JPH0582071B2 - - Google Patents

Info

Publication number
JPH0582071B2
JPH0582071B2 JP58133329A JP13332983A JPH0582071B2 JP H0582071 B2 JPH0582071 B2 JP H0582071B2 JP 58133329 A JP58133329 A JP 58133329A JP 13332983 A JP13332983 A JP 13332983A JP H0582071 B2 JPH0582071 B2 JP H0582071B2
Authority
JP
Japan
Prior art keywords
film
gate electrode
wiring
insulating film
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58133329A
Other languages
Japanese (ja)
Other versions
JPS6025254A (en
Inventor
Nobuhiro Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13332983A priority Critical patent/JPS6025254A/en
Publication of JPS6025254A publication Critical patent/JPS6025254A/en
Publication of JPH0582071B2 publication Critical patent/JPH0582071B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は集積回路の配線方法に関し、更に詳し
くは基板面に垂直に設けた電極や配線に対して電
気的に接続を行なう集積回路の配線方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit wiring method, and more particularly to an integrated circuit wiring method for electrically connecting electrodes and wires provided perpendicularly to a substrate surface.

従来の絶縁ゲート電解効果型トランジスタは一
般にソース・ドレイン領域、チヤネル又はゲート
電極領域、チヤネルストツパー領域がそれぞれ平
面的に配置されていた。このためそれぞれの領域
を微細化することによつて素子集積密度を高めて
はいるものの、例えばチヤネル長が短かくなると
素子のしきい値電圧値が低下する短チヤネル効果
が顕著となつたり、パンチスルー電圧が低下した
りしてより高密度化することは困難になつてき
た。第1図は従来多用されてきたMOS電界効果
トランジスタの模式的断面図であり、1はp型シ
リコン基板、2はチヤネルストツパー領域、3は
厚いフイールド酸化膜、4はゲート酸化膜、5は
しきい値電圧を制御するための不純物注入層、6
はソース・ドレイン領域、7はゲート電極、8は
層間絶縁膜、9はソース・ドレイン電極を形成す
るためのコンタクト穴である。
In a conventional insulated gate field effect transistor, a source/drain region, a channel or gate electrode region, and a channel stopper region are generally arranged in a planar manner. For this reason, although the device integration density has been increased by miniaturizing each region, for example, as the channel length becomes shorter, the short channel effect, which lowers the threshold voltage value of the device, becomes noticeable, and It has become difficult to achieve higher density due to the drop in through voltage. FIG. 1 is a schematic cross-sectional view of a conventionally widely used MOS field effect transistor, in which 1 is a p-type silicon substrate, 2 is a channel stopper region, 3 is a thick field oxide film, 4 is a gate oxide film, and 5 is a impurity implantation layer for controlling threshold voltage, 6
are source/drain regions, 7 is a gate electrode, 8 is an interlayer insulating film, and 9 is a contact hole for forming the source/drain electrodes.

このように素子分離領域、ゲート領域、ソー
ス・ドレイン領域は平面的に配置されているた
め、それぞれを微細化しないと高集積化の効果は
少ない。しかるに例えば素子分離にはシリコン窒
化膜をマスクとした選択酸化法(LOCOS)が用
いられているので、フイールド酸化膜の周囲に酸
化による広がり(bird′s beak)が生じて、微細
化に支障をきたしていた。
In this way, since the element isolation region, gate region, and source/drain region are arranged in a plane, the effect of high integration will be small unless each of them is miniaturized. However, for example, selective oxidation (LOCOS) using a silicon nitride film as a mask is used for element isolation, which causes oxidation-induced spread (bird's beak) around the field oxide film, which hinders miniaturization. It was coming.

この従来構造の欠点を改善する新しい半導体装
置の構造を本発明者は提案している。すなわち第
2図に示されるようにゲート電極とソース・ドレ
イン領域が基板表面に対して垂直に構成されてい
るものである。第2図はこの提案された構造の一
例を第1図に対比して示した模式的斜視断面図
で、図中21は低抵抗n型シリコン基板、22は
厚いシリコン酸化膜、23は高濃度n型拡散層の
ソース領域、24は導電性多結晶シリコンゲート
電極、25はゲートシリコン酸化膜、26はシリ
コン単結晶領域、27は高濃度n型拡散層のドレ
イン領域をそれぞれ示している。
The present inventor has proposed a new semiconductor device structure that improves the drawbacks of this conventional structure. That is, as shown in FIG. 2, the gate electrode and source/drain regions are arranged perpendicular to the substrate surface. FIG. 2 is a schematic perspective sectional view showing an example of this proposed structure in comparison with FIG. 1. In the figure, 21 is a low resistance n-type silicon substrate, 22 is a thick silicon oxide film, and 23 is a high concentration 24 is a conductive polycrystalline silicon gate electrode, 25 is a gate silicon oxide film, 26 is a silicon single crystal region, and 27 is a drain region of a heavily doped n-type diffusion layer.

このように第2図に示された半導体装置の構造
はゲート電極とソース・ドレイン領域が基板表面
に対して垂直に設けられていることを特徴として
いる。すなわち単位トランジスタのチヤネル長は
絶縁膜の膜厚に大よそ相当する寸法であり、チヤ
ネル幅は絶縁膜に囲まれた単結晶シリコン領域の
周囲長に相当する寸法になる。このためトランジ
スタの単位寸法は使用する写真蝕刻技術で制限さ
れる程度まで微細化でき、しかも素子分離領域は
絶縁膜パターンを形成するためのマスク寸法だけ
で決まり、プロセス中に変化することがなく、ま
たチヤネルストツパー拡散層は不要となり、素子
の微細化にとつて極めて有効になる。しかし、本
構造のゲート電極は基板表面に対して垂直に形成
されているので、ゲート電極に対して電気的な接
続をすることが困難である。更に一般に基板表面
に対して垂直に形成された電極や配線に対して電
気的な接続を行なうことは困難である。
As described above, the structure of the semiconductor device shown in FIG. 2 is characterized in that the gate electrode and the source/drain regions are provided perpendicularly to the substrate surface. That is, the channel length of a unit transistor is a dimension roughly corresponding to the film thickness of the insulating film, and the channel width is a dimension corresponding to the peripheral length of a single crystal silicon region surrounded by the insulating film. Therefore, the unit dimensions of the transistor can be miniaturized to the extent limited by the photolithography technology used, and the element isolation region is determined only by the mask dimensions for forming the insulating film pattern and does not change during the process. Further, a channel stopper diffusion layer is not required, which is extremely effective in miniaturizing devices. However, since the gate electrode of this structure is formed perpendicularly to the substrate surface, it is difficult to make an electrical connection to the gate electrode. Furthermore, it is generally difficult to electrically connect electrodes and wiring formed perpendicularly to the substrate surface.

本発明の目的は、このように基板に対して垂直
に形成された電極や配線に対して電気的に接続を
簡単に行なうことができ、しかも配線を高密度化
することができる集積回路の配線方法を提供する
ことにある。
An object of the present invention is to provide wiring for integrated circuits that can easily electrically connect electrodes and wiring formed perpendicularly to a substrate and that can increase wiring density. The purpose is to provide a method.

本発明によれば絶縁膜の開口部の側壁に形成さ
れる電極あるいは配線に対して電気的に接続を行
なう集積回路の配線方法であつて、前記絶縁膜を
少くとも2層に構成し、各層の間に導電性を有す
るシリコンもしくは金属もしくは金属シリサイド
の配線パターンを設けておき、次に所望の部分の
前記絶縁膜の前記配線パターンをエツチング除去
し、露出した側壁に前記電極あるいは配線を形成
することを特徴とする集積回路の配線方法が得ら
れる。
According to the present invention, there is provided a wiring method for an integrated circuit for electrically connecting an electrode or a wiring formed on a side wall of an opening in an insulating film, wherein the insulating film is formed into at least two layers, and each layer A wiring pattern of conductive silicon, metal, or metal silicide is provided between the two, and then the wiring pattern of the insulating film is etched away at a desired portion, and the electrode or wiring is formed on the exposed side wall. A method for wiring an integrated circuit is obtained.

本発明の方法を用いると、平面に対して垂直に
形成した電極や配線に対して簡単に電気的接続を
行なうことができ、しかもそのための配線が絶縁
膜の中に埋め込まれて無理なく形成されるため配
線の高密度化が可能になる利点がある。
By using the method of the present invention, electrical connections can be easily made to electrodes and wiring formed perpendicular to a plane, and the wiring for this purpose is embedded in an insulating film and formed easily. This has the advantage of making it possible to increase the wiring density.

次に本発明の一実施例を図を用いて説明する。
第3図a〜fはnチヤネルMOS電界効果型トラ
ンジスタを配線して形成した集積回路の一部を製
造工程順に示した模式的断面図である。
Next, one embodiment of the present invention will be described with reference to the drawings.
FIGS. 3a to 3f are schematic cross-sectional views showing a part of an integrated circuit formed by wiring n-channel MOS field effect transistors in the order of manufacturing steps.

まず例えば結晶面{100}、比抵抗0.01Ωcmのn
型シリコン基板31の表面に絶縁体層32を約
1μmの厚さに形成する。この絶縁体層32は、
SiO2が適当であるが、他の酸化物等の絶縁体例
えばアルミナ、Si3N4等でも選択エツチングが可
能であれば使用できる。続いて高濃度にリンがド
ープされた多結晶シリコン33をCVD法で厚さ
約0.3μm堆積し、ゲート電極に対する配線(以下
ゲート配線と呼ぶ)を通常の写真蝕刻技術を用い
て形成し、さらにCVD法によつてシリコン酸化
膜34を厚さ約1μm堆積すると第3図aが得ら
れる。
First, for example, the n of the crystal plane {100} and the specific resistance of 0.01Ωcm
An insulator layer 32 is formed on the surface of the mold silicon substrate 31.
Form to a thickness of 1 μm. This insulator layer 32 is
Although SiO 2 is suitable, other insulators such as oxides such as alumina, Si 3 N 4 , etc. can also be used if selective etching is possible. Next, polycrystalline silicon 33 doped with phosphorus at a high concentration is deposited to a thickness of approximately 0.3 μm using the CVD method, and a wiring for the gate electrode (hereinafter referred to as gate wiring) is formed using ordinary photolithography. When a silicon oxide film 34 is deposited to a thickness of about 1 μm by the CVD method, the image shown in FIG. 3a is obtained.

次に光学露光技術等を用いてゲート配線パター
ン上にレジストパターンを形成し、それをマスク
としてCVD酸化膜34、多結晶シリコン33、
シリコン酸化膜32をドライエツチング法を用い
て垂直側壁をもつようにエツチングし、さらに比
素のイオン注入によつてn型拡散層を形成し、ソ
ース35とすると第3図bが得られる。ソースを
絶縁するための熱酸化膜36を露出した基板の表
面に形成した後、抵抗を低くするためn型導電性
を有する多結晶シリコン37をCVD法で堆積し、
多結晶シリコンを熱酸化してゲート酸化膜38を
設ける。続いてマスクなしで反応性イオンエツチ
ング等を適用して垂直方向にエツチングを行う
と、絶縁膜側壁のゲート電極多結晶シリコン37
およびゲート酸化膜38のみを残して基板表面に
平行に堆積された領域はエツチング除去され、第
3図cが得られる。窒素雰囲気中で熱処理してエ
ツチング損傷を回復させた後、例えばジクロルシ
ラン(SiH2Cl2)をソースガス、水素をキヤリヤ
ーガスさらに塩化水素を水素に対して0.02〜0.5
容量%の範囲で適量加えて950℃程度で50Torrの
減圧下で成長すると、非晶質絶縁膜表面には成長
しないで露出単結晶シリコン基板上のみに選択的
にエピタキシヤル膜39が形成される。成長中に
は基板のn型不純物がエピタキシヤル膜中にわず
かに導入されるのでエピタキシヤルシリコン層は
低濃度のn型導電性を呈する。次に所定のドーズ
量のボロンを深くイオン注入し、更に砒素等のn
型不純物を浅く高濃度にイオン注入し、それぞれ
チヤネル領域40とドレイン領域41が形成され
る。ゲート電極とドレイン領域との絶縁性をより
改善するため、エピタキシヤルシリコン層の表面
に厚さ約1000Å程度の熱酸化膜42を形成する。
こうして第3図dが得られる。このように深いp
型層の中に浅いn型層が形成される構造をDSA
(Diffusion Self−Align)と呼ばれ、p型層の濃
度によつてトランジスタの“オン”および“オ
フ”状態のしきい値電圧値が制御される。この
DSA構造は平面型トランジスタで適用され、そ
れ相当の効果を得ているが、本発明構造ではチヤ
ネル領域が基板に対して垂直方向に存在するの
で、チヤネル領域全体を同一しきい値電圧値に制
御することは困難であり、このDSA構造を用い
ることによつてこの困難を解決している。
Next, a resist pattern is formed on the gate wiring pattern using optical exposure technology, etc., and using this as a mask, the CVD oxide film 34, polycrystalline silicon 33,
If the silicon oxide film 32 is etched using a dry etching method so as to have vertical side walls, and then an n-type diffusion layer is formed by specific ion implantation to serve as a source 35, the result shown in FIG. 3B is obtained. After forming a thermal oxide film 36 on the exposed surface of the substrate to insulate the source, polycrystalline silicon 37 having n-type conductivity is deposited by CVD to lower the resistance.
A gate oxide film 38 is provided by thermally oxidizing polycrystalline silicon. Next, when etching is performed in the vertical direction using reactive ion etching or the like without a mask, the gate electrode polycrystalline silicon 37 on the side wall of the insulating film is etched.
Then, the region deposited parallel to the substrate surface is removed by etching, leaving only the gate oxide film 38, resulting in FIG. 3c. After heat treatment in a nitrogen atmosphere to recover from etching damage, for example, dichlorosilane (SiH 2 Cl 2 ) is used as a source gas, hydrogen is used as a carrier gas, and hydrogen chloride is added as a 0.02 to 0.5 to hydrogen gas.
When an appropriate amount within the capacity range is added and grown at about 950° C. under a reduced pressure of 50 Torr, the epitaxial film 39 is selectively formed only on the exposed single crystal silicon substrate without growing on the surface of the amorphous insulating film. . During growth, n-type impurities from the substrate are slightly introduced into the epitaxial film, so that the epitaxial silicon layer exhibits low concentration n-type conductivity. Next, a predetermined dose of boron is ion-implanted, and then arsenic, etc.
A channel region 40 and a drain region 41 are respectively formed by shallowly and highly concentrated ion implantation of type impurities. In order to further improve the insulation between the gate electrode and the drain region, a thermal oxide film 42 with a thickness of about 1000 Å is formed on the surface of the epitaxial silicon layer.
FIG. 3d is thus obtained. Deep p like this
DSA is a structure in which a shallow n-type layer is formed within a type layer.
(Diffusion Self-Align), and the threshold voltage value of the "on" and "off" states of the transistor is controlled by the concentration of the p-type layer. this
The DSA structure has been applied to planar transistors and has achieved comparable effects, but in the structure of the present invention, the channel region exists in a direction perpendicular to the substrate, so the entire channel region is controlled to the same threshold voltage value. This difficulty is solved by using this DSA structure.

基板全面に層間絶縁膜として例えばCVD法に
よりシリコン酸化膜43を堆積すると第3図eを
得る。なおこの図と次の第3図fでは熱酸化膜4
2は省略してある。ドレインおよびゲート電極の
領域にコンタクト穴を通常の写真蝕刻技術を用い
て形成し、2%程度のシリコンを混入したアルミ
ニウム44をマグネトロン型スパツタリング法に
よつて堆積し、電極配線パターンを形成する。そ
の後450℃程度の加熱処理を行ない、コンタクト
界面を合金化する。こうして第3図fを得、この
場合ソース電極は低抵抗基板31で、各素子共通
して用いられ、通常接地電圧にすれば極めて都合
が良い。
When a silicon oxide film 43 is deposited as an interlayer insulating film over the entire surface of the substrate by, for example, the CVD method, the result shown in FIG. 3e is obtained. Note that in this figure and the following figure 3f, the thermal oxide film 4
2 has been omitted. Contact holes are formed in the drain and gate electrode regions using ordinary photolithography, and aluminum 44 mixed with about 2% silicon is deposited by magnetron sputtering to form an electrode wiring pattern. After that, heat treatment is performed at approximately 450°C to alloy the contact interface. In this way, FIG. 3f is obtained. In this case, the source electrode is a low-resistance substrate 31, which is commonly used for each element, and it is extremely convenient to set it to a normal ground voltage.

