JPS61119078A - Mos semiconductor device - Google Patents

Mos semiconductor device

Info

Publication number
JPS61119078A
JPS61119078A JP24022284A JP24022284A JPS61119078A JP S61119078 A JPS61119078 A JP S61119078A JP 24022284 A JP24022284 A JP 24022284A JP 24022284 A JP24022284 A JP 24022284A JP S61119078 A JPS61119078 A JP S61119078A
Authority
JP
Japan
Prior art keywords
layers
concentration impurity
gate electrode
layer
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24022284A
Other languages
Japanese (ja)
Inventor
Hiroshi Harada
博 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24022284A priority Critical patent/JPS61119078A/en
Publication of JPS61119078A publication Critical patent/JPS61119078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent the generation of short channel effect and to prevent the decline of conductance by forming a gate electrode in a manner it covers the overall surface of a low-concentration impurity layer and a channel region. CONSTITUTION:On a surface of a P type silicon substrate 21, N<+> layers 22 and 23 which become source and drain respectively are formed and the N<-> layers 24 and 25 are formed respectively on the channel side in the vicinity of the N<+> layers 22 and 23. These N<-> layers 24 and 25 are low-concentration impurity layers for alleviating an electric field in an LDD structure and both are formed more thinly than the N<+> layers 22 and 23. On a surface of the silicon substrate 21, a gate electrode 26 is arranged through a gate insulating film 26 and the gate electrode 26 extends its ends to the internal ends of the N<+> layers 22 and 23 to become source and drain and it covers the overall surface of a channel region and the N<-> layers 24 and 25.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はMO3型半導体装置に係り、特に実行チャネル
長が短くなった場合のホットキャリアによる信頼性の低
下を防止するようにしたMO3型半導体装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an MO3 type semiconductor device, and in particular to an MO3 type semiconductor device that prevents deterioration in reliability due to hot carriers when the effective channel length is shortened. Regarding.

[発明の技術的背景] 一般に、MOSトランジスタは、14図に示すように、
例えばP型のシリコン基板11内にソース、ドレインと
なるN“層12.13を形成し、これらN“層12.1
3間のシリコン基板11上にゲート絶縁膜14を介して
ゲート電極15を形成してなる。
[Technical Background of the Invention] Generally, a MOS transistor, as shown in FIG.
For example, an N" layer 12.13 that becomes a source and a drain is formed in a P-type silicon substrate 11, and these N" layers 12.1
A gate electrode 15 is formed on a silicon substrate 11 between three layers with a gate insulating film 14 interposed therebetween.

このような構造に於いて、チャネル長しCが短くなると
、ドレイン領域近傍の電界が大きくなり、ホットキャリ
アが生成される。このホットキャリアがゲート絶縁[1
14に注入されたり、基板界面に界面単位を形成すると
、トランジスタのコンダクタンスが減少し、信頼性が低
下する。
In such a structure, as the channel length C becomes shorter, the electric field near the drain region increases and hot carriers are generated. These hot carriers insulate the gate [1
14 or forming an interfacial unit at the substrate interface, the conductance of the transistor decreases, reducing reliability.

このような構造に対して、最近、第5図及び第6図にそ
れぞれ示すようにソース、ドレイン領域にN゛層16を
形成し、ソース及びドレイン領域近傍に於ける電界を緩
和し、ホットキャリアの生成を低減させる構造が提案さ
れている。
Recently, for such a structure, a N layer 16 has been formed in the source and drain regions as shown in FIG. 5 and FIG. A structure has been proposed to reduce the generation of .

第5図の場合は、Double  (Graded )
 D Hrusad [) rain (D D D又
はGDD)構造と呼ばれるもので、N一層16.16を
N+層12.13より深く形成するものである。
In the case of Figure 5, Double (Graded)
This is called a D Hrusad [) rain (D D D or GDD) structure, in which the N layer 16.16 is formed deeper than the N+ layer 12.13.

一方、第6図はL ightlV  D oped  
D rain(LDD)構造と呼ばれるもので、N一層
17.17をN+層12.13より浅く形成するもので
ある。
On the other hand, Fig. 6 shows LightV Doped
This is called a drain (LDD) structure in which the N layer 17.17 is formed shallower than the N+ layer 12.13.

