JPH06179952A - ソーダ回収ボイラ伝熱管用オーステナイトステンレス鋼 - Google Patents

ソーダ回収ボイラ伝熱管用オーステナイトステンレス鋼

Info

Publication number
JPH06179952A
JPH06179952A JP35369492A JP35369492A JPH06179952A JP H06179952 A JPH06179952 A JP H06179952A JP 35369492 A JP35369492 A JP 35369492A JP 35369492 A JP35369492 A JP 35369492A JP H06179952 A JPH06179952 A JP H06179952A
Authority
JP
Japan
Prior art keywords
steel
corrosion
less
high temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35369492A
Other languages
English (en)
Inventor
Nobuo Otsuka
伸夫 大塚
Shigeru Tokura
茂 戸倉
Yoshiatsu Sawaragi
義淳 椹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP35369492A priority Critical patent/JPH06179952A/ja
Publication of JPH06179952A publication Critical patent/JPH06179952A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】 ソーダパルプなどを製造する際に蒸発廃液と
して生成する黒液から蒸解薬剤を回収するために用いら
れるボイラにおける耐高温腐食性、高温強度にすぐれた
過熱器管用オーステナイトステレス鋼を提供する。 【構成】 この鋼は、重量%で、C:0.03%未満、
Si:0.5%以下、Mn:2%を超え6%以下、P:
0.03%以下、S:0.01%以下、Cr:26%を超
え30%以下、Ni:18%を超え25%未満、Mo:
0.5%以上1.5未満、Nb:0.3%を超え0.6%
以下、N:0.2%以上0.4%以下を含有し、残部がF
eおよび不可避不純物からなり、さらに結晶粒度番号
(JIS)7以上の細粒であり、下記の数式1を満足する
ことを特徴とする。 【数1】 206×(%)P+400×(%)S+4×
(%)Nb−0.4×(JIS結晶粒度番号)≦5.8 そして、この鋼は、必要に応じて、重量%で、Mgお
よび/またはCa:0.002以上0.02%以下、A
l:0.02%以上0.2%以下を含有する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はソーダパルプなどを製造
する際に蒸発廃液として生成する黒液から蒸解薬剤を回
収するため用いられるボイラにおいて、長期にわたって
使用が可能な耐高温腐食性、高温強度、溶接性および経
済性にすぐれた過熱器管用オーステナイトステレス鋼に
関する。
【0002】
【従来の技術】製紙工場においては上記黒液を噴霧状に
して燃焼させ、この廃熱を利用して発電を行う一方、ボ
イラ低部に堆積した燃焼灰分から蒸解薬剤としてNa2
SやNaOH製造原料であるNa2 CO3 などを回収す
ることが行われており、伝熱管材としてJIS G34
62 で規定されるSTBA24やJIS G3463
で規定されているSUS 321HTBやSUS316
TPなどが使用されている。近年発電効率の向上を目的
とし、ボイラ蒸気条件の高温高圧化(蒸気温度530
℃、メタル最高温度580℃、従来はメタル最高温度5
50℃付近)が検討されているが、このようなボイラ伝
熱管の高温部に用いられる過熱器管の外表面には付着し
たCl- , SO4 2- , CO3 2- イオン等を含む燃焼スラ
グの一部が溶融し、きわめて腐食性の強い腐食媒体とな
るため、高温腐食による材料の損傷が大きな問題となっ
ていた。
【0003】黒液回収ボイラ用構造部材としては、黒液
の腐食環境で優れた耐高温腐食性を示す「黒液回収処理
用ボイラーの構造部材」(特開昭61-201760号公報,文献
1)、ソーダ回収ボイラ用として「ソーダ回収ボイラ用
オーステナイトステレス鋼」(特公平4-31020号公報,文
献2)、「高温環境下での時効靱性および耐高温粒界腐
食性に優れたオーステナイトステレス鋼」(特公平4-30
463号公報,文献3)「塩化物の存在する高温乾食環境用
鋼」(特開昭60-230966号公報,文献5)、また直接本用
途の材料ではないものの、高温用材料で腐食環境が類似
する用途として「塩化物共存下での耐高温腐食性に優れ
たステンレス鋼(特開昭63-213643号公報, 文献4)な
どの知見が開示されている。
【0004】また本発明鋼に類する化学成分を有する鋼
として、高温用途ではないが以下の耐食鋼が知られてい
る。すなわち「耐孔食オーステナイトステレス鋼」(特
公昭50-8967号公報、文献6)、「微細結晶粒を有する
オーステナイトステレス鋼」(特開昭47-23314号公報,
文献7)、「耐孔食性および熱間加工性のすぐれたステ
ンレス鋼」(特開昭49-135812号公報,文献8)、「粒界
腐食と粒界応力腐食割れに強いステンレス鋼」(特開昭
50-67215号公報, 文献9)などが公知となっている。
【0005】
【発明が解決しようとする課題】本発明は、蒸気条件の
高温高圧化のような過酷な高温腐食環境下できわめて優
れた耐食性を示し、かつ経済性、高温強度および溶接性
に優れた伝熱管材料に適したオーステナイトステレス鋼
を提供することを目的とする。
【0006】
【課題を解決するための手段】本発明は、全面腐食を
顕著に抑制するため、鋼のCrを機械的性質が劣化しな
い範囲内で可能な限り高めに調整し(26%を超え30
%以下)、局部腐食、とくにCl- 等を含む溶融燃焼
スラグによる粒界腐食を低減する目的から、経済性を加
味した成分調整を行った点、すなわちMo,Nを所定量
添加した上でNiを18%を超え25%未満に調整する
ことで地金を強化し、さらに鋼を細粒化することで必要
最少限のNi量で耐粒界腐食性を飛躍的に改善し、鋼
の細粒化を図るため、鋼の高温強度特にクリープ破断強
度を確保する点から特にNb窒化物の微細分散析出を利
用し、鋼の細粒化によって溶接性が格段に向上するの
で、溶接性の点からは有害で低ければ低いほど望ましい
が、その低減にはコスト上昇を招く不可避不純物中のP
の許容含有量を高め、より安価な溶解材料の使用によっ
てコスト低減が可能で経済性を高めた点、に特徴を有す
る。
【0007】以下本発明の具体的な態様を従来技術との
対比において説明し、本発明がいかに画期的な知見に基
づき発明されたかを述べることとする。
【0008】まず、蒸気条件の高温高圧化により過酷化
した腐食環境においては、材料は全面腐食とともに文献
2,3にあるように粒界腐食が生じ問題となる。本発明者
らが鋭意検討した結果、全面腐食と粒界腐食に対して
は、材料の成分上それぞれ別個に対策を施す必要のある
ことが判明した。鋼の全面腐食抑制には鋼のCr含有量