以上説明したように本発明では基板表面に垂直
に形成された電極や配線に対して簡単に電気的接
続を行なうことができるようになり、また接続を
行なうための配線が少くとも2つの絶縁膜間に埋
込まれて形成されるので、配線を高密度に設計で
きる利点がある。また、本発明では側壁のほぼ全
面にゲート電極37を形成し、拡散層ソース流域
35からエピタキシヤル膜39へ不純物を拡散さ
せ拡散フロントがゲート電極37の下端より上に
なるようにし、その後エピタキシヤル膜39表面
に拡散層ドレイン領域41を形成して拡散フロン
トがゲート電極37の上端より下になるようにし
ているので、MISトランジスタのソース・ドレイ
ンとゲート電極を確実にオーバーラツプさせるこ
とができしきい値電圧より少しでも高い電圧を加
えるだけで小さなドレイン電圧でもONにする。
また前記実施例では多結晶シリコンを配線材料と
して用いたが、Mo等の金属や、Moシリサイド、
Tiシリサイド等の金属シリサイドを用いてもよ
い。
As explained above, in the present invention, it becomes possible to easily make electrical connections to electrodes and wiring formed perpendicular to the substrate surface, and the wiring for making connections can be connected to at least two insulating films. Since it is embedded between the two, there is an advantage that the wiring can be designed with high density. Further, in the present invention, the gate electrode 37 is formed on almost the entire surface of the sidewall, and the impurity is diffused from the diffusion layer source region 35 to the epitaxial film 39 so that the diffusion front is above the lower end of the gate electrode 37. Since the diffusion layer drain region 41 is formed on the surface of the film 39 so that the diffusion front is below the upper end of the gate electrode 37, the source/drain of the MIS transistor and the gate electrode can be reliably overlapped and the threshold can be reached. Just by applying a voltage even slightly higher than the value voltage, even a small drain voltage can be turned on.
Furthermore, although polycrystalline silicon was used as the wiring material in the above embodiment, metals such as Mo, Mo silicide,
Metal silicide such as Ti silicide may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のMOS電界効果型トランジスタ
構造を模式的に示した断面図で、第2図は本発明
構造を第1図に対比して示した模式的斜視断面図
である。また第3図a,b,c,d,e,fはn
チヤネルMOSトランジスタの主な製造工程を順
を追つて示した模式図で、図中 1……シリコン基板、2……チヤネルストツパ
ー領域、3……フイールド酸化膜、4……ゲート
酸化膜、5……しきい値電圧制御用不純物層、6
……ソース・ドレイン領域、7……ゲート電極、
8……層間絶縁膜、9……コンタクト穴、21,
31……n型シリコン基板、22,32……厚い
シリコン酸化膜、23,35……n型拡散層ソー
ス領域、33……配線用リンドープ多結晶シリコ
ン、36……薄いシリコン酸化膜、24,37…
…ゲート電極用多結晶シリコン、25,38……
ゲート酸化膜、26,39……n型エピタキシヤ
ルシリコン膜、40……p型不純物層、27,4
1……n型拡散層ドレイン領域、42……シリコ
ン熱酸化膜、43……層間絶縁膜、44……アル
ミニウム電極をそれぞれ示す。
FIG. 1 is a sectional view schematically showing a conventional MOS field effect transistor structure, and FIG. 2 is a schematic perspective sectional view showing the structure of the present invention in comparison with FIG. Also, Figure 3 a, b, c, d, e, f are n
This is a schematic diagram showing the main manufacturing steps of a channel MOS transistor in order. ... Impurity layer for threshold voltage control, 6
...source/drain region, 7...gate electrode,
8... Interlayer insulating film, 9... Contact hole, 21,
31... N-type silicon substrate, 22, 32... Thick silicon oxide film, 23, 35... N-type diffusion layer source region, 33... Phosphorus-doped polycrystalline silicon for wiring, 36... Thin silicon oxide film, 24, 37...
...Polycrystalline silicon for gate electrode, 25, 38...
Gate oxide film, 26, 39...n-type epitaxial silicon film, 40...p-type impurity layer, 27, 4
1... N-type diffusion layer drain region, 42... Silicon thermal oxide film, 43... Interlayer insulating film, 44... Aluminum electrode, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体上に開口部を有する絶縁膜を形成し開
口部の側壁に形成される電極にあるいは配線に対
して電気的に接続を行う集積回路の製造方法であ
つて前記絶縁膜を少なくとも二層に構成し各層の
間に配線パターンを設けておき、次に所望の部分
の前記絶縁膜と配線パターンをエツチング除去
し、露出した半導体表面にソースまたはドレイン
となる第1の不純物拡散層を形成し、ゲート電極
膜を全面に堆積し異方性エツチングでこの電極膜
を側壁にのみ残し、このゲート電極側壁にゲート
絶縁膜を形成し、露出した半導体上に選択エピタ
キシヤル成長で半導体膜を形成して開口部を埋め
同時に前記拡散層からエピタキシヤル膜へ不純物
を拡散させ拡散フロントがゲート電極の下端より
上になるようにし、その後成長膜表面にドレイン
またはソースとなる第2の不純物拡散層を形成し
て拡散フロントがゲート電極の上端より下になる
ようにすることを特徴とする集積回路の製造方
法。
1. A method for manufacturing an integrated circuit in which an insulating film having an opening is formed on a semiconductor and electrically connected to an electrode or wiring formed on a side wall of the opening, the method comprising forming the insulating film into at least two layers. A wiring pattern is provided between each layer, and then a desired portion of the insulating film and the wiring pattern is etched away, and a first impurity diffusion layer that becomes a source or drain is formed on the exposed semiconductor surface, A gate electrode film is deposited on the entire surface, this electrode film is left only on the side walls by anisotropic etching, a gate insulating film is formed on the side walls of the gate electrode, and a semiconductor film is formed on the exposed semiconductor by selective epitaxial growth. Filling the opening and at the same time diffusing impurities from the diffusion layer into the epitaxial film so that the diffusion front is above the lower end of the gate electrode, and then forming a second impurity diffusion layer to serve as a drain or source on the surface of the grown film. A method of manufacturing an integrated circuit, characterized in that the diffusion front is below the top of a gate electrode.
JP13332983A 1983-07-21 1983-07-21 Wiring method of integrated circuit Granted JPS6025254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13332983A JPS6025254A (en) 1983-07-21 1983-07-21 Wiring method of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13332983A JPS6025254A (en) 1983-07-21 1983-07-21 Wiring method of integrated circuit