[背景技術の問題点] 上記DDD構造及びLDO構造とも、ドレイン領域近傍
に低濃度不純物層を形成することで、ホットキャリアの
生成効率を低減する効果は大きい。
[Problems of Background Art] In both the DDD structure and the LDO structure described above, forming a low concentration impurity layer near the drain region has a large effect of reducing hot carrier generation efficiency.

しかし、ODD構造のMOSトランジスタに於いては、
N−1116はイオン注入後の熱拡散により形成される
もので、ホットキャリアの生成を押えるためには、N一
層16の幅1は0.2μ程度の大きさが必要なため、同
一のゲート電極15の幅Laに対してLcは小さくなる
。また、シリコン基板11に対するN一層16の接合深
さxjも大きくなる。
However, in the ODD structure MOS transistor,
N-1116 is formed by thermal diffusion after ion implantation, and in order to suppress the generation of hot carriers, the width 1 of the N-1116 needs to be about 0.2μ, so the same gate electrode Lc becomes smaller than the width La of 15. Further, the junction depth xj of the N layer 16 to the silicon substrate 11 also increases.

すなわち、この構造にあっては、短チヤネル効果が大き
くなってしまうという欠点がある。従って、特に基板バ
イアスを使用する半導体装置に使用すると不利になる。
That is, this structure has the disadvantage that the short channel effect becomes large. Therefore, it is particularly disadvantageous to use it in a semiconductor device using a substrate bias.

また、LDD構造のMoSトランジスタに於いては、N
”層11がゲート電極15下に存在しないため、このN
一層17で生成されたホットキャリアがその上の絶縁1
118にトラップされると、N−1117に反転層が形
成され易くなり、その結果コンダクタンスが低下する。
Furthermore, in a MoS transistor with an LDD structure, N
"Since the layer 11 does not exist under the gate electrode 15, this N
The hot carriers generated in the layer 17
When trapped by 118, an inversion layer is likely to be formed at N-1117, resulting in a decrease in conductance.

その上、N一層17はゲート電極15の113111領
域外となる。この領域は抵抗として作用するため、本構
造に於いては、本質的に第1図の構造よりコンダクタン
スは小さくなる。また、LDD構造を使用した半導体装
置を樹脂封止した場合、N一層17に於いて汚染し、信
頼性が低下することも考えられる。
Moreover, the N layer 17 is outside the 113111 region of the gate electrode 15. Since this region acts as a resistor, the conductance of this structure is essentially smaller than that of the structure of FIG. Further, when a semiconductor device using an LDD structure is sealed with resin, it is possible that the N layer 17 may be contaminated and the reliability may be reduced.

[発明の目的] 本発明は上記実情に鑑みてなされたもので、その目的は
、短チャンネル効果の発生を防止し、かつコンダクタン
スの低下を防止することができ、ホットキャリアによる
信頼性の低下を防止し得るMOS型半導体装置を提供す
ることにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to prevent the occurrence of short channel effects and a decrease in conductance, and to prevent a decrease in reliability due to hot carriers. An object of the present invention is to provide a MOS type semiconductor device that can prevent the above problems.

[発明の概頁] 本発明は、−導電型の半導体基板と、この基板と反対導
電型の不純物により同基板内に離間して形成され、ソー
ス、ドレインとなる一対の高濃度不純物層と、これら高
濃度不純物層間のチャネル領域の少なくともドレイン側
近傍に当該高濃度不純物層より浅く形成された前記基板
と反対導電型の低濃度不純物層と、前記半導体基板上に
絶縁膜を介して設けられたゲート電極とを備えたMOS
型半導体装置に於いて、前記ゲート電極は前記チャネル
領域及び低濃度不純物層全面を覆うように形成するもの
である。
[Summary Page of the Invention] The present invention provides a -conductivity type semiconductor substrate, a pair of high-concentration impurity layers forming a source and a drain, which are formed spaced apart in the same substrate by impurities of a conductivity type opposite to that of the substrate; A low concentration impurity layer of a conductivity type opposite to that of the substrate is formed shallower than the high concentration impurity layer at least near the drain side of the channel region between these high concentration impurity layers, and a low concentration impurity layer is provided on the semiconductor substrate with an insulating film interposed therebetween. MOS with gate electrode
In the type semiconductor device, the gate electrode is formed to cover the channel region and the entire surface of the low concentration impurity layer.