を増加させること、すなわち溶融塩による全面腐食に対
して保護性酸化被膜として作用するCr2 3 被膜を強
化する必要のあることが判明した。このためには鋼のC
rは26%を超える含有量が必要であるとの知見を得
た。
【0009】また鋼の粒界腐食の抑制には従来技術から
(文献5の358 頁右下から359 頁右上)一定量以上のN
iの添加が必要であり、文献2,3で提案されているN
i量(5〜18%)では腐食環境がきわめて厳しい条件
下ではかならずしも十分ではないこともわかった。しか
しながらNiは高価な合金添加元素であるため、経済性
の点から可能な限り添加量を少なくする必要がある。こ
の相反する要求を満たすべく種々検討した結果、Cr量
が26%を超える鋼に粒界腐食抑制に効果のあるとされ
るMo(文献5, 360頁左下7〜9行)とNとを所定量
添加した場合、本腐食環境下でも鋼のNi量によっては
従来技術(文献 4,219頁右下)で提案されている鋼の
細粒化が粒界腐食抑制に有効なこと、細粒効果が顕著に
認められるNi量が存在すること等が明らかになった。
すなわちNiとMoとNの添加を前提とした場合、Ni
量が18%を超える含有量の鋼を粒度番号(JIS)が7以
上の細粒に調整することで、粒界腐食を著しく低減可能
であることが判明した。この場合Ni量が60%程度の
インコネル690(商品名, 30Cr-60Ni)と同等以上の耐
粒界腐食性を有することとなった。
【0010】さらに鋼を細粒化する手段を種々検討した
結果、鋼の高温強度、とくにクリープ破断強度の点でN
bとNの複合添加によるNbNの微細分散析出による細
粒化が最も良好なこと、文献7に示されたようなTi,
Al,V,Ta,Zrのようなきわめて強い窒化物生成
元素の添加による場合、Nはこれらの元素と結合してし
まいNbNとしては微細分散析出しないため、細粒は得
られてもクリープ強度が低下する弊害のあることをつき
とめた。またクリープ強度に寄与するNbNの微細分散
析出を得るためには、Nb量が0.3%を超え0.6%以
下、Nは0.2%以上必要である知見を得た。
【0011】また更に、一般にNbを含有する高Crの
オ−ステナイト系ステンレス鋼の溶接性はさほど良好で
なく、不可避不純物中のPとSの含有量を極めて低く抑
える必要のあることが知られている。(特開昭59-59863
号公報、文献10)。そして、この文献10には18−
8系ステンレス鋼と同等の溶接性を確保するために、P
を0.020%以下、Sを0.010%以下とし、さら
にP,S,Nbの含有量を下記の数式の関係を満足する
ように選ぶことが示されている。
【0012】
【数2】206×P(%)+400×S(%)+4×N
b(%)≦7.0
【0013】しかし、PとSの含有量の低減、特にPの
含有量低減は鋼の溶製段階での低減が極めて困難である
ため、厳選した低Pの高価な溶解材料の使用が必要でN
b含有高Crのオ−ステナイト系ステンレス鋼のコスト
上昇をを招く一因となっているが、本願発明者らが、溶
接性、特に、溶接部の高温割れ性に及ぼす要因を種々検
討した結果、Nbと共にMoを必須成分として含有する
本発明の高Crオ−ステナイト系ステンレス鋼において
は、鋼の組織をJIS粒度番号で7以上の細粒組織にす
ることによってPの含有量が比較的高い場合でも溶接性
の改善が可能であるとの知見を得た。
【0014】すなわち、鋼を細粒化すると、0.030
%までのPを含有させても、S:0.010%以下、N
b:0.3%超え、0.6%以下で、下記の数式2の関
係を満たせば、18−8系ステンレス鋼と同等の溶接性
を確保することが可能なことを新たに知見した。
【0015】
【数3】206×(%)P+400×(%)S+4×
(%)Nb−0.4×(JIS結晶粒度番号)≦5.8
【0016】従って、低Pの高価な溶解材料を使用する
ことなく鋼を溶製し得るため、コスト低減を図ることが
可能となった。
【0017】以下に、文献1〜9に記載の先行技術につ
いて、本発明との差異をさらに明確にすることとした
い。
【0018】文献1の鋼は、本発明の出願人自身の出願
に係る発明であって、合金組成が本発明の鋼とかなり類
似するが、文献1のものは所定量のBを必須成分として
含み、このBとNとの複合作用により細粒化を図ってい
る点で本発明と大きく相違する。また、Bは文献10に
記載されるように溶接性を劣化させるため、良好な溶接
性を確保するには、Pの低減が必要不可欠となるが、本
発明の鋼はBを含有しないから、この点においても、文
献1および文献10の発明とは大きく相違する。
【0019】文献2、3の鋼と本発明の鋼との差異は上
述のとおりであり、特に、Ni含有量の点で顕著であ
る。
【0020】文献4、5の鋼も本出願人自身の開発した
鋼であって、本発明の鋼との差異は次のとおりである。
これらの鋼も塩化物共存下での耐高温腐食性が要求され
るが、本発明の鋼とはCr,Si,Mnの含有量が事実
上相違する。すなわち、文献4、5に記載された鋼は、
全面腐食に対する抵抗性をSiの積極的添加によって改
善したものであるのに対し、本発明の鋼は耐粒界腐食性
および高温使用中の時効後靱性を劣化させるSiの含有
量を低く抑えると共に、CrとMnの積極的多量添加に
よって全面腐食に対する抵抗性を改善したものであり、
両者はその鋼の設計思想が全く相違する。
【0021】文献6の鋼は、一般的な化学装置、海水機
器材料として開発されたものであって、耐孔食性をもつ
ことを主眼にしている。このため、本発明のような高N
i量を必要とせず、また、Cr炭化物が結晶粒界に析出
してその近傍にCr欠乏層が生じないように、C量を
0.03%以下にするという技術的思想は全くなく、上
限は0.12%という本発明鋼より1桁大きい範囲に定
めている。これらの点で、文献6の鋼は、本発明の鋼と
全く相違する。
【0022】文献7〜9の鋼は、いずれも本発明の鋼と
異なる用途に供せられるものであり、また、細粒化のた
めにNbNの析出を利用しようとしても、上述のように
Nbの他にV,Ti,Zr,Alが存在するときは十分
なNbNの析出は得られない。特に、文献9の鋼は、N
bの含有量が本発明鋼より低いものである。
【0023】
【作 用】
C:Cはソーダ回収ボイラ過熱器管の使用温度域(550
〜660 ℃) でCr236 等の炭化物を結晶粒界に析出さ
せ、粒界近傍にCrの欠乏層を生じさせる。Crの欠乏
層が結晶粒界近傍に生じると、Cl- を含む溶融した燃
焼スラグにより粒界が腐食されるため、C含有量はでき
る限り低いほうがよい。このため、上限を0.03%未
満とした。
【0024】Si:Siは結晶粒界に偏析し、Cl-
含む溶融した燃焼スラグにより粒界腐食の原因のひとつ
となる。またオーステナイトステレス鋼の高温使用中の
時効後靱性を劣化させるため、Si量は低いほどよい。
上限を0.5%とした。
【0025】Mn:Mnは本腐食環境下で全面腐食を低
減させる有効な合金元素である。その添加効果は2%を
超えると顕著となるが、多量添加で熱間加工性が低下す
るため、その上限を6%とした。
【0026】P,S:P,Sは耐高温粒界腐食性や溶接
性、特に溶接部の高温割れ性の点からは低いほど望まし
いが、前述したようにPの低減はコスト低減を妨げ経済
性を損なう。しかし、18−8系ステンレス鋼と同等の
溶接性を確保するためには、Pは0.030%以下、S
