄損特性を有する一方向性電磁
鋼板が製造される。Further, by applying an annealing separator such as MgO and performing a final annealing at 1100 ° C. or more for secondary recrystallization and purification, a fine film such as forsterite is formed on the surface of the steel sheet. Obtain secondary recrystallized grains. By further applying an insulating film on a film such as forsterite, a grain-oriented electrical steel sheet having extremely low iron loss characteristics is manufactured.
【0033】以上によって得られる磁気特性は、後の歪
み取り焼鈍を施しても、変化しない低鉄損を保持してい
る。なお、得られた製品で、さらに鉄損を良好にするた
め、上記一方向性電磁鋼板に、磁区を細分化するための
処理を施すことも可能である。The magnetic properties obtained as described above maintain a low iron loss that does not change even after subsequent strain relief annealing. In addition, in order to further improve iron loss in the obtained product, it is possible to subject the above-mentioned grain-oriented electrical steel sheet to a treatment for subdividing magnetic domains.
【0034】[0034]
【実施例】次に本発明の実施例を説明する。C:0.0
78%、Si:3.25%、Mn:0.08%、P:
0.01%、S:0.03%、Al:0.03%、N:
0.01%、Cu:0.08%、Sn:0.1%、残部
が実質的にFeよりなる連続鋳造法で製造したスラブを
熱間圧延して2.3mmの熱延板とし、該熱延板を110
0℃×分の焼鈍を施した後、途中段階で220℃×5分
間保持の冷間圧延で板厚0.22mmの冷延板を製造し
た。Next, embodiments of the present invention will be described. C: 0.0
78%, Si: 3.25%, Mn: 0.08%, P:
0.01%, S: 0.03%, Al: 0.03%, N:
A slab manufactured by a continuous casting method consisting of 0.01%, Cu: 0.08%, Sn: 0.1%, and the remainder substantially made of Fe was hot-rolled into a 2.3 mm hot-rolled sheet. Hot rolled sheet 110
After annealing at 0 ° C. × minutes, a cold rolled sheet having a sheet thickness of 0.22 mm was produced in the middle stage by cold rolling at 220 ° C. × 5 minutes.
【0035】この冷延板を840℃×180秒の脱炭焼
鈍を行い、焼鈍分離剤塗布後仕上げ焼鈍を1200℃×
24時間施した。The cold-rolled sheet was subjected to decarburizing annealing at 840 ° C. × 180 seconds.
It was applied for 24 hours.
【0036】脱炭焼鈍の加熱段階での急速加熱は、各種
の条件で図1に示すような2対の通電ロールで行った。
雰囲気は水素+窒素とし、P H2 O /P H2 :0.54
の湿潤雰囲気とした。表1に通電体ロールの通版条件
と、得られた製品の形状性および磁気特性(磁束密度B
8 (T)、鉄損W17/15 (W/kg))を示した。The rapid heating in the heating stage of the decarburizing annealing was performed by using two pairs of energizing rolls as shown in FIG. 1 under various conditions.
Atmosphere and hydrogen + nitrogen, P H 2 O / P H 2: 0.54
Humid atmosphere. Table 1 shows the pass-through conditions of the current-carrying roll, and the shape and magnetic properties (magnetic flux density B) of the obtained product.
8 (T) and iron loss W17 / 15 (W / kg).
【0037】[0037]
【表1】 [Table 1]
【0038】表1において条件2〜4および6は本発明
例であり、1,5,7〜11は比較例である。条件1は
ロール間張力が0.9と低いため形状性が悪く、条件6
は出側(高温側)ロール温度が低いため磁束密度が低
い。条件7はロール間張力が7.0と高いため磁束密度
が低く、鉄損も悪くなっている。条件8はロール間張力
が8.0と高すぎるため鉄損値が高く、磁束密度も低く
なり、形状性も良くない。条件9は出側ロール圧下力が
高く、形状性は良いが、磁束密度および鉄損とも低下し
ている。条件10は出側ロール圧下力が低いため形状が
劣化している。条件11は出側ロール温度が低いため形
状が劣化し、鉄損も悪い。これに対して本発明例はいず
れも、形状、磁束密度、鉄損共に優れている。In Table 1, conditions 2 to 4 and 6 are examples of the present invention, and 1, 5, 7 to 11 are comparative examples. Condition 1 had poor shape due to low inter-roll tension of 0.9, and Condition 6
Has a low magnetic flux density because the exit side (high temperature side) roll temperature is low. In condition 7, since the inter-roll tension is as high as 7.0, the magnetic flux density is low, and the iron loss is also poor. In condition 8, the inter-roll tension is too high at 8.0, so that the iron loss value is high, the magnetic flux density is low, and the shape is not good. Condition 9 has a high exit roll reduction force and good shape, but has a reduced magnetic flux density and iron loss. Condition 10 is inferior in shape due to low exit roll reduction force. Under condition 11, the shape is deteriorated due to the low exit roll temperature, and the iron loss is poor. In contrast, all of the examples of the present invention are excellent in shape, magnetic flux density, and iron loss.
