JPH0834310B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0834310B2
JPH0834310B2 JP62070381A JP7038187A JPH0834310B2 JP H0834310 B2 JPH0834310 B2 JP H0834310B2 JP 62070381 A JP62070381 A JP 62070381A JP 7038187 A JP7038187 A JP 7038187A JP H0834310 B2 JPH0834310 B2 JP H0834310B2
Authority
JP
Japan
Prior art keywords
oxide film
conductive layer
layer
etching
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62070381A
Other languages
Japanese (ja)
Other versions
JPS63237566A (en
Inventor
宏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62070381A priority Critical patent/JPH0834310B2/en
Priority to US07/174,494 priority patent/US4808544A/en
Publication of JPS63237566A publication Critical patent/JPS63237566A/en
Publication of JPH0834310B2 publication Critical patent/JPH0834310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/90MOSFET type gate sidewall insulating spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置の製造方法に係り、より詳しく
は、高密度用LDD構造トランジスタの製造方法に関する
ものである。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a high density LDD structure transistor.

(従来の技術) 従来、この種の半導体装置におけるトランジスタの製
造方法は「エレクトロンデバイス議事録(1982年)Vol.
ED−209,No.4,第590〜596頁」に開示されるものがあ
り、これを第2図(a)乃至(e)に工程図を示して説
明する。
(Prior Art) Conventionally, a method of manufacturing a transistor in a semiconductor device of this type is described in "Electronic Device Minutes (1982) Vol.
ED-209, No. 4, pages 590 to 596 ", which will be described with reference to the process drawings in FIGS. 2 (a) to 2 (e).

即ち、P型半導体のシリコン基板(以下基板という)
1上に、選択的にフィールド酸化膜2と前記基板1のト
ランジスタ形成領域上にゲート酸化膜3を夫々積層形成
する。その後、該ゲート酸化膜3上に、リンを含有した
ポリシリコン層4及び高融点金属シリサイド層(WSi2
はMoSi2等)5を順次選択的に積層して、ポリサイドゲ
ート電極層を形成する。次いで、前記基板1のソース・
ドレイン領域にイオン注入法を以つて、N-層6を形成す
る。その後、前記フイールド酸化膜2及びポリサイドゲ
ート電極層4,6を含む基板1上にCVD法により酸化シリコ
ン膜7を堆積する。そして、該酸化シリコン膜7を、RI
E法を用いてエツチングする。その際、酸化シリコン膜
7は前記ポリサイドゲート電極層4,5の側壁にサイドウ
オールスペーサ絶縁膜7aとして残す。次に、基板1に高
濃度As不純物をイオン注入してN+層8を形成した後、常
法の如く中間絶縁膜(BPSG膜)9、コンタクト部10及び
Al配線層11を順次形成して、N型チヤンネルトランジス
タを製作していた。
That is, a P-type semiconductor silicon substrate (hereinafter referred to as a substrate)
1, a field oxide film 2 and a gate oxide film 3 are selectively laminated on the transistor formation region of the substrate 1. Then, a polysilicon layer 4 containing phosphorus and a refractory metal silicide layer (WSi 2 or MoSi 2 etc.) 5 are sequentially and selectively laminated on the gate oxide film 3 to form a polycide gate electrode layer. . Then, the source of the substrate 1
An N layer 6 is formed in the drain region by ion implantation. Then, a silicon oxide film 7 is deposited on the substrate 1 including the field oxide film 2 and the polycide gate electrode layers 4 and 6 by the CVD method. Then, the silicon oxide film 7 is
Etching using the E method. At this time, the silicon oxide film 7 is left on the sidewalls of the polycide gate electrode layers 4 and 5 as a side wall spacer insulating film 7a. Next, a high-concentration As impurity is ion-implanted into the substrate 1 to form an N + layer 8, and then an intermediate insulating film (BPSG film) 9, a contact portion 10 and
The Al wiring layer 11 was sequentially formed to manufacture an N-type channel transistor.