は0.010%以下にする必要があり、かつそれらの量
は後述する鋼の結晶粒度およびNb量との関係において
変化するので、次式を満足する必要があることは前述の
とおりである。
【0027】
【数4】206×P(%)+400×S(%)+4×N
b(%)−0.4×(JIS結晶粒度番号)≦5.8
【0028】Cr:Crは全面腐食に対する抵抗性を高
めるきわめて重要な合金元素であり、本腐食環境のよう
な過酷な高温環境に耐えるには、26%を超える含有量
が必要となる。しかしながら、500℃以上で長時間使
用する場合には、Crが濃化した脆いα−Cr相が析出
し時効による靱性の低下をきたすばかりでなく、このよ
うな高Cr相の析出により地のCr濃度が低下してしま
い、耐全面腐食性が劣化する。α−Cr相の析出を回避
する点からCrの上限を30%以下とした。
【0029】Ni:Niはオーステナイト組織を得るた
めに必要な元素であるとともに、Cl- を含む溶融した
燃焼スラグによる粒界腐食に対してきわめて有効な合金
元素である。粒界腐食の抑制の点から添加量は多いほど
良いが、Mo,Nの添加に加え鋼の細粒化を図った条件
下ではNiは18%を超える添加で粒界腐食抑制効果を
発揮するようになるため、下限を18%超とした。上限
はコストの点から25%未満とした。
【0030】Mo:Moは所定量のNiおよびNの存在
下で耐高温粒界腐食性に有効な合金元素である。鋼が細
粒の場合には、その添加量は0.5%以上で十分な効果
が認められるので、その下限を0.5%とした。Moは
Niとともに高価な合金添加元素であるため、上限を
1.5%未満とした。
【0031】N:Nはオーステナイト組織を安定化させ
る元素であるとともに耐高温粒界腐食性および高温強度
に有効な元素である。また本発明ではNbと結合し、N
bNの微細分散析出に必要な元素でもある。微細分散し
たNbNは細粒を得るために必要なばかりでなく、高温
強度、特にクリープ破断強度の向上に大きく寄与する。
7以上の細粒化を達成するため、Nの下限を0.2%以
上とした。またNの上限は30Crオーステナイト鋼の
固溶限である0.4%とした。
【0032】Nb:NbはNとともにNbNを析出さ
せ、鋼の細粒化に寄与するとともにクリープ強度に寄与
する元素である。本発明の成分系ではNbはクリープ強
度の点から下限を0.3超とする。Nbの必要以上の添
加は本成分系では溶接割れ感受性を増加させるので、上
限を0.6%とした。
【0033】結晶粒度:本発明鋼では粒界腐食にする抵
抗性を高めるため、細粒にする必要がある。7以上の細
粒で顕著な効果が認められるため粒度番号の上限を7以
下とした。また、この細粒化によりPの含有量が高くな
っても溶接性の確保ができることは前述したとおりであ
る。
【0034】Mg,Ca:Mg,Caは微量の添加で本
発明鋼の熱間加工性をさらに向上させる良好な元素であ
り、0.002%以上添加することで、熱間加工温度域
をさらに広く設定することができる。しかしながら本発
明鋼では過剰添加でNi−Mg,Ni−Ca系の低融点
金属が生成してしまい、熱間割れの原因にもなることか
ら、その上限を0.02%以下とした。
【0035】さらに本発明鋼のようにSiを下げた鋼の
場合には、鋼の脱酸をさらに容易とするためAlを添加
することができる。その添加量は0.02%以上で効果
が著しいが、過剰添加によりNと結合して鋼中の固溶N
を消費したり、高温使用中にNiAl系金属間化合物が
析出し、クリープ特性を劣化させるため、上限を0.2
%以下とした。
【0036】
【実施例】表1の1から19および24から31に化学
成分を示した27種の試作鋼、および表1の20から2
3に示す4種の市販鋼を耐食性試験の試験片として用い
た。なお表1の1から19までの鋼が本発明鋼、20は
JIS G3463で規格化されているSUS321H
TB, 21はSUS316TB, 22はSUS310S
TB,23はアロイ690 合金 (商 品名、30Cr−60Ni)
である。
【0037】
【表1】
【0038】表1の1から14までが請求項1記載の
鋼、15から17までが請求項2記載の鋼、18、19
が請求項3記載の鋼である。本発明鋼はCを0.03%
未満、Siを0.5%以下に制限してある。
【0039】1から3の鋼はCrを26〜29.5%、
4から6の鋼はNiを20.6〜24.9%、7および8
の鋼はNbを0.3〜0.55%、9から11の鋼はMo
を0.5〜1.5%、12および13鋼はMnを2.3〜
5.5それぞれ変化させた鋼である。また14鋼はNを
0.4%含む鋼となる。
【0040】これに対し、比較鋼として用いた24から
31の鋼はそれぞれ次の成分が本発明範囲外である。す
なわち24から28まではNi、29はMo、30およ
び31はNi、Cr、Nbが範囲外となる。また25鋼
はNi以外にNbが、27鋼はNi以外にN、28鋼は
Ni以外にNb,Nが範囲に入らない。
【0041】表1の1〜19および24から31までの
成分を有する27種の鋼塊を真空溶解炉で20kg溶製
し、インゴットを製作した。このインゴットを外削後12
00℃に5時間加熱し、1200℃から1050℃の温度範囲で熱
間鍛造を行い、厚み20mm、幅100 mmのビレットを製作し
た。ビレットは一旦1270℃で2時間加熱による軟化焼鈍
を行ったのち、冷間圧延により厚み14mmの冷延板とし
た。容体化熱処理は冷延板を1200℃で1時間加熱後水冷
する方法で行った。
【0042】また結晶粒度の異なる鋼を得るため、2,
4,6,24,25,26、27鋼について溶体化温度
を1250℃および1300℃まで高めて熱処理を行った。この
ような高温溶体化により得られた各鋼の結晶粒度番号
(JIS)を表2に示した。
【0043】
【表2】
【0044】これらの溶体化した下の肉厚中央部より、
厚み3mm、幅15mm、長さ15mmの腐食試験片を切り出
し、次の高温腐食試験に供した。
【0045】また従来鋼は、市販の管材の肉厚中央部か
ら上記と同じ寸法の試験片を切り出し、試験に供した。
【0046】高温腐食試験は、試験片表裏全表面ソーダ
回収ボイラ過熱熱器管表面に付着する燃焼スラグを模擬
した腐食性合成灰(20モル%Na2SO4-40モル%K2SO4-20
モル%K2CO3-20モル%NaCl) を試験片単位表面積あたり
30mg/cm2塗布後、排ガスを模擬した組成の腐食性ガス
(0.2%SO2-3%O2 -15%CO2-bal.N2) を通気させ
た試験炉中625℃で100時間加熱する方法で行っ
た。
【0047】前述したように、本腐食環境におけるオー
ステナイトステレス鋼の耐食性は全面腐食と粒界腐食と
に大別される。このためこのような腐食機構の異なる高
温腐食をそれぞれ別個に評価すべく、全面腐食は脱スケ
ール後の腐食減量で、粒界腐食は試験片の断面を100
倍および500倍の光学顕微鏡で観察し粒界侵食深さの
最大値を測定することで行った。
【0048】また、溶接性の評価は、平板試験片の上に
溶加棒を用いることなく溶接を施し、この溶接中に一定
半径の治具に沿わせて歪を加えることで人為的に溶接部
に割れを発生させ、その割れ長さの大小をもって高温割
れ感受性の優劣を判定するバレストレイン試験法によっ
て行なった。なお、試験片の板厚は8mm、溶接条件は2
00A×15V、溶接速度15cm/min.,付加歪は2%と
した.