【0039】[0039]
【発明の効果】以上のように、本発明によれば、通電ロ
ールによる急速加熱でのロール間張力、高温ロールの圧
下力および温度を調整することにより、二次再結晶方位
の圧延方向の尖鋭化、二次再結晶の板面潜り角度を適正
化し、かつ安定化することが可能となり、これにより極
めて優れた鉄損特性を有する高磁束密度一方向性電磁鋼
板を製造することができる。As described above, according to the present invention, by adjusting the inter-roll tension, the rolling force and the temperature of the high-temperature roll during rapid heating by the energizing roll, the secondary recrystallization orientation is sharpened in the rolling direction. It is possible to optimize and stabilize the dive angle of the plate surface for the crystallization and secondary recrystallization, and thereby to manufacture a high magnetic flux density unidirectional magnetic steel sheet having extremely excellent iron loss characteristics.
【図1】本発明の通電体加熱装置を模式的に示す図。FIG. 1 is a diagram schematically showing a current-carrying member heating device of the present invention.
【図2】通電体加熱におけるロール間張力毎の高温ロー
ル線圧と磁束密度との関係を示す図。FIG. 2 is a diagram showing a relationship between a high-temperature roll linear pressure and a magnetic flux density for each tension between rolls during heating of an electric conductor.
Claims (1)
2.5〜7.0%ならびに通常のインヒビター成分を含
み、残余はFeおよび不可避的不純物よりなる鋼を通常
の方法で処理し、ほぼ最終製品厚まで圧延されたストリ
ップを脱炭焼鈍し、最終仕上焼鈍を施す工程を含む一方
向性電磁鋼熱延板の製造方法において、ストリップを脱
炭焼鈍する際に、その直前で、或いは脱炭焼鈍の昇温段
階での急速加熱を通電ロールを用いて行い、該通電ロー
ルにおける低温側ロールと高温側ロール間の板張力を
1.0〜4.0kg/mm2 、高温側ロールでの圧下力を線
圧で1.0〜4.0kg/mm、高温側ロールの温度を20
0℃以上にすることを特徴とする極めて優れた鉄損特性
を有する高磁束密度一方向性電磁鋼板の製造方法。C. 0.10% or less by weight, Si:
The steel, containing 2.5-7.0% and the usual inhibitor components, the balance consisting of Fe and unavoidable impurities, is treated in the usual way, and the strip rolled to approximately the final product thickness is decarburized and annealed, In the method for producing a hot-rolled unidirectional electromagnetic steel sheet including a step of performing a finish annealing, when the strip is decarburized and annealed, immediately before or during the heating stage of the decarburization annealing, a current-carrying roll is used. The plate tension between the low-temperature side roll and the high-temperature side roll is 1.0 to 4.0 kg / mm 2 , and the rolling force of the high-temperature side roll is 1.0 to 4.0 kg / mm 2 in linear pressure. , Set the temperature of the hot roll to 20
A method for producing a high magnetic flux density unidirectional magnetic steel sheet having extremely excellent iron loss characteristics, wherein the temperature is 0 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08421797A JP3392695B2 (en) | 1997-04-02 | 1997-04-02 | Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08421797A JP3392695B2 (en) | 1997-04-02 | 1997-04-02 | Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10280041A true JPH10280041A (en) | 1998-10-20 |
JP3392695B2 JP3392695B2 (en) | 2003-03-31 |
Family
ID=13824323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08421797A Expired - Fee Related JP3392695B2 (en) | 1997-04-02 | 1997-04-02 | Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3392695B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019182004A1 (en) | 2018-03-20 | 2019-09-26 | 日本製鉄株式会社 | Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212274A (en) * | 1993-01-12 | 1994-08-02 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet having extremely low iron loss |
JPH0741860A (en) * | 1993-07-28 | 1995-02-10 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet |
JPH08295937A (en) * | 1995-04-26 | 1996-11-12 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet having extremely low core loss |
-
1997
- 1997-04-02 JP JP08421797A patent/JP3392695B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212274A (en) * | 1993-01-12 | 1994-08-02 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet having extremely low iron loss |
JPH0741860A (en) * | 1993-07-28 | 1995-02-10 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet |
JPH08295937A (en) * | 1995-04-26 | 1996-11-12 | Nippon Steel Corp | Production of grain-oriented silicon steel sheet having extremely low core loss |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019182004A1 (en) | 2018-03-20 | 2019-09-26 | 日本製鉄株式会社 | Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet |
KR20200124295A (en) | 2018-03-20 | 2020-11-02 | 닛폰세이테츠 가부시키가이샤 | Method of manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet |
US11408042B2 (en) | 2018-03-20 | 2022-08-09 | Nippon Steel Corporation | Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3392695B2 (en) | 2003-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2983128B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
KR0182802B1 (en) | Grain-oriented electrical steel sheet with very low core loss and method of producing the same | |
JPH10152724A (en) | Manufacture of grain oriented silicon steel sheet with extremely low iron loss | |
JP3359449B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
EP0475710B1 (en) | Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH059580A (en) | Production of grain-oriented silicon steel sheet extremely excellent in magnetic property | |
JP3392579B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3743707B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP2679928B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
KR100530069B1 (en) | Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing | |
JP3456860B2 (en) | Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics | |
JP2679927B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3392695B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics | |
JP3359385B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JPH09104923A (en) | Production of grain-oriented silicon steel sheet | |
JP2647323B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with low iron loss | |
JPH0762437A (en) | Production of grain oriented silicon steel sheet having extremely low iron loss | |
JP3498978B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3392699B2 (en) | Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics | |
KR100940719B1 (en) | Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing | |
JP3061515B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JP3456861B2 (en) | Method for manufacturing grain-oriented electrical steel sheet with extremely excellent magnetic properties | |
CN117203355A (en) | Method for producing oriented electrical steel sheet | |
CN117062921A (en) | Method for producing oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140124 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |