JPH059091A - 垂直温度勾配冷却単結晶成長装置 - Google Patents

垂直温度勾配冷却単結晶成長装置

Info

Publication number
JPH059091A
JPH059091A JP3022076A JP2207691A JPH059091A JP H059091 A JPH059091 A JP H059091A JP 3022076 A JP3022076 A JP 3022076A JP 2207691 A JP2207691 A JP 2207691A JP H059091 A JPH059091 A JP H059091A
Authority
JP
Japan
Prior art keywords
electric furnace
crystal growth
reaction tube
temperature gradient
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3022076A
Other languages
English (en)
Other versions
JPH0672076B2 (ja
Inventor
Suk-Ki Min
碩基 閔
Seung Chul Park
承徹 朴
Chul Won Han
哲源 韓
Young Ju Park
▲よん▼柱 朴
Kwang Bo Shim
光輔 沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH059091A publication Critical patent/JPH059091A/ja
Publication of JPH0672076B2 publication Critical patent/JPH0672076B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/006Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/90Apparatus characterized by composition or treatment thereof, e.g. surface finish, surface coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1012Apparatus with means for measuring, testing, or sensing with a window or port for visual observation or examination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1092Shape defined by a solid member other than seed or product [e.g., Bridgman-Stockbarger]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

(57)【要約】 【目的】 結晶成長過程を肉眼で観察可能にして再現性
を持たせると共に、高温部における温度制御の精度向上
及び容易化を図るものである。 【構成】 低温部電気炉7と、その上部に内部に冷却水
の循環が可能で内壁に金箔膜10を塗布した透視可能な2
重石英管13とその内側に熱線15と該熱線15の内側に保護
用石英管14とを有する高温部電気炉6とを垂直方向移動
可能に設け、該高温部電気炉6内で、種子結晶31とガリ
ウム砒素多結晶を装入した反応容器33を挿入した反応管
30を回転装置26で回転させながら加熱し、固−液界面位
置に応じて電気炉位置を移動させる。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ガリウム砒素(GaA
s)を始めとするIII-V,II-VI 族化合物半導体材料の単
結晶成長装置に関するもので、特に、垂直温度勾配冷却
法(verticalgradient freeze method)を用いた単結晶
成長装置に関する。
【0002】
【従来の技術】現在、一般的に使用されている単結晶成
長法として、ガリウム砒素(GaAs)ウエハ(wafer)
製造時実用化されている代表的な2つの製造方法には、
水平ブリッジマン(Horizontal Bridgman)法と液状封入
チョクラルスキー(Liquid en-capsulated Czochralsk
i)法が広く知られている。
【0003】水平ブリッジマン単結晶成長方法は、高温
部と低温部とが具備された石英反応管内部に各々液状の
ガリウムと固状の砒素を位置させた後、高温で加熱しガ
リウム砒素を合成させガリウム砒素溶融液を得た状態
で、その石英反応管周囲の成長炉を水平移動させながら
単結晶を成長させる形態で、この様な単結晶成長方法に
依り製造されたウエハは、低い温度勾配に従い転位欠陥
の少ない高品位を維持するという長所が有るが、反面、
ウエハの断面が円形でない半円形でありその直径が小さ
く2インチ以上の直径が大きいウエハの製作が難しい短
所がある。
【0004】一方、液状封入チョクラルスキー法に依り
製造されたウエハは、その断面が円形でありその大きさ
に於いても3インチ以上の比較的大きな直径を持つ反
面、結晶成長時固−液界面の軸方向又は放射方向の高い
温度勾配に起因する過度の熱応力が作用する為に、水平
ブリッジマン法により製造されたウエハに比べ多くの転
位欠陥(104 〜105cm -2)が生成されるという問題点が
ある。
【0005】この様な水平ブリッジマン法及び液状封入
チョクラルスキー法が持っている諸般問題点を勘案し開
発された新しい形態の単結晶成長方法として、垂直温度
勾配冷却法(vertical gradient freeze method)が知ら
れている。この垂直温度勾配冷却法に依る単結晶成長の
基本原理は、先ずPBN(pyrol-ytic boron nitride)
反応容器とか石英反応容器内部に、予め合成された高純
度のガリウム砒素多結晶を装入して高温部電気炉内側に
装着するのと併せて、低温部には反応管内部を1気圧に
維持させてやる為の砒素を位置させた後、高温部の温度
勾配を変化させガリウム砒素溶融液の入れられた反応容
器の下段部に位置した種子結晶を起点にして固−液界面
が漸次上部に移動するよう徐々に凝固させる事で単結晶
を成長させるものである。かかる単結晶成長方法は、19
73年,S.E.B-lum 等に依り始めてガリウム燐(GaP)
単結晶の成長に試図されて以来、この方法に対する多く
の研究が行われている〔参照:S.E.Blum and R.J.Chico
tka, J.Electrochem. Soc. 120(1973)588 〕。
【0006】この様な垂直温度勾配冷却法を利用したII
I-V 族,II-VI 族化合物半導体の単結晶成長装置とし
て、半絶縁性の比較的低い転位密度を現しながら大直径
の円形ガリウム砒素ウエハを製造する事の出来る半導体
化合物の単結晶成長装置が米国特許第4,404,172 号に示
されている。
【0007】
【発明が解決しようとする課題】しかし、上記米国特許
第4,404,172号を始めとする既存の垂直温度勾配冷却法
を利用した装置は、大部分高圧容器を使用するために構
造が複雑で製作に困難が有るだけでなく、高温部電気炉
の熱容量が大きいから単結晶成長時敏感な温度勾配の変
化を与える事が出来なく、熱源が黒鉛発熱体である場合
その発熱体の形状に従い反応管周囲の温度分布が定めら
れる為に、最適の結晶成長条件を任意に調節しながら探
し出すのが容易でなく、多数の熱伝帯を装着し測定され
た温度を土台とし温度制御をするもので結晶成長時電気
炉内部の単結晶成長過程を実際に肉眼で観察する事の出
来ない等の問題点があり再現性(reproducibility)のあ
る結晶成長に困難が伴う短所がある。
【0008】そこで、本発明は上述したような従来の垂
直温度勾配冷却法を利用した単結晶成長装置の問題点を
勘案し創案したもので、単結晶の成長を容易に肉眼で観
察できると共に、温度分布を良好に保ち、しかも熱容量
が小さく敏感な温度勾配の変化を与えられるようにした
ディレクトモニタリング電気炉を利用した垂直温度勾配
冷却単結晶成長装置を提供することを目的とする。
【0009】尚、本発明の単結晶成長装置は、本出願人
に依り先に出願された単結晶成長装置(特開平2−18
374号公報)を改良し、垂直温度勾配冷却法に適合す
るよう創案したものである。
【0010】
【課題を解決するための手段】この様な目的を達成する
為に、本発明は、回転装置(26)に具備された反応管支持
台(27)に立設支持される反応管(30)の外周に、高温部電
気炉(6) と低温部電気炉(7) とを垂直方向移動可能に嵌
挿して配置すると共に、前記高温部電気炉(6)を、前記
反応管(30)の外側に配設される熱線(15)と、該熱線(15)
の外側に配設される円筒形の保護用石英管(14)と、該保
護用石英管(14)の外側に配設され内壁面に金箔膜(10)が
塗布され外壁面に冷却水流入出孔(11),(12) が形成され
た2重石英管(13)とで構成するようにした。
【0011】また、前記熱線(15)を、2つ以上の温度領
域に区分されてスパイラル状に形成すると共に、一巻き
毎に所定部位にアルミナのスペーサー(16)を嵌挿し、熱
線(15)上下端部にそれぞれ設けた円環状の上部及び下部
セラミック支持台(17),(17')の間に垂直立設されたセラ
ミック支持管(18),(18')に前記スペーサ(16)を固定して
支持する構成とした。
【0012】また、高温部電気炉(6) と低温部電気炉
(7) との連結部に円環状のセラミック断熱材(20)を介装
するようにした。また、高温部電気炉(6) と低温部電気
炉(7) を、下部支持台(2)上に垂直立設される一対のガ
イドレール(3),(3')に嵌挿される上部及び下部スライダ
ー(4a),(4'a),(4b),(4'b) に、上部及び下部連結板(5
a),(5'a),(5b),(5'b) を介してそれぞれ連結し、駆動ス
クリュー(9) の駆動により前記ガイドレール(3),(3')に
沿って垂直方向に移動可能に構成した。
【0013】また、上部スライダー(4a),(4'a)と下部ス
ライダー(4b),(4'b)が、着脱可能なコネクター(8),(8')
を介して連結され、コネクター(8),(8')による連結時、
両電気炉(6),(7) の垂直上下移送が一体に遂行され、コ
ネクター(8),(8')の取り外し時、両電気炉(6),(7) の垂
直上下移送が独立に遂行される構成とした。また、回転
装置(26)に具備された反応管支持台(27)の内側には、反
応管支柱(29)を装着し、該反応管支柱(29)上部に、前記
反応管(30)を設置する構成とした。
【0014】また、反応管支柱(29)を、上端面が平面を
成し中心部に熱伝帯挿入用孔(28)を垂直方向に穿孔する
構成とした。
【0015】
【作用】かかる構成によれば、高温部に、内部が覗き見
れる2重石英管を具備した電気炉(6) を装着することに
よって、結晶成長の全過程を肉眼で観察する事が出来る
だけでなく、結晶成長時、敏感な温度勾配の変化を加え
る事ができ、急速加熱が可能で低欠陥、大直径のガリウ
ム砒素単結晶の製造が可能となる。
【0016】即ち、内部に冷却水の循環が可能な2重石
英管(13)の内壁に設けた金箔膜(10)が、赤外線は反射
し、可視光線は部分的に透過させることができるので、
結晶成長過程の観察の為の別途の補助設備を必要としな
いまま結晶成長の全過程を肉眼で観察することができ
る。また、金箔膜(10)が、大部分の赤外線を反射するこ
とにより、熱絶縁体の役割をすると同時に、強い熱集束
力により高温部での均一な温度分布を得ることができる
と共に、2重石英管(13)内側の熱容量を実質的に極小化
でき、これによって、短時間で加熱及び冷却が可能で結
晶成長時敏感な温度勾配の変化を加える事が可能とな
る。
【0017】また、回転装置(26)により反応管(30)を
回転させることにより、電気炉(6)内部の放射方向の熱
的不均衡を最小化することができると共に、電気炉が垂
直移動可能であるため、結晶成長時に固−液界面の正確
な位置調節ができ精密な温度制御ができるようになる。
また、高温部電気炉(6) の熱線(15)を、スパイラル状に
形成し一巻き毎にアルミナのスペーサー(16)を嵌挿する
と共に、熱線(15)上下端部に円環状の上部及び下部セラ
ミック支持台(17),(17')を設け、これらの間に垂直立設
されたセラミック支持管(18),(18')にスペーサ(16)を固
定して支持する構成とすることにより、熱線(15)間の接
触を防止でき、高温時に形がくずれることを防止でき
る。
【0018】また、高温部電気炉(6) と低温部電気炉
(7) との連結部に円環状のセラミック断熱材(20)を設け
ることにより、放射方向に対する熱的平衡を良好に維持
して高温部と低温部間の温度分布に陥没現象(kink)を与
えずに滑らかに繋がるようにさせることができる。ま
た、コネクター(8),(8')を介して両電気炉(6),(7) が結
合又は分離可能に構成すれば、両電気炉(6),(7) に跨が
って炉内に設ける反応管(30)の装着作業が円滑に行え
る。
【0019】また、反応管(30)を支持する支持する反応
管支柱(29)の上端面を平面とすることにより、反応管(3
0)が回転運動しても安定に支持することができる。そし
て、熱伝帯挿入用孔(29)を設ければ、反応管(30)の下端
部に位置させる砒素(36)の温度を正確にモニタリングす
ることができるようになる。
【0020】
【実施例】以下に、本発明装置の一実施例を図示した添
付図面を参照し具体的に説明する。図1は本実施例の単
結晶成長装置の全体的な構成を示した正面図である。図
において、上部支持台1と下部支持台2との間に、互い
に平行した2個の棒状ガイドレール3,3’が垂直立設
されている。そのガイドレール3,3’の外周面上に
は、これらガイドレール3,3’に案内され垂直移送が
可能で、その移送範囲が上部ストッパー3a, 3'a及び
下部ストッパー3b,3'bに依り規制される円筒型の上
部スライダー4a, 4'a及び下部スライダー4b, 4'b
が嵌挿され、その上部及び下部スライダー4a, 4'a,
4b, 4'bは、上部連結板5a, 5'a及び下部連結板5
b, 5'bに依り高温部電気炉であるディレクトモニタリ
ング電気炉6及び低温部電気炉7の外周面に固定結合さ
れる。
【0021】又、上部スライダー4a, 4'aと下部スラ
イダー4b, 4'bは、着脱可能なコネクター8,8’に
依り互いに連結され、これら上部及び下部スライダーム
4a, 4'a,4b, 4'bの上昇及び下降運動は、電気炉
6,7の図中後方に位置する駆動スクリュー9の駆動に
依り遂行されるが、この時、ディレクトモニタリング電
気炉6と低温部電気炉7は、上記コネクター8,8’の
相互接続可否に従い一体に又は独立的に動くよう構成さ
れている。即ち、前記駆動スクリュー9はディレクトモ
ニタリング電気炉6側に直接連結されており、コネクタ
ー8,8' により上部スランダー4a,4'aと下部スラ
イダーム4b, 4'bが連結状態にある場合には、駆動ス
クリュー9により両電気炉6,7は一体に昇降し、コネ
クター8,8' を外して上部スランダー4a,4'aと下
部スライダーム4b, 4'bを分離状態にした場合には、
駆動スクリュー9によりディレクトモニタリング電気炉
6のみが昇降し低温部電気炉7は動かない。この時に
は、低温部電気炉7は、ディレクトモニタリング電気炉
6とは独立に手動で昇降できるようになっている。ま
た、電気炉6、7の駆動スクリュー9に掛かる荷重を最
小化する為に重量錘(図示せず)が設置される。
【0022】一方、ディレクトモニタリング電気炉6は
本発明装置の最も重要な構成で、その具体的な構成を図
2に示し説明する。内壁面に金膜液(gold solution, G
lanzgold CG-2110, DODUCOKG, W-Germany) で塗布され
た金箔膜10が形成され、外壁面の下部一側に冷却水流入
口11が具備され上部一側に冷却水流出口12が形成されて
内部に冷却水の循環が可能な2重石英管13が設けられ
る。この2重石英管13の内側には、熱線15からの赤外線
を一次的に吸収し金箔膜10の直接加熱を防止する為に円
筒状の保護用石英管14が位置し、更にこの保護用石英管
14の内側に、3つの温度領域に区分されるカンタル線
(Kanthal wire) 又は白金線からなるスパイラル状の熱
線15が設けられる。
【0023】この時、隣接熱線15間の相互接触を防止す
る為に熱線15周囲の両側部上に所定の厚さを持つアルミ
ナ材質のスペーサー16を嵌挿し、隣接熱線15間に所定の
間隙を設ける一方、高温加熱時、熱線15本来の形態を維
持する為に、熱線15の上下両端に円環状のセラミック材
質から成る上部及び下部セラミック支持台17,17’をセ
ラミック支持管18,18’で連結支持して設け、セラミッ
ク支持管18,18’上に接着剤(ceramic bond)でスペー
サー16を付着して接着固定させる。また、温度制御用熱
伝帯(図示せず)を3つの温度領域に区分した各領域に
付着し互いに異なる温度勾配を付与し温度勾配冷却が可
能であるように構成する。
【0024】このような構成を持つディレクトモニタリ
ング電気炉6は、更に図1に図示したように、上端部に
円板状のセラミック断熱材19が装着され熱損失の防止及
び電気炉内部の熱的平衡状態を維持するよう構成し、そ
の下端部の低温部電気炉7上端部と接触する部位には、
二重石英管13,保護用石英管14及び熱線15を支持するた
めの円環状の異なるセラミック断熱材20が装着される。
また、前記セラミック断熱材20は、放射方向に対する熱
的平衡を良好に維持して高温部と低温部間の温度分布に
陥没現象(kink)を与えずに滑らかにつなげる役割も有す
る。
【0025】次に、ディレクトモニタリング電気炉6の
下側に位置する低温部電気炉7は、内部に3つの領域に
区分されたニクロム線材質の熱線21がその周囲を断熱材
22で囲まれるようにして上、下全長に亘って設けられ、
各領域には精密な温度制御の為に装着される温度制御用
熱伝帯の挿入の為の熱伝帯挿入ホール23が貫通形成され
ている。また、低温部電気炉7の下端部には円板状のセ
ラミック断熱材24が設けられる。
【0026】一方、低温部電気炉7の内側円筒形空間部
には、下部支持台2中央部に設置され直流モータ25で駆
動する回転装置26上に結合された円筒形の反応管支持台
27が垂直入設され、反応管支持台27の内部中央部には、
垂直に穿孔された熱伝帯用孔28を具備した耐火物材質の
反応管支柱29が挿入設置される。そして、上記反応管支
持台27の内側反応管支柱29の平面をなす上端部上には、
ディレクトモニタリング電気炉6の内側空間部に向かい
垂直入設された結晶成長用反応管30が正,逆回転が可能
であるように挿入設置され、その結晶成長用反応管30の
内側には、下端部に種子結晶31が位置しその上方内部に
ガリウム砒素多結晶32が装入される反応容器33及びその
反応容器33を支持する為の反応容器支柱34とこれら反応
容器33及び反応容器支柱34を垂直に支持する石英プラグ
35が挿入される。
【0027】又、中央部に熱伝帯用孔28を持つ反応管支
柱29の上端平面部上に位置する結晶成長用反応管30の底
面部には内部を1気圧に維持させる為に砒素36を位置さ
せる。直流モーター25は、その下端部のモーター支柱37
の調整を通じその位置変化が可能になっている。また、
結晶成長装置に印加される電源は、低温部電気炉7の上
端一側に設けられた電源供給用コード38を通じ供給す
る。反応容器33の下部に位置する反応容器支柱34は高温
成形されたBN(boron nitride)とか高純度の黒鉛又は
シリコン単結晶の加工を通じ製造されたものが使用され
る。
【0028】このように構成された本実施例装置を利用
し化合物半導体単結晶を成長させる過程は次の通りであ
る。先ず、結晶成長用反応管30の底面に砒素36を位置さ
せると同時に反応容器33の下端部に種子結晶31を嵌め込
み、その上部にはガリウム砒素多結晶32を装入した後、
結晶成長用反応管30内部を10-6Torrの真空に維持した状
態で電力供給用コード38を通じ電源を印加し、ディレク
トモニタリング電気炉6及び低温部電気炉7を稼動させ
加熱を行う。
【0029】この時、下部に設置した回転装置26を駆動
させその回転装置26と結合した結晶成長用反応管30を正
回転又は逆回転させる事で電気炉6,7内部の放射方向