【0049】
【表3】
【0050】高温腐食試験の結果を表3に、また溶接性
の評価結果を表3および図3に示した。まず全面腐食に
対する抵抗性は、図1に示すように鋼のCr量とMn量
に大きく依存し、従来のSUS321HTB(20鋼)、
SUS316TB(21鋼)、Crが22.5%の30
鋼、25%の31鋼に比し、本発明鋼であるCrが26
%を超える鋼(例えば1〜3,7鋼)で腐食減量が著し
く減少する傾向が明らかである。すなわち本腐食環境の
ようなきわめて厳しい高温環境下では全面腐食に対する
抵抗性を著しく高めるためには、鋼のCr量を少なくと
も26%を超える必要のあることが判明した。また表1
において22鋼と31鋼とはCr含有量は同じだが22
鋼はMnが1.48%と低いのに対し31鋼は3.22%
と多く含有されているが、22鋼の腐食減量は明らかに
31鋼よりも大であり、Mnが全面腐食抑制に対し大き
な効果のあることが分かる。
【0051】次に粒界腐食に対する抵抗性を図2に示し
た。従来技術にもあるように、粒界腐食を抑制するには
前述のように合金のNi含有量を増加させればよく、本
腐食環境下でもNiを50%程度含む合金28(アロイ
690)は鋼の結晶粒度によらずきわめて良好な耐高温粒
界腐食性を示した。しかしながら、Ni量がより低い鋼
の場合には、たとえば30%Niを含む27粗粒鋼(27
a)でも明らかなように粒界腐食が生じるようになり、
粗粒鋼ではNi量の減少とともに粒界腐食が厳しくなる
傾向にあることが分かる。しかしながら鋼を細粒にする
と本腐食環境下ではある特定範囲のNi量 (18%超) を
含有する鋼で粒界腐食が著しく抑制されるようになり
(図2)比較的少ない量のNiでも高温粒界腐食に対し
て優れた抵抗性を示す鋼となることが判明した。鋼の結
晶粒度は7より細粒であればよく、結晶粒度番号が8の
2鋼で高温粒界腐食は結晶粒度番号が6.6の2a鋼に
比し著しく抑制されている。しかしながら鋼をいくら細
粒にしてもNiは18%以下しかないと効果は顕著に認
められなく、例えば結晶粒度が9.1と細粒である25
鋼はNi量が17.2%程度しかないため比較的厳しい
粒界腐食が観察される。
【0052】また、表3および図3から明らかなよう
に、バレストレイン試験による溶接割れ長さは、下記の
数式2との相関が図3から明瞭で、該式値が大きくなる
ほど溶接割れ長さが長くなり、溶接性が劣化することが
分かる。
【0053】
【数5】206×(%)P+400×(%)S+4×
(%)Nb−0.4×(JIS結晶粒度番号)
【0054】さらに、同じ成分組成の鋼であっても結晶
粒度が異なると溶接割れ長さが変化する。例えば、表1
中のNo.2,No.4およびNo.6の鋼において
は、P含有量が比較的多く、それぞれ0.028%,
0.025%,0.023%といずれも0.020%を
超えているため、結晶粒度を粗くした2a,2b,4
a,4b,6a,6bではいずれも溶接割れ長さが長い
のに対し、細粒の場合には溶接割れ長さが短く、溶接割
れ感受性が著しく改善されている。このことからNbを
含有する、高Crオ−ステナイト系ステンレス鋼におい
ては、結晶粒度を細粒化することによってPを比較的多
く含有する場合でも溶接割れ感受性を著しく改善するこ
とができ、前記式値が5.8以下の場合、18−8ステ
ンレス鋼であるSUS304HTB(No.20)、S
US316TB(No.21)および18−20系ステ
ンレス鋼であるSUS310STB(No.22)と同
程度の溶接割れ感受性の得られることが明かである(図
3参照)。
【0055】さらに、結果の表示は省略するが、本発明
の鋼はクリープ破断強度も良好であり、請求項1の鋼で
あるNo.1〜14鋼、請求項2の鋼であるNo.15
〜17鋼、請求項3の鋼であるNo.18,19鋼の6
00℃のクリ−プ破断強度はSUS347H並みあるい
はSUS347H以上の高い値を有することを確認し
た。また、組織安定性にも優れ、625 ℃で10000 時間時
効しても、靱性および全面腐食の劣化の原因となるα−
Cr相の析出は、全く認められなかった。
【0056】
【発明の効果】本発明によれば、500 ℃以上の高温でか
つCl- を含む腐食性溶融燃焼スラグが付着する高温環
境下で使用されるソーダ回収ボイラ過熱器管等に対し
て、全面腐食および高温粒界腐食を中心とする高温腐食
に対してきわめて優れた抵抗性を有する材料を、不純物
中のPの含有量が高い場合であっても溶接性を維持する
ことができるので比較的安価な溶解材料を用いての製造
が可能で経済性に優れるため、安価に提供することが可
能となる。本発明のオーステナイトステレス鋼で過熱器
管等の高温部位を構成されたソーダ回収ボイラは蒸気条
件の高温高圧化が可能となり、発電効率の向上を達成す
ることが可能となるものである。
【図面の簡単な説明】
【図1】オーステナイトステンレス鋼における腐食減量
とCr量の関係を示す図である。
【図2】オーステナイトステンレス鋼における最大粒界
侵食深さとNi量の関係を示す図である。
【図3】オーステナイトステンレス鋼における溶接性と
P,S,Nbおよび結晶粒度とから定まる管理指標値の
関係を示す図である。
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成5年7月30日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】全文
【補正方法】変更
【補正内容】
【書類名】 明細書
【発明の名称】 ソーダ回収ボイラ伝熱管用オーステナ
イトステレス鋼
【特許請求の範囲】
【数1】206×(%)P+400×(%)S+4×
(%)Nb−0.4×(JIS結晶粒度番号)≦5.8
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はソーダパルプなどを製造
する際に蒸発廃液として生成する黒液から蒸解薬剤を回
収するため用いられるボイラにおいて、長期にわたって
使用が可能な耐高温腐食性、高温強度、溶接性および経
済性にすぐれた過熱器管用オーステナイトステレス鋼
に関する。
【0002】
【従来の技術】製紙工場においては上記黒液を噴霧状に
して燃焼させ、この廃熱を利用して発電を行う一方、ボ
イラ低部に堆積した燃焼灰分から蒸解薬剤としてNa2
SやNaOH製造原料であるNa2 CO3 などを回収す
ることが行われており、伝熱管材としてJIS G34
62 で規定されるSTBA24やJIS G3463
で規定されているSUS 321HTBやSUS316
TPなどが使用されている。近年発電効率の向上を目的
とし、ボイラ蒸気条件の高温高圧化(蒸気温度530
℃、メタル最高温度580℃、従来はメタル最高温度5
50℃付近)が検討されているが、このようなボイラ伝
熱管の高温部に用いられる過熱器管の外表面には付着し
たCl- , SO4 2- , CO3 2- イオン等を含む燃焼スラ
グの一部が溶融し、きわめて腐食性の強い腐食媒体とな
るため、高温腐食による材料の損傷が大きな問題となっ
ていた。
【0003】黒液回収ボイラ用構造部材としては、黒液
の腐食環境で優れた耐高温腐食性を示す「黒液回収処理
用ボイラーの構造部材」(特開昭61-201760号公報,文献
1)、ソーダ回収ボイラ用として「ソーダ回収ボイラ用
オーステナイトステレス鋼」(特公平4-31020号公報,
文献2)、「高温環境下での時効靱性および耐高温粒界
腐食性に優れたオーステナイトステレス鋼」(特公平
4-30463号公報,文献3)「塩化物の存在する高温乾食環
境用鋼」(特開昭60-230966号公報,文献5)、また直接
本用途の材料ではないものの、高温用材料で腐食環境が
類似する用途として「塩化物共存下での耐高温腐食性に
優れたステンレス鋼(特開昭63-213643号公 報, 文献
4)などの知見が開示されている。
【0004】また本発明鋼に類する化学成分を有する鋼
として、高温用途ではないが以下の耐食鋼が知られてい
る。すなわち「耐孔食オーステナイトステレス鋼」
(特公昭50-8967号公報、文献6)、「微細結晶粒を有
するオーステナイトステレス鋼」 (特開昭47-23314
号公報, 文献7)、「耐孔食性および熱間加工性のすぐ
れたステンレス鋼」(特開昭49-135812号公報,文献
8)、「粒界腐食と粒界応力腐食割れに強いステンレス
鋼」(特開昭50-67215号公報, 文献9)などが公知とな
っている。
【0005】
【発明が解決しようとする課題】本発明は、蒸気条件の
高温高圧化のような過酷な高温腐食環境下できわめて優
れた耐食性を示し、かつ経済性、高温強度および溶接性
に優れた伝熱管材料に適したオーステナイトステレス
鋼を提供することを目的とする。
【0006】
【課題を解決するための手段】本発明は、全面腐食を
顕著に抑制するため、鋼のCrを機械的性質が劣化しな
い範囲内で可能な限り高めに調整し(26%を超え30
%以下)、局部腐食、とくにCl- 等を含む溶融燃焼
スラグによる粒界腐食を低減する目的から、経済性を加
味した成分調整を行った点、すなわちMo,Nを所定量
添加した上でNiを18%を超え25%未満に調整する
ことで地金を強化し、さらに鋼を細粒化することで必要
最少限のNi量で耐粒界腐食性を飛躍的に改善し、鋼
の細粒化を図るため、鋼の高温強度特にクリープ破断強
度を確保する点から特にNb窒化物の微細分散析出を利
用し、鋼の細粒化によって溶接性が格段に向上するの
で、溶接性の点からは有害で低ければ低いほど望ましい
が、その低減にはコスト上昇を招く不可避不純物中のP
の許容含有量を高め、より安価な溶解材料の使用によっ
てコスト低減が可能で経済性を高めた点、に特徴を有す
る。
【0007】以下本発明の具体的な態様を従来技術との
対比において説明し、本発明がいかに画期的な知見に基
づき発明されたかを述べることとする。
【0008】まず、蒸気条件の高温高圧化により過酷化
した腐食環境においては、材料は全面腐食とともに文献
2,3にあるように粒界腐食が生じ問題となる。本発明者
らが鋭意検討した結果、全面腐食と粒界腐食に対して
は、材料の成分上それぞれ別個に対策を施す必要のある
ことが判明した。鋼の全面腐食抑制には鋼のCr含有量
を増加させること、すなわち溶融塩による全面腐食に対
して保護性酸化被膜として作用するCr2 3 被膜を強
化する必要のあることが判明した。このためには鋼のC
rは26%を超える含有量が必要であるとの知見を得
た。
【0009】また鋼の粒界腐食の抑制には従来技術から
(文献5の358 頁右下から359 頁右上)一定量以上のN
iの添加が必要であり、文献2,3で提案されているN
i量(5〜18%)では腐食環境がきわめて厳しい条件
下ではかならずしも十分ではないこともわかった。しか
しながらNiは高価な合金添加元素であるため、経済性
の点から可能な限り添加量を少なくする必要がある。こ
の相反する要求を満たすべく種々検討した結果、Cr量
が26%を超える鋼に粒界腐食抑制に効果のあるとされ
るMo(文献5, 360頁左下7〜9行)とNとを所定量
添加した場合、本腐食環境下でも鋼のNi量によっては
従来技術(文献 4,219頁右下)で提案されている鋼の
細粒化が粒界腐食抑制に有効なこと、細粒効果が顕著に
認められるNi量が存在すること等が明らかになった。
すなわちNiとMoとNの添加を前提とした場合、Ni
量が18%を超える含有量の鋼を粒度番号(JIS)が7以
上の細粒に調整することで、粒界腐食を著しく低減可能
であることが判明した。この場合Ni量が60%程度の
インコネル690(商品名, 30Cr-60Ni)と同等以上の耐
粒界腐食性を有することとなった。
【0010】さらに鋼を細粒化する手段を種々検討した
結果、鋼の高温強度、とくにクリープ破断強度の点でN
bとNの複合添加によるNbNの微細分散析出による細
粒化が最も良好なこと、文献7に示されたようなTi,
Al,V,Ta,Zrのようなきわめて強い窒化物生成
元素の添加による場合、Nはこれらの元素と結合してし
まいNbNとしては微細分散析出しないため、細粒は得
られてもクリープ強度が低下する弊害のあることをつき
とめた。またクリープ強度に寄与するNbNの微細分散
析出を得るためには、Nb量が0.3%を超え0.6%以
下、Nは0.2%以上必要である知見を得た。
【0011】また更に、一般にNbを含有する高Crの
オ−ステナイト系ステンレス鋼の溶接性はさほど良好で
なく、不可避不純物中のPとSの含有量を極めて低く抑
える必要のあることが知られている。(特開昭59-59863
号公報、文献10)。そして、この文献10には18−
8系ステンレス鋼と同等の溶接性を確保するために、P
を0.020%以下、Sを0.010%以下とし、さら
にP,S,Nbの含有量を下記の数式の関係を満足する
ように選ぶことが示されている。
【0012】
【数2】206×P(%)+400×S(%)+4×N
b(%)≦7.0
【0013】しかし、PとSの含有量の低減、特にPの
含有量低減は鋼の溶製段階での低減が極めて困難である
ため、厳選した低Pの高価な溶解材料の使用が必要でN
b含有高Crのオ−ステナイト系ステンレス鋼のコスト
上昇をを招く一因となっているが、本願発明者らが、溶
接性、特に、溶接部の高温割れ性に及ぼす要因を種々検
討した結果、Nbと共にMoを必須成分として含有する
本発明の高Crオ−ステナイト系ステンレス鋼において
は、鋼の組織をJIS粒度番号で7以上の細粒組織にす
ることによってPの含有量が比較的高い場合でも溶接性
の改善が可能であるとの知見を得た。
【0014】すなわち、鋼を細粒化すると、0.030
%までのPを含有させても、S:0.010%以下、N
b:0.3%超え、0.6%以下で、下記の数式2の関
係を満たせば、18−8系ステンレス鋼と同等の溶接性
を確保することが可能なことを新たに知見した。
【0015】
【数3】206×(%)P+400×(%)S+4×
(%)Nb−0.4×(JIS結晶粒度番号)≦5.8
【0016】従って、厳選した低Pの高価な溶解材料を
使用することなく鋼を溶製し得るため、コスト低減を図
ることが可能となった。
【0017】以下に、文献1〜9に記載の先行技術につ
いて、本発明との差異をさらに明確にすることとした
い。
【0018】文献1の鋼は、本発明の出願人自身の出願
に係る発明であって、合金組成が本発明の鋼とかなり類
似するが、文献1のものは所定量のBを必須成分として
含み、このBとNとの複合作用により細粒化を図ってい
る点で本発明と大きく相違する。また、Bは文献10に
記載されるように溶接性を劣化させるため、良好な溶接
性を確保するには、Pの低減が必要不可欠となるが、本
発明の鋼はBを含有しないから、この点においても、文
献1および文献10の発明とは大きく相違する。
【0019】文献2、3の鋼と本発明の鋼との差異は上
述のとおりであり、特に、Ni含有量の点で顕著であ
る。
【0020】文献4、5の鋼も本出願人自身の開発した
鋼であって、本発明の鋼との差異は次のとおりである。
これらの鋼も塩化物共存下での耐高温腐食性が要求され
るが、本発明の鋼とはCr,Si,Mnの含有量が事実
上相違する。すなわち、文献4、5に記載された鋼は、
全面腐食に対する抵抗性をSiの積極的添加によって改
善したものであるのに対し、本発明の鋼は耐粒界腐食性
および高温使用中の時効後靱性を劣化させるSiの含有
量を低く抑えると共に、CrとMnの積極的多量添加に
よって全面腐食に対する抵抗性を改善したものであり、
両者はその鋼の設計思想が全く相違する。
【0021】文献6の鋼は、一般的な化学装置、海水機
器材料として開発されたものであって、耐孔食性をもつ
ことを主眼にしている。このため、本発明のような高N
i量を必要とせず、また、Cr炭化物が結晶粒界に析出
してその近傍にCr欠乏層が生じないように、C量を
0.03%以下にするという技術的思想は全くなく、上
限は0.12%という本発明鋼より1桁大きい範囲に定
めている。これらの点で、文献6の鋼は、本発明の鋼と
全く相違する。
【0022】文献7〜9の鋼は、いずれも本発明の鋼と
異なる用途に供せられるものであり、また、細粒化のた
めにNbNの析出を利用しようとしても、上述のように
Nbの他にV,Ti,Zr,Alが存在するときは十分
なNbNの析出は得られない。特に、文献9の鋼は、N
bの含有量が本発明鋼より低いものである。
【0023】
【作 用】C:Cはソーダ回収ボイラ過熱器管の使用温
度域(550 〜660 ℃) でCr236 等の炭化物を結晶粒
界に析出させ、粒界近傍にCrの欠乏層を生じさせる。
Crの欠乏層が結晶粒界近傍に生じると、Cl- を含む
溶融した燃焼スラグにより粒界が腐食されるため、C含
有量はできる限り低いほうがよい。このため、上限を
0.03%未満とした。
【0024】Si:Siは結晶粒界に偏析し、Cl-
含む溶融した燃焼スラグにより粒界腐食の原因のひとつ
となる。またオーステナイトステレス鋼の高温使用中
の時効後靱性を劣化させるため、Si量は低いほどよ
い。上限を0.5%とした。
【0025】Mn:Mnは本腐食環境下で全面腐食を低
減させる有効な合金元素である。その添加効果は2%を
超えると顕著となるが、多量添加で熱間加工性が低下す
るため、その上限を6%とした。
【0026】P,S:P,Sは耐高温粒界腐食性や溶接
性、特に溶接部の高温割れ性の点からは低いほど望まし
いが、前述したようにPの低減はコスト低減を妨げ経済
性を損なう。しかし、18−8系ステンレス鋼と同等の
溶接性を確保するためには、Pは0.030%以下、S
は0.010%以下にする必要があり、かつそれらの量
は後述する鋼の結晶粒度およびNb量との関係において
変化するので、次式を満足する必要があることは前述の
とおりである。
【0027】
【数4】206×P(%)+400×S(%)+4×N
b(%)−0.4×(JIS結晶粒度番号)≦5.8
【0028】Cr:Crは全面腐食に対する抵抗性を高
めるきわめて重要な合金元素であり、本腐食環境のよう
な過酷な高温環境に耐えるには、26%を超える含有量
が必要となる。しかしながら、500℃以上で長時間使
用する場合には、Crが濃化した脆いα−Cr相が析出
し時効による靱性の低下をきたすばかりでなく、このよ
うな高Cr相の析出により地のCr濃度が低下してしま
い、耐全面腐食性が劣化する。α−Cr相の析出を回避
する点からCrの上限を30%以下とした。
【0029】Ni:Niはオーステナイト組織を得るた
めに必要な元素であるとともに、Cl- を含む溶融した
燃焼スラグによる粒界腐食に対してきわめて有効な合金
元素である。粒界腐食の抑制の点から添加量は多いほど
良いが、Mo,Nの添加に加え鋼の細粒化を図った条件
下ではNiは18%を超える添加で粒界腐食抑制効果を
発揮するようになるため、下限を18%超とした。上限
はコストの点から25%未満とした。
【0030】Mo:Moは所定量のNiおよびNの存在
下で耐高温粒界腐食性に有効な合金元素である。鋼が細
粒の場合には、その添加量は0.5%以上で十分な効果
が認められるので、その下限を0.5%とした。Moは
Niとともに高価な合金添加元素であるため、上限を
1.5%未満とした。
【0031】N:Nはオーステナイト組織を安定化させ
る元素であるとともに耐高温粒界腐食性および高温強度
に有効な元素である。また本発明ではNbと結合し、N
bNの微細分散析出に必要な元素でもある。微細分散し
たNbNは細粒を得るために必要なばかりでなく、高温
強度、特にクリープ破断強度の向上に大きく寄与する。
7以上の細粒化を達成するため、Nの下限を0.2%以
上とした。またNの上限は30Crオーステナイト鋼の
固溶限である0.4%とした。
【0032】Nb:NbはNとともにNbNを析出さ
せ、鋼の細粒化に寄与するとともにクリープ強度に寄与
する元素である。本発明の成分系ではNbはクリープ強
度の点から下限を0.3超とする。Nbの必要以上の
添加は本成分系では溶接割れ感受 性を増加させるの
で、上限を0.6%とした。
【0033】結晶粒度:本発明鋼では粒界腐食にする抵
抗性を高めるため、細粒にする必要がある。7以上の細
粒で顕著な効果が認められるため粒度番号の上限を7以
下とした。また、この細粒化によりPの含有量が高くな
っても溶接性の確保ができることは前述したとおりであ
る。
【0034】Mg,Ca:Mg,Caは微量の添加で本
発明鋼の熱間加工性をさらに向上させる良好な元素であ
り、0.002%以上添加することで、熱間加工温度域
をさらに広く設定することができる。しかしながら本発
明鋼では過剰添加でNi−Mg,Ni−Ca系の低融点
金属が生成してしまい、熱間割れの原因にもなることか
ら、その上限を0.02%以下とした。
【0035】さらに本発明鋼のようにSiを下げた鋼の
場合には、鋼の脱酸をさらに容易とするためAlを添加
することができる。その添加量は0.02%以上で効果
が著しいが、過剰添加によりNと結合して鋼中の固溶N
を消費したり、高温使用中にNiAl系金属間化合物が
析出し、クリープ特性を劣化させるため、上限を0.2
%以下とした。
【0036】
【実施例】表1の1から19および24から31に化学
成分を示した27種の試作鋼、および表1の20から2
3に示す4種の市販鋼を耐食性試験の試験片として用い
た。なお表1の1から19までの鋼が本発明鋼、20は
JIS G3463で規格化されているSUS321H
TB, 21はSUS316TB, 22はSUS310S
TB,23はアロイ690 合金 (商 品名、30Cr−60Ni)
である。
【0037】
【表1】
【0038】表1の1から14までが請求項1記載の
鋼、15から17までが請求項2記載の鋼、18、19
が請求項3記載の鋼である。本発明鋼はCを0.03%
未満、Siを0.5%以下に制限してある。
【0039】1から3の鋼はCrを26〜29.5%、
4から6の鋼はNiを20.6〜24.9%、7および8
の鋼はNbを0.3〜0.55%、9から11の鋼はMo
を0.5〜1.5%、12および13鋼はMnを2.3〜
5.5それぞれ変化させた鋼である。また14鋼はNを
0.4%含む鋼となる。
【0040】これに対し、比較鋼として用いた24から
31の鋼はそれぞれ次の成分が本発明範囲外である。す
なわち24から28まではNi、29はMo、30およ
び31はNi、Cr、Nbが範囲外となる。また25鋼
はNi以外にNbが、27鋼はNi以外にN、28鋼は
Ni以外にNb,Nが範囲に入らない。
【0041】表1の1〜19および24から31までの
成分を有する27種の鋼塊を真空溶解炉で20kg溶製
し、インゴットを製作した。このインゴットを外削後12
00℃に5時間加熱し、1200℃から1050℃の温度範囲で熱
間鍛造を行い、厚み20mm、幅100 mmのビレットを製作し
た。ビレットは一旦1270℃で2時間加熱による軟化焼鈍
を行ったのち、冷間圧延により厚み14mmの冷延板とし
た。容体化熱処理は冷延板を1200℃で1時間加熱後水冷
する方法で行った。
【0042】また結晶粒度の異なる鋼を得るため、2,
4,6,24,25,26、27鋼について溶体化温度
を1250℃および1300℃まで高めて熱処理を行った。この
ような高温溶体化により得られた各鋼の結晶粒度番号
(JIS)を表2に示した。
【0043】
【表2】
【0044】これらの溶体化した下の肉厚中央部より、
厚み3mm、幅15mm、長さ15mmの腐食試験片を切り出
し、次の高温腐食試験に供した。
【0045】また従来鋼は、市販の管材の肉厚中央部か
ら上記と同じ寸法の試験片を切り出し、試験に供した。
【0046】高温腐食試験は、試験片表裏全表面ソーダ
回収ボイラ過熱熱器管表面に付着する燃焼スラグを模擬
した腐食性合成灰(20モル%Na2SO4-40モル%K2SO4-20
モル%K2CO3-20モル%NaCl) を試験片単位表面積あたり
30mg/cm2塗布後、排ガスを模擬した組成の腐食性ガス
(0.2%SO2-3%O2 -15%CO2-bal.N2) を通気させ
た試験炉中625℃で100時間加熱する方法で行っ
た。
【0047】前述したように、本腐食環境におけるオー
ステナイトステレス鋼の耐食性は全面腐食と粒界腐食
とに大別される。このためこのような腐食機構の異なる
高温腐食をそれぞれ別個に評価すべく、全面腐食は脱ス
ケール後の腐食減量で、粒界腐食は試験片の断面を10
0倍および500倍の光学顕微鏡で観察し粒界侵食深さ
の最大値を測定することで行った。
【0048】また、溶接性の評価は、平板試験片の上に
溶加棒を用いることなく溶接を施し、この溶接中に一定
半径の治具に沿わせて歪を加えることで人為的に溶接部
に割れを発生させ、その割れ長さの大小をもって高温割
れ感受性の優劣を判定するバレストレイン試験法によっ
て行なった。なお、試験片の板厚は8mm、溶接条件は2
00A×15V、溶接速度15cm/min.,付加歪は2%と
した.
【0049】
【表3】
【0050】高温腐食試験の結果を表3に、また溶接性
の評価結果を表3および図3に示した。まず全面腐食に
対する抵抗性は、図1に示すように鋼のCr量とMn量
に大きく依存し、従来のSUS321HTB(20鋼)、
SUS316TB(21鋼)、Crが22.5%の30
鋼、25%の31鋼に比し、本発明鋼であるCrが26
%を超える鋼(例えば1〜3,7鋼)で腐食減量が著し
く減少する傾向が明らかである。すなわち本腐食環境の
ようなきわめて厳しい高温環境下では全面腐食に対する
抵抗性を著しく高めるためには、鋼のCr量を少なくと
も26%を超える必要のあることが判明した。また表1
において22鋼と31鋼とはCr含有量は同じだが22
鋼はMnが1.48%と低いのに対し31鋼は3.22%
と多く含有されているが、22鋼の腐食減量は明らかに
31鋼よりも大であり、Mnが全面腐食抑制に対し大き
な効果のあることが分かる。
【0051】次に粒界腐食に対する抵抗性を図2に示し
た。従来技術にもあるように、粒界腐食を抑制するには
前述のように合金のNi含有量を増加させればよく、本
腐食環境下でもNiを50%程度含む合金28(アロイ
690)は鋼の結晶粒度によらずきわめて良好な耐高温粒
界腐食性を示した。しかしながら、Ni量がより低い鋼
の場合には、たとえば30%Niを含む27粗粒鋼(27
a)でも明らかなように粒界腐食が生じるようになり、
粗粒鋼ではNi量の減少とともに粒界腐食が厳しくなる
傾向にあることが分かる。しかしながら鋼を細粒にする
と本腐食環境下ではある特定範囲のNi量 (18%超) を
含有する鋼で粒界腐食が著しく抑制されるようになり
(図2)比較的少ない量のNiでも高温粒界腐食に対し
て優れた抵抗性を示す鋼となることが判明した。鋼の結
晶粒度は7より細粒であればよく、結晶粒度番号が8の
2鋼で高温粒界腐食は結晶粒度番号が6.6の2a鋼に
比し著しく抑制されている。しかしながら鋼をいくら細
粒にしてもNiは18%以下しかないと効果は顕著に認
められなく、例えば結晶粒度が9.1と細粒である25
鋼はNi量が17.2%程度しかないため比較的厳しい
粒界腐食が観察される。
【0052】また、表3および図3から明らかなよう
に、バレストレイン試験による溶接割れ長さは、下記の
数式との相関が図3から明瞭で、該式値が大きくなる
ほど溶接割れ長さが長くなり、溶接性が劣化することが
分かる。
【0053】
【数5】206×(%)P+400×(%)S+4×
(%)Nb−0.4×(JIS結晶粒度番号)
【0054】さらに、同じ成分組成の鋼であっても結晶
粒度が異なると溶接割れ長さが変化する。例えば、表1
中のNo.2,No.4およびNo.6の鋼において
は、P含有量が比較的多く、それぞれ0.028%,
0.025%,0.023%といずれも0.020%を
超えているため、結晶粒度を粗くした2a,2b,4
a,4b,6a,6bではいずれも溶接割れ長さが長い
のに対し、細粒の場合には溶接割れ長さが短く、溶接割
れ感受性が著しく改善されている。このことからNbを
含有する、高Crオ−ステナイト系ステンレス鋼におい
ては、結晶粒度を細粒化することによってPを比較的多
く含有する場合でも溶接割れ感受性を著しく改善するこ
とができ、前記式値が5.8以下の場合、18−8
テンレス鋼であるSUS304HTB(No.20)、
SUS316TB(No.21)および18−20系ス
テンレス鋼であるSUS310STB(No.22)と
同程度の溶接割れ感受性の得られることが明かである
(図3参照)。
【0055】さらに、結果の表示は省略するが、本発明
の鋼はクリープ破断強度も良好であり、請求項1の鋼で
あるNo.1〜14鋼、請求項2の鋼であるNo.15
〜17鋼、請求項3の鋼であるNo.18,19鋼の6
00℃のクリ−プ破断強度はSUS347H並みあるい
はSUS347H以上の高い値を有することを確認し
た。また、組織安定性にも優れ、625 ℃で1000 時間時
効しても、靱性および全面腐食の劣化の原因となるα−
Cr相の析出は、全く認められなかった。
【0056】
【発明の効果】本発明によれば、500 ℃以上の高温でか
つCl- を含む腐食性溶融燃焼スラグが付着する高温環
境下で使用されるソーダ回収ボイラ過熱器管等に対し
て、全面腐食および高温粒界腐食を中心とする高温腐食
に対してきわめて優れた抵抗性を有する材料を、不純物
中のPの含有量が高い場合であっても溶接性を維持する
ことができるので比較的安価な溶解材料を用いての製造
が可能で経済性に優れるため、安価に提供することが可
能となる。本発明のオーステナイトステレス鋼で過熱
器管等の高温部位を構成されたソーダ回収ボイラは蒸気
条件の高温高圧化が可能となり、発電効率の向上を達成
することが可能となるものである。
【図面の簡単な説明】
【図1】オーステナイトステンレス鋼における腐食減量
とCr量の関係を示す図である。
【図2】オーステナイトステンレス鋼における最大粒界
侵食深さとNi量の関係を示す図である。
【図3】オーステナイトステンレス鋼における溶接性と
P,S,Nbおよび結晶粒度とから定まる管理指標値の
関係を示す図である。

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 重量%で、C:0.03%未満、Si:
    0.5%以下、Mn:2%を超え6%以下、P:0.03
    %以下、S:0.01%以下、Cr:26%を超え30
    %以下、Ni:18%を超え25%未満、Mo:0.5
    %以上1.5未満、Nb:0.3%を超え0.6%以下、
    N:0.2%以上0.4%以下を含有し、残部がFeおよ
    び不可避不純物からなり、さらに結晶粒度番号(JIS)
    7以上の細粒であり、下記の数式1を満足することを特
    徴とするソーダ回収ボイラ伝熱管用オーステナイトステ
    レス鋼。 【数1】206×(%)P+400×(%)S+4×
    (%)Nb−0.4×(JIS結晶粒度番号)≦5.8
  2. 【請求項2】 さらに、重量%で、Mg、Caのうち1
    種または2種を合計で0.002%以上0.02%以下を
    含有することを特徴とする請求項1記載のソーダ回収ボ
    イラ伝熱管用オーステナイトステレス鋼。
  3. 【請求項3】 さらに、重量%で、Al:0.02以上
    0.2%以下を含有する請求項1または2記載のソーダ