(発明が解決しようとする問題点) 然し乍ら、上述した従来方法においては、サイドウオ
ールスペーサ絶縁膜7aの下部で発生したホツトキヤリア
は、サイドウオールスペーサ絶縁膜7aがゲート電極にな
つていないので、ゲート酸化膜3にトラツプされる。そ
のため、LDD構造特有な動作試験の初期で、N-層6の抵
抗増大に伴うgm特性の劣化が生じる他、P型チヤネルト
ランジスタでオフセツトゲートが容易に発生するという
問題点があつた。又、酸化シリコン膜7をRIE法により
エツチングして、サイドウオールスペーサ絶縁膜7aを形
成する場合、オーバーエツチにより同種のフイールド酸
化膜2が膜減りし、その結果、フイールド分離特性を劣
化させるという問題点も有していた。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional method, the photo-carrier generated under the sidewall spacer insulating film 7a does not have the gate oxide because the sidewall spacer insulating film 7a does not serve as the gate electrode. Trapped on the membrane 3. Therefore, at the initial stage of the operation test peculiar to the LDD structure, the gm characteristic is deteriorated due to the increase in the resistance of the N layer 6, and there is a problem that an offset gate is easily generated in the P-type channel transistor. Further, when the silicon oxide film 7 is etched by the RIE method to form the sidewall spacer insulating film 7a, the field oxide film 2 of the same kind is reduced due to overetching, and as a result, the field isolation characteristic is deteriorated. He also had points.

本発明の目的は上述の問題点に鑑み、ホツトキヤリア
のゲート酸化膜へのトラツプが防止でき、オフセツトゲ
ートの発生が防止できる他、フイールド酸化膜の膜減り
が防止できる半導体装置の製造方法を提供するものであ
る。
In view of the above problems, an object of the present invention is to provide a method for manufacturing a semiconductor device capable of preventing traps in a gate oxide film of a photocarrier, preventing the occurrence of an offset gate, and preventing film loss of a field oxide film. To do.

(問題点を解決するための手段) 本発明は上述した目的を達成するため、シリコン基板
上の所要位置にフィールド酸化膜とゲート酸化膜とを夫
々形成する工程と、該ゲート酸化膜上にゲート電極層を
形成する工程と、前記フィールド酸化膜、前記ゲート酸
化膜及び前記ゲート電極層上に導電材より成る導電層を
堆積する工程と、該導電層上に酸化シリコン膜を堆積す
る工程と、前記導電層をエッチングストッパーに、該酸
化シリコンをRIE法によりエッチングして、前記ゲート
電極層の側壁にサイドウォールスペーサ絶縁膜を形成す
る工程と、前記ゲート酸化膜をエッチングストッパー
に、前記導電層をRIE法によりエッチングして、前記サ
イドウォールスペーサ絶縁膜の下方に前記導電層を残す
工程とを含むものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention comprises a step of forming a field oxide film and a gate oxide film at required positions on a silicon substrate, and a gate on the gate oxide film. A step of forming an electrode layer, a step of depositing a conductive layer made of a conductive material on the field oxide film, the gate oxide film and the gate electrode layer, and a step of depositing a silicon oxide film on the conductive layer, A step of forming a sidewall spacer insulating film on a side wall of the gate electrode layer by etching the silicon oxide by an RIE method with the conductive layer as an etching stopper; and using the gate oxide film as an etching stopper to form the conductive layer. Etching by a RIE method to leave the conductive layer below the sidewall spacer insulating film.

(作 用) 本発明においては、サイドウオールスペーサ絶縁膜中
にゲート電極層に接続する導電層を形成したので、サイ
ドウオールスペーサ絶縁膜下部で発生するホツトキヤリ
アはゲート酸化膜にトラツプされない。又、酸化シリコ
ン膜のエツチングの際、フイールド酸化膜及びゲート酸
化膜は導電層に保護され膜減りが生じない。
(Operation) In the present invention, since the conductive layer connected to the gate electrode layer is formed in the sidewall spacer insulating film, the photocarrier generated under the sidewall spacer insulating film is not trapped in the gate oxide film. Further, at the time of etching the silicon oxide film, the field oxide film and the gate oxide film are protected by the conductive layer, and the film loss does not occur.

(実施例) 本発明の半導体装置の製造方法に係る一実施例を第1
図(a)乃至(e)に工程図を示して説明する。
(Embodiment) The first embodiment of the method for manufacturing a semiconductor device of the present invention
The process will be described with reference to FIGS.

即ち、この製造方法は、先ず、P型半導体のシリコン
基板(以下基板という)21上に、選択的にフイールド酸
化膜22を4000Å形成し、これを除く部分にゲート酸化膜
23を200Å夫々積層形成する。次いで、該ゲート酸化膜2
3上全面に、ポリサイド構造(例えば、リン不純物を含
有した1500Åのポリシリコン層24上に2500ÅのWシリサ
イド層25を積層したもの)のゲート電極層を積層形成
し、これをパターニングする。尚、その際、前記ゲート
酸化膜23はエツチングせずに残しておく。更に、前記基
板21のソース・ドレイン領域にイオン注入法を以つて、
As+イオンを40KeV、1〜2×1013ions/cm2の条件下で打
ち込み、N-層26を形成する。しかる後、前記基板21の素
子領域全面に亘つて、300〜1000Åの薄膜の導電材料
(例えば、リン不純物を5×1020/cm2程度含有させた多
結晶シリコン層又はWシリサイド層等)から成る導電層
27を積層形成した後、該導電層27上にCVD法を用いて酸
化シリコン膜28を4000Å堆積する。次に、該酸化シリコ
ン膜28を、導電層27に対する酸化シリコン膜28のエツチ
ング速度比の大きなRIE法により、例えば導電層27が多
結晶シリコン層の場合は、C2F6等のフツ素系ガスの雰囲
気中でエツチングを行ない、下地の導電層27をエツチン
グすることなく、前記ゲート電極層24,25の側壁に酸化
シリコンのサイドウオールスペーサ絶縁膜28aを形成す
る。その後、導電層27をサイドウオールスペーサ絶縁膜
28aに対する導電層27のエツチング速度比が大きくなるR
IE法により、例えば導電層27が多結晶シリコン層の場合
は、CCl4等の塩素系ガスの雰囲気中でエツチングを再度
行ない、下地のゲート酸化膜23及びフイールド酸化膜22
をエツチングすることなく、前記サイドウオールスペー
サ絶縁膜28aの下方にのみ、導電層27を残す。続いて、
前記ゲート酸化膜23を所定のRIEエツチング条件下にお
いて、基板21をエツチングすることなく、前記ゲート酸
化膜23の導電層27及びゲート電極層24,25の直下部分を
除きエツチング除去する。次いで、基板1のソース・ド
レイン領域にAs+イオンを40KeV、5×1015ions/cm2の条
件でイオン注入して、900℃のN2熱処理を以つて、これ
を活性化させ、N+層29を形成する。続いて、全素子領域
にBPSG膜30を7000Å堆積し、これをパターニング法によ
り所定のコンタクト部31を形成した後、該コンタクト部
31上に1μm厚のAl配線層32を形成する。
That is, in this manufacturing method, first, a field oxide film 22 of 4000 Å is selectively formed on a silicon substrate (hereinafter referred to as a substrate) 21 of a P-type semiconductor, and a gate oxide film is formed on a portion other than the field oxide film 22.
Laminate 23 of 200Å each. Then, the gate oxide film 2
3. A gate electrode layer having a polycide structure (for example, a 2500 Å W silicide layer 25 is laid on a 1500 Å polysilicon layer 24 containing phosphorus impurities) is laminated on the entire upper surface, and is patterned. At this time, the gate oxide film 23 is left without etching. Furthermore, by ion implantation into the source / drain regions of the substrate 21,
As + ions are implanted under the conditions of 40 KeV and 1-2 × 10 13 ions / cm 2 to form the N layer 26. Then, over the entire device region of the substrate 21, from a thin film conductive material of 300 to 1000Å (for example, a polycrystalline silicon layer containing phosphorus impurities of about 5 × 10 20 / cm 2 or a W silicide layer). Conductive layer
After stacking 27, a silicon oxide film 28 is deposited on the conductive layer 27 by a CVD method by 4000 liters. Next, the silicon oxide film 28 is subjected to a fluorine-based material such as C 2 F 6 by the RIE method in which the etching rate ratio of the silicon oxide film 28 to the conductive layer 27 is large, for example, when the conductive layer 27 is a polycrystalline silicon layer. Etching is performed in a gas atmosphere to form the sidewall spacer insulating film 28a of silicon oxide on the sidewalls of the gate electrode layers 24 and 25 without etching the underlying conductive layer 27. After that, the conductive layer 27 is formed on the sidewall spacer insulating film.
The etching speed ratio of the conductive layer 27 to 28a becomes large R
By the IE method, for example, when the conductive layer 27 is a polycrystalline silicon layer, etching is performed again in an atmosphere of a chlorine-based gas such as CCl 4 to form the underlying gate oxide film 23 and the field oxide film 22.
The conductive layer 27 is left only below the sidewall spacer insulating film 28a without etching. continue,
Under a predetermined RIE etching condition, the gate oxide film 23 is removed by etching without etching the substrate 21, except for the portions directly under the conductive layer 27 and the gate electrode layers 24 and 25 of the gate oxide film 23. Then, As + ions are implanted into the source / drain region of the substrate 1 under the conditions of 40 KeV and 5 × 10 15 ions / cm 2 and then N 2 heat treatment at 900 ° C. is performed to activate the N + ions. Form layer 29. Subsequently, 7000 Å of BPSG film 30 is deposited on the entire element region, and a predetermined contact portion 31 is formed by patterning method, and then the contact portion 31 is formed.
An Al wiring layer 32 having a thickness of 1 μm is formed on 31.