の熱的不平衡を最小化するのと併せて電気炉6,7上に
形成された多数個の熱伝帯を通じ電気炉6,7内部の温
度をチェックし所定の温度勾配を得る。図3は本実施例
装置を通じガリウム砒素単結晶を成長させる時に要求さ
れる典型的な温度勾配を図示したグラフで、これに示し
たように、ディレクトモニタリング電気炉6を駆動スク
リュー9を介して移送して反応容器33に装入されたガリ
ウム砒素32の融点(1238℃)が種子結晶31が位置した地
点の上端部に分布する様にし液状のガリウム砒素32が種
子結晶31の上端部と接触し単結晶成長が進行されるが、
この時、反応容器33のテイパー部39からその上部では温
度勾配を多少小さくする反面、その下側の種子結晶31の
下端部に至る迄の部分は多少大きい温度勾配を維持させ
る事で結晶成長が円滑に遂行される。
【0030】特に、固−液界面40が形成され単結晶の成
長が進行する部分の温度勾配は各領域(I,II, III )
の温度分布を適切に組合わせ殆ど一定であるよう維持し
なければならない。そして、単結晶成長が行われる高温
部のディレクトモニタリング電気炉6では、金箔膜10が
熱線15から発せられた大部分の赤外線を反射することに
より熱絶縁体の役割をすると同時に強い熱集束力が得ら
れるので、実質的に電気炉6内部の熱容量を極小化でき
る。これにより、短時間に所定温度(1240℃)領域まで
の急速加熱が可能で均一な温度分布状態が得られると共
に敏感な温度勾配の変化を与えることができる。また、
金箔膜10が可視光線の一部を透過するため、単結晶成長
の全過程を肉眼で透視して直接観察することができ、再
現性のある単結晶成長が遂行できる。従って、欠陥の発
生を防止しつつ大直径のガリウム砒素単結晶の作成でき
る。
【0031】また、熱線15にスペーサ16を設けると共
に、熱線15の上下端にセラミック支持台17,17' を設
け、これら両セラミック支持台17,17' を2本のセラミ
ック支持管18,18' で連結支持し、垂直立設した前記セ
ラミック支持管18,18'にスペーサ16を接着固定して熱
線15を固定支持するよう構成してあるので、熱線15相互
が接触することがなく、高温加熱時にも熱線15本来の形
態を維持できると共に高温部の適切な温度勾配を確保で
きる。
【0032】
【発明の効果】以上で説明したように本発明によれば、
内壁面に金箔膜の塗布された2重石英管を具備したディ
レクトモニタリング電気炉に依り得られる高温部の強い
熱集束力で、1240℃以上で均一な温度分布を得る事がで
きるだけでなく、熱容量の極小化により急速加熱及び冷
却ができ敏感な温度勾配の変化を与えられ精密な温度制
御が容易になる。また、固−液界面の形成と結晶成長全
過程を肉眼又はCCD(charge coupled device)等の撮
像デバイスを通じ直接観察可能でガリウム砒素を始めと
するIII-V 族及びII-VI 族化合物半導体材料のバルク(b
ulk)単結晶の製造は勿論、多結晶の合成時にも再現性を
持たせることができる。
【0033】又、本発明は電気炉の垂直昇降移動が可能
であるに従い結晶成長時固−液界面の正確な位置調節が
可能で短時間内に1240℃以上の高温加熱及び冷却と精密
な温度制御が可能で温度勾配冷却法に最適の条件を提供
すると併せて垂直ブリッジマン単結晶成長にも利用でき
る利点がある。
【図面の簡単な説明】
【図1】本発明装置の一実施例の全体的な構成を示した
一部切欠正面図
【図2】図1のディレクトモニタリング電気炉の拡大図
【図3】本実施例の垂直温度勾配冷却単結晶成長装置の
単結晶成長時の典型的な温度分布を示したグラフ。
【符号の説明】
2 下部支持台 3 ガイドレール 3' ガイドレール 4a 上部スライダー 4'a 上部スライダー 4b 下部スライダー 4'b 下部スライダー 5a 上部連結板 5'a 上部連結板 5b 下部連結板 5'b 下部連結板 6 ディレクトモニタリング電気炉 7 低温部電気炉 26 回転装置 27 反応管支持台
フロントページの続き (72)発明者 朴 ▲よん▼柱 大韓民国ソウル特別市瑞草区瑞草洞192− 3 (72)発明者 沈 光輔 大韓民国ソウル特別市松坡区蚕室洞44

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】回転装置(26)に具備された反応管支持台(2
    7)に立設支持される反応管(30)の外周に、高温部電気炉
    (6) と低温部電気炉(7) とを垂直方向移動可能に嵌挿し
    て配置すると共に、前記高温部電気炉(6) を、前記反応
    管(30)の外側に配設される熱線(15)と、該熱線(15)の外
    側に配設される円筒形の保護用石英管(14)と、該保護用
    石英管(14)の外側に配設され内壁面に金箔膜(10)が塗布
    され外壁面に冷却水流入出孔(11),(12) が形成された2
    重石英管(13)とで構成したことを特徴とする垂直温度勾
    配冷却単結晶成長装置。
  2. 【請求項2】前記熱線(15)は、2つ以上の温度領域に区
    分されてスパイラル状に形成されると共に、一巻き毎に
    所定部位にアルミナのスペーサー(16)が嵌挿され、熱線
    (15)上下端部にそれぞれ設けた円環状の上部及び下部セ
    ラミック支持台(17),(17')の間に垂直立設されたセラミ
    ック支持管(18),(18')に前記スペーサ(16)を固定して支
    持されてなる請求項1記載の垂直温度勾配冷却単結晶成
    長装置。
  3. 【請求項3】高温部電気炉(6) と低温部電気炉(7) との
    連結部に円環状のセラミック断熱材(20)を介装してなる
    請求項1記載の垂直温度勾配冷却単結晶成長装置。
  4. 【請求項4】高温部電気炉(6) と低温部電気炉(7) は、
    下部支持台(2) 上に垂直立設される一対のガイドレール
    (3),(3')に嵌挿される上部及び下部スライダー(4a),(4'
    a),(4b),(4'b) に、上部及び下部連結板(5a),(5'a),(5
    b),(5'b) を介してそれぞれ連結され、駆動スクリュー
    (9) の駆動により前記ガイドレール(3),(3')に沿って垂
    直方向に移動可能に構成されてなる請求項1記載の垂直
    温度勾配冷却単結晶成長装置。
  5. 【請求項5】上部スライダー(4a),(4'a)と下部スライダ
    ー(4b),(4'b)が、着脱可能なコネクター(8),(8')を介し
    て連結され、コネクター(8),(8')による連結時、両電気
    炉(6),(7) の垂直上下移送が一体に遂行され、コネクタ
    ー(8),(8')の取り外し時、両電気炉(6),(7) の垂直上下
    移送が独立に遂行される構成である請求項4記載の垂直
    温度勾配冷却単結晶成長装置。
  6. 【請求項6】回転装置(26)に具備された反応管支持台(2
    7)の内側には、反応管支柱(29)が装着され、該反応管支
    柱(29)上部に、前記反応管(30)が設置される構成である
    請求項1記載の垂直温度勾配冷却単結晶成長装置。
  7. 【請求項7】反応管支柱(29)は、上端面が平面を成し中
    心部に熱伝帯挿入用孔(28)が垂直方向に穿孔されてなる
    請求項6記載の垂直温度勾配冷却単結晶成長装置。
JP3022076A 1990-04-04 1991-02-15 垂直温度勾配冷却単結晶成長装置 Expired - Lifetime JPH0672076B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019900004653A KR930005015B1 (ko) 1990-04-04 1990-04-04 디렉트 모니터링 전기로를 이용한 수직온도구배냉각 화합물 반도체 단결정 성장장치
KR4653/1990 1990-04-04