    回収ボイラ伝熱管用オーステナイトステレス鋼。
JP35369492A 1992-12-15 1992-12-15 ソーダ回収ボイラ伝熱管用オーステナイトステンレス鋼 Pending JPH06179952A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35369492A JPH06179952A (ja) 1992-12-15 1992-12-15 ソーダ回収ボイラ伝熱管用オーステナイトステンレス鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35369492A JPH06179952A (ja) 1992-12-15 1992-12-15 ソーダ回収ボイラ伝熱管用オーステナイトステンレス鋼

Publications (1)

Publication Number Publication Date
JPH06179952A true JPH06179952A (ja) 1994-06-28

Family

ID=18432592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35369492A Pending JPH06179952A (ja) 1992-12-15 1992-12-15 ソーダ回収ボイラ伝熱管用オーステナイトステンレス鋼

Country Status (1)

Country Link
JP (1) JPH06179952A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249946A (ja) * 1996-03-14 1997-09-22 Nkk Corp 加圧流動床燃焼型火力発電プラント用鋼
JP2000214143A (ja) * 1999-01-22 2000-08-04 Ishikawajima Harima Heavy Ind Co Ltd 非破壊検査用模擬試験体の製造方法及び非破壊検査方法
US20040156737A1 (en) * 2003-02-06 2004-08-12 Rakowski James M. Austenitic stainless steels including molybdenum
JP2014515436A (ja) * 2011-05-26 2014-06-30 ユナイテッド・パイプラインズ・アジア・パシフィック・プライベイト・リミテッド オーステナイト系ステンレス鋼
JP2018146137A (ja) * 2017-03-02 2018-09-20 三菱重工業株式会社 防食方法および防食制御装置
EP3441495A4 (en) * 2016-04-07 2019-11-20 Nippon Steel Corporation AUSTENITIC STAINLESS STEEL MATERIAL
CN112730171A (zh) * 2020-12-30 2021-04-30 成都市海瑞产品质量技术检测有限公司 一种低碳高合金材料的晶粒度检测方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249946A (ja) * 1996-03-14 1997-09-22 Nkk Corp 加圧流動床燃焼型火力発電プラント用鋼
JP2000214143A (ja) * 1999-01-22 2000-08-04 Ishikawajima Harima Heavy Ind Co Ltd 非破壊検査用模擬試験体の製造方法及び非破壊検査方法
US20040156737A1 (en) * 2003-02-06 2004-08-12 Rakowski James M. Austenitic stainless steels including molybdenum
JP2014515436A (ja) * 2011-05-26 2014-06-30 ユナイテッド・パイプラインズ・アジア・パシフィック・プライベイト・リミテッド オーステナイト系ステンレス鋼
US9803267B2 (en) 2011-05-26 2017-10-31 Upl, L.L.C. Austenitic stainless steel
EP2714955B1 (en) * 2011-05-26 2021-06-30 N'Genius Technology Limited Austenitic stainless steel
EP3441495A4 (en) * 2016-04-07 2019-11-20 Nippon Steel Corporation AUSTENITIC STAINLESS STEEL MATERIAL
JP2018146137A (ja) * 2017-03-02 2018-09-20 三菱重工業株式会社 防食方法および防食制御装置
CN112730171A (zh) * 2020-12-30 2021-04-30 成都市海瑞产品质量技术检测有限公司 一种低碳高合金材料的晶粒度检测方法

Similar Documents

Publication Publication Date Title
JP4946242B2 (ja) オーステナイト系ステンレス鋼溶接継手及びオーステナイト系ステンレス鋼溶接材料
JP4484093B2 (ja) Ni基耐熱合金
EP0834580B1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
US5879818A (en) Nickel-based alloy excellent in corrosion resistance and workability
JP4656251B1 (ja) Ni基合金材
US5378427A (en) Corrosion-resistant alloy heat transfer tubes for heat-recovery boilers
GB2122221A (en) Improvements in and relating to boiler tubes
JP2002241900A (ja) 耐硫酸腐食性と加工性に優れたオーステナイト系ステンレス鋼
JPH10280085A (ja) 靱性に優れた低Crフェライト鋼用溶接材料
JPH062927B2 (ja) 耐食、耐酸化性に優れた高強度低合金鋼
JP7114998B2 (ja) オーステナイト系ステンレス鋼
JPH06179952A (ja) ソーダ回収ボイラ伝熱管用オーステナイトステンレス鋼
JPH0245696B2 (ja) Sekitannenshoofukumupurantoyoboirachuubu
JP2643709B2 (ja) ボイラ伝熱管用高耐食合金
JPH0570895A (ja) ごみ焼却廃熱ボイラ伝熱管用高耐食合金鋼
US5194222A (en) Alloy and composite steel tube with corrosion resistance in combustion environment where v, na, s and c1 are present
JP2817456B2 (ja) ごみ焼却廃熱ボイラ管用高合金鋼
JPH05195127A (ja) ボイラ伝熱管用高耐食合金
JPH08120392A (ja) 高効率廃棄物発電ボイラ過熱器管用オーステナイト系耐食合金
JP2691093B2 (ja) ソーダ回収ボイラ用高温耐食合金
JP2575250B2 (ja) 耐食性および溶接性の優れたラインパイプ
JPH05148587A (ja) ごみ焼却ボイラ伝熱管用高耐食合金
JPH0430463B2 (ja)
JP2000192201A (ja) 廃棄物焼却プラントボイラ伝熱管用高耐食性オ―ステナイト系ステンレス鋼
JPH0660365B2 (ja) 高強度・高耐食性合金