Publications (2)

Publication Number Publication Date
JPS6025254A JPS6025254A (en) 1985-02-08
JPH0582071B2 true JPH0582071B2 (en) 1993-11-17

Family

ID=15102164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13332983A Granted JPS6025254A (en) 1983-07-21 1983-07-21 Wiring method of integrated circuit

Country Status (1)

Country Link
JP (1) JPS6025254A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2891932B2 (en) * 1996-05-30 1999-05-17 山形日本電気株式会社 Vertical field-effect transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128966A (en) * 1981-02-02 1982-08-10 Seiko Epson Corp Mis type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128966A (en) * 1981-02-02 1982-08-10 Seiko Epson Corp Mis type semiconductor device

Also Published As

Publication number Publication date
JPS6025254A (en) 1985-02-08

Similar Documents

Publication Publication Date Title
US5442223A (en) Semiconductor device with stress relief
JPH0834310B2 (en) Method for manufacturing semiconductor device
JPH06252359A (en) Manufacture of semiconductor device
JPH0586663B2 (en)
US6271064B2 (en) Thin film transistor and method of manufacturing the same
JP2003298047A (en) Semiconductor device and manufacturing method therefor
KR940001505B1 (en) Semiconductor device
JP3502509B2 (en) Integrated circuit having CMOS structure and method of manufacturing the same
JP2560376B2 (en) Method for manufacturing MOS transistor
JPH10335660A (en) Semiconductor device and manufacture thereof
JP2509708B2 (en) SOI type semiconductor device and manufacturing method thereof
JPH0582071B2 (en)
US6521517B1 (en) Method of fabricating a gate electrode using a second conductive layer as a mask in the formation of an insulating layer by oxidation of a first conductive layer
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JPH08162523A (en) Semiconductor device, and its manufacture
JPH0794721A (en) Semiconductor device and manufacture thereof
JPH0239091B2 (en)
JP2531688B2 (en) Method for manufacturing semiconductor device
JPH04186733A (en) Semiconductor device and manufacture thereof
JPS6154661A (en) Manufacture of semiconductor device
JPH06196707A (en) Manufacture of vertical type insulated-gate transistor
JPH07335873A (en) Method of manufacturing semiconductor device
JP2712889B2 (en) Method for manufacturing semiconductor device
JPH0629531A (en) Manufacture of semiconductor device
JPH0870038A (en) Manufacture of semiconductor device