Publications (2)

Publication Number Publication Date
JPH059091A true JPH059091A (ja) 1993-01-19
JPH0672076B2 JPH0672076B2 (ja) 1994-09-14

Family

ID=19297696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022076A Expired - Lifetime JPH0672076B2 (ja) 1990-04-04 1991-02-15 垂直温度勾配冷却単結晶成長装置

Country Status (3)

Country Link
US (1) US5135726A (ja)
JP (1) JPH0672076B2 (ja)
KR (1) KR930005015B1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772116B2 (ja) * 1991-02-15 1995-08-02 信越半導体株式会社 単結晶引上装置
US5438953A (en) * 1992-03-19 1995-08-08 Mitsui Mining & Smelting Co., Ltd. Crystal growth apparatus
US5656079A (en) * 1993-02-26 1997-08-12 The United States Of America As Represented By The Air Force Statement of government interest
KR0176328B1 (ko) * 1995-12-19 1999-03-20 김은영 축방향 자기장을 인가할 수 있는 수직온도 구배냉각 및 수직브릿지만 화합물 반도체 단결정 성장장치
JP3201305B2 (ja) 1996-04-26 2001-08-20 住友電気工業株式会社 Iii−v族化合物半導体結晶の製造方法
JP4135239B2 (ja) * 1997-12-26 2008-08-20 住友電気工業株式会社 半導体結晶およびその製造方法ならびに製造装置
JP3509556B2 (ja) * 1998-06-03 2004-03-22 日立電線株式会社 単結晶の製造方法および製造装置
US20030172870A1 (en) * 2002-03-14 2003-09-18 Axt, Inc. Apparatus for growing monocrystalline group II-VI and III-V compounds
CN104165898A (zh) * 2014-08-21 2014-11-26 共慧冶金设备科技(苏州)有限公司 大温度梯度布里奇曼炉
TWI833617B (zh) * 2023-03-24 2024-02-21 國立勤益科技大學 晶體生長裝置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242175A (en) * 1978-12-26 1980-12-30 Zumbrunnen Allen D Silicon refining process
US4404172A (en) * 1981-01-05 1983-09-13 Western Electric Company, Inc. Method and apparatus for forming and growing a single crystal of a semiconductor compound
US4863553A (en) * 1982-11-15 1989-09-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of preparing radially homogenous mercury cadmium telluride crystals
US4904336A (en) * 1987-04-28 1990-02-27 The Furukawa Electric Co., Ltd. Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
KR910006743B1 (ko) * 1988-07-05 1991-09-02 한국과학기술원 디렉트 모니터링(Direct Monitoring)전기로를 이용한 수평브리지만(Bridgman)단결정성장장치

Also Published As

Publication number Publication date
JPH0672076B2 (ja) 1994-09-14
US5135726A (en) 1992-08-04
KR910018581A (ko) 1991-11-30
KR930005015B1 (ko) 1993-06-11

Similar Documents

Publication Publication Date Title
US3898051A (en) Crystal growing
JPH01305882A (ja) 板/スラブの形の大きな単結晶の成長のための装置及び方法
EP0140509B1 (en) An lec method and apparatus for growing single crystal
JP2012508153A (ja) 単結晶ゲルマニウムの結晶成長システム、方法および基板
JPH092897A (ja) 多結晶半導体の製造方法および製造装置
JPH059091A (ja) 垂直温度勾配冷却単結晶成長装置
JP2896879B2 (ja) 単結晶成長装置
KR910006743B1 (ko) 디렉트 모니터링(Direct Monitoring)전기로를 이용한 수평브리지만(Bridgman)단결정성장장치
KR930006955B1 (ko) 디렉트 모니터링 전기로를 이용한 수평대역용융 단결정 성장장치
JPH0971497A (ja) 多結晶半導体の製造方法
JPH1179880A (ja) 大口径蛍石の製造装置および製造方法
JPS6046073B2 (ja) 半導体単結晶の製造方法
JP2023539379A (ja) シリコン充填物を覆うためのカバー部材を有する結晶引上げシステム、及びシリコン溶融物をるつぼアセンブリ内で成長させるための方法
JP2002104896A (ja) 単結晶の成長方法および成長装置
JP2704032B2 (ja) 化合物半導体単結晶の製造方法
JPS598695A (ja) 結晶成長装置
JP2004203721A (ja) 単結晶成長装置および成長方法
JP2543449B2 (ja) 結晶成長方法および装置
KR20060101453A (ko) 고품질 실리콘 단결정 잉곳 성장장치 및 성장방법
JPH05139878A (ja) 単結晶の育成装置及び育成方法
JP2830392B2 (ja) 化合物半導体単結晶の製造方法及び製造装置
JPH0234592A (ja) 化合物半導体単結晶の成長方法
JPH0585881A (ja) 単結晶引上装置
JPH04187585A (ja) 結晶成長装置
CN117684250A (zh) 一种实现窄峰型温场生长CdZnTe单晶体的装置及方法