[発明の実施例] 以下、図面を参照して本発明の一実施例を説明する。第
1図に於いて、21はP型のシリコン基板であり、この
シリコン基板21の表面にはそれぞれソース、ドレイン
となるN+層22.23が形成され、これらN“層22
.23近傍にはそれぞれチャネル側にN”層24.25
が形成されている。これらN一層24、25はそれぞれ
前述のLDD構造に於ける電界緩和用の低濃度不純物層
であり、いずれもN+層22、23より浅く形成jれて
いる。シリコン基板21の表面にはゲート絶縁1I26
を介してゲート電極26が設けられている。このゲート
電極26はその両端がソース、ドレインとなるN”層2
2.23の各内側端部まで伸びており、チャネル領域及
びN−824゜25の全面を覆うようになっている。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, 21 is a P-type silicon substrate, and on the surface of this silicon substrate 21 are formed N+ layers 22 and 23, which serve as sources and drains, respectively.
.. 23, there are N” layers 24 and 25 on the channel side, respectively.
is formed. These N+ layers 24 and 25 are low concentration impurity layers for relaxing the electric field in the aforementioned LDD structure, and both are formed shallower than the N+ layers 22 and 23. A gate insulator 1I26 is provided on the surface of the silicon substrate 21.
A gate electrode 26 is provided via the gate electrode 26 . This gate electrode 26 has an N'' layer 2 whose both ends become a source and a drain.
2.23 to each inner edge, covering the channel region and the entire surface of N-824°25.

次に、上記構造のMOSトランジスタの製造方法につい
て説明する。先ず、第2図に示すように熱酸化を行ない
P型のシリコン基板21上にゲート絶縁111(Si0
2)26を300人成長させる。次に、ゲート電極用の
多結晶シリコン層27を気相成長法により約4000人
形成した後、ゲート電極の抵抗を下げるために、POC
l3により不純物のリンを1000℃で多結晶シリコン
層21中に拡散させる。続いて、ゲート電極を形成する
ために、PEP(Photo  J、noraVinG
  1rocess)によりパターンを形成した後、異
方性のイオンエツチングを行ない多結晶シリコン層21
をエツチングし、500人残0た状態でエツチングを終
了させる。これにより、多結晶シリコン層27には段差
27aが形成される。
Next, a method for manufacturing a MOS transistor having the above structure will be described. First, as shown in FIG. 2, thermal oxidation is performed to form a gate insulator 111 (Si0
2) Grow 26 to 300 people. Next, after forming about 4000 polycrystalline silicon layers 27 for gate electrodes by vapor phase growth, POC
The impurity phosphorus is diffused into the polycrystalline silicon layer 21 at 1000° C. by l3. Next, to form a gate electrode, PEP (Photo J, noraVinG
After forming a pattern by 1rocess), anisotropic ion etching is performed to form a polycrystalline silicon layer 21.
and end the etching with 500 people remaining. As a result, a step 27a is formed in the polycrystalline silicon layer 27.

次に、第3図に示すように、イオン注入法により上記多
結晶シリコン層27の薄い部分を通してすンイオンの打
込みを行ない、ソース、ドレイン領域に電界緩和用のN
一層24.25を形成する。その後、気相成長法により
、多結晶シリコン層27上に多結晶シリコン層28を約
4000人形成する。続いて、第1図に示したように、
異方性エツチングにより多結晶シリコン層28の全面エ
ツチングを行ない、多結晶シリコン層21の段差部27
a(ゲート端)に厚く堆積している部分(以下、スペー
サ部28aという。)のみを残存させる。ここで、多結
晶シリコン層28は多結晶シリコン層27上に直接堆積
されているため、ゲート電極用の多結晶シリコン層21
とスペーサ部28aとは導通していることになる。
Next, as shown in FIG. 3, N ions are implanted through the thin portion of the polycrystalline silicon layer 27 using the ion implantation method, and N ions are implanted into the source and drain regions for electric field relaxation.
Form a layer 24.25. Thereafter, approximately 4000 polycrystalline silicon layers 28 are formed on the polycrystalline silicon layer 27 by vapor phase growth. Next, as shown in Figure 1,
The entire surface of the polycrystalline silicon layer 28 is etched by anisotropic etching, and the stepped portion 27 of the polycrystalline silicon layer 21 is etched.
Only the thickly deposited portion (hereinafter referred to as spacer portion 28a) at a (gate end) is left. Here, since the polycrystalline silicon layer 28 is deposited directly on the polycrystalline silicon layer 27, the polycrystalline silicon layer 28 for the gate electrode
This means that the spacer portion 28a and the spacer portion 28a are electrically connected.