斯くして、サイドウオールスペーサ絶縁膜28a形成時
における酸化シリコン膜28のエツチングによるフイール
ド酸化膜22及びゲート酸化膜23の膜減りが導電層27の介
在により防止できると共に、サイドウオールスペーサ絶
縁膜28a下に発生するホツトキヤリアが導電層27により
ゲート酸化膜23にトラツプされない。
Thus, the film reduction of the field oxide film 22 and the gate oxide film 23 due to the etching of the silicon oxide film 28 at the time of forming the sidewall spacer insulating film 28a can be prevented by the interposition of the conductive layer 27, and at the bottom of the sidewall spacer insulating film 28a. The photocarriers generated in the gate oxide film 23 are not trapped in the gate oxide film 23 by the conductive layer 27.

(発明の効果) 以上詳細に説明した様に本発明によれば、サイドウオ
ール部のゲート酸化膜上にも自己制御的にゲート電極層
を電気的に接続する電極を有するので、サイドウオール
部のゲート酸化膜にホツトキヤリアがトラツプされな
い。よつて、動作試験初期段階のN-層の抵抗増大に伴う
gm特性の劣化等が防止できると共に、N-層の形成条件
(不純物の濃度分布及び接合深さ)のLDD構造の電界強
度を緩和させるための最適化が容易にできる。更に、サ
イドウオール部にもゲート電極があるため、トランジス
タ動作時にはサイドウオール部直下のN-層にも電荷が誘
起されるので、N-層の表面は電子がアキユムレートされ
る。よつて、トランジスタ動作時にはN-層の抵抗値が低
減され、gmの低減が防止できる。又、酸化シリコン膜の
下面には導電層が形成されているので、サイドウオール
スペーサ絶縁膜形成時のエツチングによるフイールド酸
化膜及びゲート酸化膜の膜減りが防止できる。更に又、
Pチヤネルトランジスタの場合、Nチヤネルトランジス
タと同様にサイドウオール部にゲート電極があるので、
オフセツトとなつたサイドウオール付埋め込みチヤネル
型のPチヤネルトランジスタであつても、トランジスタ
動作時にはサイドウオール部直下にホールが誘起される
ため、gm特性の大幅な劣化が生じない等の特有の効果を
奏する。
(Effects of the Invention) As described in detail above, according to the present invention, an electrode for electrically connecting the gate electrode layer in a self-controlled manner is also provided on the gate oxide film of the sidewall portion. Hot carrier is not trapped in the gate oxide. Therefore, as the resistance of the N - layer increases at the initial stage of the operation test
It is possible to prevent the deterioration of the gm characteristics and to easily optimize the electric field strength of the LDD structure under the N layer formation conditions (impurity concentration distribution and junction depth). Furthermore, since the side wall portion also has a gate electrode, charges are induced in the N layer immediately below the side wall portion during transistor operation, so that electrons are accumulated on the surface of the N layer. Therefore, the resistance value of the N layer is reduced during the operation of the transistor, and the reduction of gm can be prevented. Further, since the conductive layer is formed on the lower surface of the silicon oxide film, it is possible to prevent the reduction of the field oxide film and the gate oxide film due to etching during the formation of the sidewall spacer insulating film. Furthermore,
In the case of the P channel transistor, since the side wall has a gate electrode like the N channel transistor,
Even in the case of an embedded channel type P-channel transistor with an offset sidewall, holes are induced just below the sidewall portion when the transistor is operating, so there is a particular effect such as not significantly degrading the gm characteristics. .

【図面の簡単な説明】[Brief description of drawings]

第1図(a)乃至(e)は本発明方法の実施例に係る工
程図、第2図(a)乃至(e)は従来方法の工程図であ
る。 21……シリコン基板、22……フイールド酸化膜、23……
ゲート酸化膜、24,25……ゲート電極層、27……導電
層、28……酸化シリコン膜、28a……サイドウオールス
ペーサ絶縁膜。
1 (a) to 1 (e) are process drawings according to an embodiment of the method of the present invention, and FIGS. 2 (a) to 2 (e) are process drawings of a conventional method. 21 …… Silicon substrate, 22 …… Field oxide film, 23 ……
Gate oxide film, 24,25 ... Gate electrode layer, 27 ... Conductive layer, 28 ... Silicon oxide film, 28a ... Sidewall spacer insulating film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン基板上の所要位置にフィールド酸
化膜とゲート酸化膜とを夫々形成する工程と、 該ゲート酸化膜上にゲート電極層を形成する工程と、 前記フィールド酸化膜、前記ゲート酸化膜及び前記ゲー
ト電極層上に導電材より成る導電層を堆積する工程と、 該導電層上に酸化シリコン膜を堆積する工程と、 前記導電層をエッチングストッパーに、該酸化シリコン
膜をRIE法によりエッチングして、前記ゲート電極層の
側壁にサイドウォールスペーサ絶縁膜を形成する工程
と、 前記ゲート酸化膜をエッチングストッパーに、前記導電
層をRIE法によりエッチングして、前記サイドウォール
スペーサ絶縁膜の下方に前記導電層を残す工程とを含む
ことを特徴とする半導体装置の製造方法。
1. A step of forming a field oxide film and a gate oxide film at desired positions on a silicon substrate, a step of forming a gate electrode layer on the gate oxide film, the field oxide film and the gate oxide film. Depositing a conductive layer made of a conductive material on the film and the gate electrode layer, depositing a silicon oxide film on the conductive layer, and using the conductive layer as an etching stopper by the RIE method. A step of etching to form a sidewall spacer insulating film on the sidewall of the gate electrode layer; and a step of etching the conductive layer by a RIE method using the gate oxide film as an etching stopper to form a portion below the sidewall spacer insulating film. And a step of leaving the conductive layer, the method for manufacturing a semiconductor device.
JP62070381A 1987-03-06 1987-03-26 Method for manufacturing semiconductor device Expired - Lifetime JPH0834310B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62070381A JPH0834310B2 (en) 1987-03-26 1987-03-26 Method for manufacturing semiconductor device
US07/174,494 US4808544A (en) 1987-03-06 1988-03-28 LDD structure containing conductive layer between gate oxide and sidewall spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070381A JPH0834310B2 (en) 1987-03-26 1987-03-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63237566A JPS63237566A (en) 1988-10-04
JPH0834310B2 true JPH0834310B2 (en) 1996-03-29

Family

ID=13429806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070381A Expired - Lifetime JPH0834310B2 (en) 1987-03-06 1987-03-26 Method for manufacturing semiconductor device

Country Status (2)

Country Link
US (1) US4808544A (en)
JP (1) JPH0834310B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612557A (en) * 1986-10-27 1997-03-18 Seiko Epson Corporation Semiconductor device having an inter-layer insulating film disposed between two wiring layers
US5191402A (en) * 1986-10-27 1993-03-02 Seiko Epson Corporation Semiconductor device having an inter-layer insulating film disposed between two wiring layers
KR920007787B1 (en) * 1987-06-09 1992-09-17 세이꼬 엡슨 가부시끼가이샤 Manufacturing method of semiconductor and its device
JP2537940B2 (en) * 1988-01-08 1996-09-25 松下電器産業株式会社 Method for manufacturing MOS semiconductor device
JPH02125433A (en) * 1988-11-04 1990-05-14 Yamaha Corp Mos type transistor and manufacture thereof
US5212105A (en) * 1989-05-24 1993-05-18 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method and semiconductor device manufactured thereby
US5286998A (en) * 1989-05-31 1994-02-15 Fujitsu Limited Semiconductor device having two transistors forming a memory cell and a peripheral circuit, wherein the impurity region of the first transistor is not subjected to an etching atmosphere
US4951100A (en) * 1989-07-03 1990-08-21 Motorola, Inc. Hot electron collector for a LDD transistor
WO1991002379A1 (en) * 1989-07-27 1991-02-21 Seiko Instruments Inc. Misfet and method of producing the same
FR2654258A1 (en) * 1989-11-03 1991-05-10 Philips Nv METHOD FOR MANUFACTURING A MITTED TRANSISTOR DEVICE HAVING A REVERSE "T" SHAPE ELECTRODE ELECTRODE
JPH03220729A (en) * 1990-01-25 1991-09-27 Nec Corp Manufacture of field-effect transistor
US5102816A (en) * 1990-03-27 1992-04-07 Sematech, Inc. Staircase sidewall spacer for improved source/drain architecture
US4975385A (en) * 1990-04-06 1990-12-04 Applied Materials, Inc. Method of constructing lightly doped drain (LDD) integrated circuit structure
DE69132695T2 (en) * 1990-05-11 2002-06-13 Koninkl Philips Electronics Nv CMOS process with the use of temporarily attached silicon nitride spacers for the production of transistors (LDD) with a lightly doped drain
US5234850A (en) * 1990-09-04 1993-08-10 Industrial Technology Research Institute Method of fabricating a nitride capped MOSFET for integrated circuits
US5426327A (en) * 1990-10-05 1995-06-20 Nippon Steel Corporation MOS semiconductor with LDD structure having gate electrode and side spacers of polysilicon with different impurity concentrations
GB9127093D0 (en) * 1991-02-26 1992-02-19 Samsung Electronics Co Ltd Field-effect transistor
US5401994A (en) * 1991-05-21 1995-03-28 Sharp Kabushiki Kaisha Semiconductor device with a non-uniformly doped channel
US5244823A (en) * 1991-05-21 1993-09-14 Sharp Kabushiki Kaisha Process for fabricating a semiconductor device
JP2633104B2 (en) * 1991-05-21 1997-07-23 シャープ株式会社 Method for manufacturing semiconductor device
US5182619A (en) * 1991-09-03 1993-01-26 Motorola, Inc. Semiconductor device having an MOS transistor with overlapped and elevated source and drain
US5221635A (en) * 1991-12-17 1993-06-22 Texas Instruments Incorporated Method of making a field-effect transistor
US5393685A (en) * 1992-08-10 1995-02-28 Taiwan Semiconductor Manufacturing Company Peeling free metal silicide films using rapid thermal anneal
US5411907A (en) * 1992-09-01 1995-05-02 Taiwan Semiconductor Manufacturing Company Capping free metal silicide integrated process
EP0591599B1 (en) * 1992-09-30 2001-12-19 STMicroelectronics S.r.l. Method of fabricating integrated devices, and integrated device produced thereby
US5568418A (en) * 1992-09-30 1996-10-22 Sgs-Thomson Microelectronics S.R.L. Non-volatile memory in an integrated circuit
EP0591598B1 (en) * 1992-09-30 1998-12-02 STMicroelectronics S.r.l. Method of fabricating non-volatile memories, and non-volatile memory produced thereby
US5369041A (en) * 1993-07-14 1994-11-29 Texas Instruments Incorporated Method for forming a silicon controlled rectifier
US5962898A (en) * 1994-04-11 1999-10-05 Texas Instruments Incorporated Field-effect transistor
US5506161A (en) * 1994-10-24 1996-04-09 Motorola, Inc. Method of manufacturing graded channels underneath the gate electrode extensions
US6074922A (en) * 1998-03-13 2000-06-13 Taiwan Semiconductor Manufacturing Company Enhanced structure for salicide MOSFET
JP4683817B2 (en) * 2002-09-27 2011-05-18 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR100625175B1 (en) * 2004-05-25 2006-09-20 삼성전자주식회사 Semiconductor device having a channel layer and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663645A (en) * 1984-05-23 1987-05-05 Hitachi, Ltd. Semiconductor device of an LDD structure having a floating gate
DE3530065C2 (en) * 1984-08-22 1999-11-18 Mitsubishi Electric Corp Process for the production of a semiconductor
DE3583472D1 (en) * 1984-08-28 1991-08-22 Toshiba Kawasaki Kk METHOD FOR PRODUCING A SEMICONDUCTOR ARRANGEMENT WITH A GATE ELECTRODE.
JPS61119078A (en) * 1984-11-14 1986-06-06 Toshiba Corp Mos semiconductor device
US4754320A (en) * 1985-02-25 1988-06-28 Kabushiki Kaisha Toshiba EEPROM with sidewall control gate
JPH0656855B2 (en) * 1985-05-08 1994-07-27 株式会社東芝 Insulated gate type field effect transistor