次に、ゲート絶縁膜26のゲート部以外の部分をNH4
F等のエツチング液で除去した後、イオン注入法により
N型不純物例えばヒ素をシリコン基板21内に高濃度に
添加し、N+層22.23を形成する。
Next, a portion of the gate insulating film 26 other than the gate portion is heated using NH4.
After removal with an etching solution such as F, an N-type impurity such as arsenic is added at a high concentration into the silicon substrate 21 by ion implantation to form N+ layers 22 and 23.

このようにして形成されたMoSトランジスタにあって
は、ソース、ドレイン領域に於ける低濃度不純物領域の
N一層24.25は、前述のDDD構造のようにN+層
22.23より深く熱拡散させる必要がないので、接合
深さを小さく、よってチャネル長を大きくすることがで
きる。従って、短チヤネル効果をおさえることができる
。また、ソース、ドレインのN4層22.23形成時に
マスクとなるスペーサ部28aが多結晶シリコン層27
と同電位となりゲート電極として働くため、N一層24
.25が等測的にゲート電極下となる。したがって、N
一層24、25で生成されたホットキャリアによるコン
ダクタンスの減少も少なくなる。
In the MoS transistor formed in this manner, the N layer 24.25 of the low concentration impurity region in the source and drain regions is thermally diffused deeper than the N+ layer 22.23 as in the DDD structure described above. Since this is not necessary, the junction depth can be reduced and thus the channel length can be increased. Therefore, short channel effects can be suppressed. In addition, the spacer portion 28a that serves as a mask when forming the N4 layers 22 and 23 of the source and drain is the polycrystalline silicon layer 27.
Since it has the same potential as the gate electrode and acts as a gate electrode, the N layer 24
.. 25 isometrically below the gate electrode. Therefore, N
The decrease in conductance due to hot carriers generated in 24 and 25 is further reduced.

尚、上記実施例に於いては、N一層をソース。In the above embodiment, the N layer is the source.

ドレイン側の双方に設ける構成としたが、本発明はこれ
に限定するものではなく、ドレイン側のみ設ける構成と
してもよい。また、ゲート電極及びスペーサ材料として
導電性の多結晶シリコンを用いる構成としたが、多結晶
シリコン層の代りに、モリブデンシリサイド(Mo S
 i )や、モリブデンシリサイド(Mo S i )
と多結晶シリコンとの二層構造を使用する素子に於いて
は、スペーサ28aの形成材料として、モリブデンシリ
サイドゲート素子にはモリブデンシリサイドを、多結晶
シリコンとモリブデンシリサイドのポリサイド構造の素
子には多結晶シリコンを使用するものとする。
Although the structure is such that the electrodes are provided on both drain sides, the present invention is not limited to this, and may be provided only on the drain side. In addition, although conductive polycrystalline silicon was used as the gate electrode and spacer material, molybdenum silicide (MoS) was used instead of the polycrystalline silicon layer.
i), molybdenum silicide (MoSi)
In an element using a two-layer structure of polycrystalline silicon and polycrystalline silicon, the material for forming the spacer 28a is molybdenum silicide for the molybdenum silicide gate element, and polycrystalline for the element with a polycide structure of polycrystalline silicon and molybdenum silicide. Silicone shall be used.