Also Published As

Publication number Publication date
JPS63237566A (en) 1988-10-04
US4808544A (en) 1989-02-28

Similar Documents

Publication Publication Date Title
JPH0834310B2 (en) Method for manufacturing semiconductor device
US6388296B1 (en) CMOS self-aligned strapped interconnection
US4830971A (en) Method for manufacturing a semiconductor device utilizing self-aligned contact regions
JPH0624226B2 (en) Method of manufacturing stacked CMOS device
EP0054259A2 (en) Method of manufacturing a semiconductor device of the MIS type
US5668051A (en) Method of forming poly plug to reduce buried contact series resistance
JPH0645562A (en) Manufacture of stacked semiconductor structure
US6699758B2 (en) Semiconductor device and method for manufacturing the same
US6271570B1 (en) Trench-free buried contact
US5652154A (en) Method for manufacturing BiMOS device
JP3235091B2 (en) Method for manufacturing MIS type semiconductor device
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JP3043791B2 (en) Method for manufacturing semiconductor device
JP3240823B2 (en) Method for manufacturing BiCMOS type semiconductor device
JPH04186733A (en) Semiconductor device and manufacture thereof
JPH01260857A (en) Semiconductor device and manufacture thereof
JPH05251446A (en) Semiconductor device and manufacture thereof
JPH0644604B2 (en) Manufacturing method of complementary semiconductor device
JPH07226502A (en) Mos transistor and manufacture thereof
JPH05267332A (en) Manufacture of semiconductor device
JPH0629531A (en) Manufacture of semiconductor device
JPH0658965B2 (en) Method for manufacturing semiconductor device
JPH06112477A (en) Semiconductor device and manufacture thereof
JPH06314782A (en) Manufacture of semiconductor device
JPH05235029A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term