[発明の効果コ 以上のように本発明によれば、短チヤネル効果の発生を
防止し、かつコンダクタンスの低下を防止することがで
き、ホットキャリアによる信頼性低下を防止することが
できるMOS型半導体装置を提供することができる。
[Effects of the Invention] As described above, the present invention provides a MOS type semiconductor that can prevent short channel effects from occurring, prevent conductance from decreasing, and prevent reliability from decreasing due to hot carriers. equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るMOSトランジスタの
構造を示す断面図、第2図及び第3図は第1図の構造の
製造工程を示す断面図、第4図乃至第6図はそれぞれ従
来のMOSトランジスタの構造を示す断面図である。 21・・・シリコン基板、22.23・・・N+層、2
4.25・・・N一層、26・・・ゲート絶縁膜、27
.28・・・多結晶シリコン膜、28a・・・スペーサ
部。
FIG. 1 is a cross-sectional view showing the structure of a MOS transistor according to an embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views showing the manufacturing process of the structure of FIG. 1, and FIGS. 4 to 6 are FIG. 3 is a cross-sectional view showing the structure of a conventional MOS transistor. 21...Silicon substrate, 22.23...N+ layer, 2
4.25...N single layer, 26...gate insulating film, 27
.. 28... Polycrystalline silicon film, 28a... Spacer portion.

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体基板と、この基板と反対導電型の不
純物により同基板内に離間して形成され、ソース、ドレ
インとなる一対の高濃度不純物層と、これら高濃度不純
物層間のチャネル領域の少なくともドレイン側近傍に当
該高濃度不純物層より浅く形成された前記基板と反対導
電型の低濃度不純物層と、前記半導体基板上に絶縁膜を
介して設けられ、前記チャネル領域及び低濃度不純物層
全面を覆うように設けられたゲート電極とを具備したこ
とを特徴とするMOS型半導体装置。
A semiconductor substrate of one conductivity type, a pair of high-concentration impurity layers formed separately in the same substrate with impurities of a conductivity type opposite to this substrate and serving as a source and a drain, and at least a channel region between these high-concentration impurity layers. a low concentration impurity layer of a conductivity type opposite to that of the substrate formed near the drain side to be shallower than the high concentration impurity layer; and a low concentration impurity layer provided on the semiconductor substrate via an insulating film, covering the entire surface of the channel region and the low concentration impurity layer. 1. A MOS type semiconductor device comprising a gate electrode provided so as to cover the gate electrode.
JP24022284A 1984-11-14 1984-11-14 Mos semiconductor device Pending JPS61119078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24022284A JPS61119078A (en) 1984-11-14 1984-11-14 Mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24022284A JPS61119078A (en) 1984-11-14 1984-11-14 Mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS61119078A true JPS61119078A (en) 1986-06-06

Family

ID=17056262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24022284A Pending JPS61119078A (en) 1984-11-14 1984-11-14 Mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS61119078A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122273A (en) * 1985-11-22 1987-06-03 Hitachi Ltd Semiconductor device and manufacture thereof
JPS63237566A (en) * 1987-03-26 1988-10-04 Oki Electric Ind Co Ltd Manufacture of semiconductor device
US5146291A (en) * 1988-08-31 1992-09-08 Mitsubishi Denki Kabushiki Kaisha MIS device having lightly doped drain structure
US5217913A (en) * 1988-08-31 1993-06-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing an MIS device having lightly doped drain structure and conductive sidewall spacers
US5583364A (en) * 1993-09-21 1996-12-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122273A (en) * 1985-11-22 1987-06-03 Hitachi Ltd Semiconductor device and manufacture thereof
JPS63237566A (en) * 1987-03-26 1988-10-04 Oki Electric Ind Co Ltd Manufacture of semiconductor device
US5146291A (en) * 1988-08-31 1992-09-08 Mitsubishi Denki Kabushiki Kaisha MIS device having lightly doped drain structure
US5217913A (en) * 1988-08-31 1993-06-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing an MIS device having lightly doped drain structure and conductive sidewall spacers
US5583364A (en) * 1993-09-21 1996-12-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
KR920009745B1 (en) Manufacturing method of semiconductor
JP2001298184A (en) Semiconductor device and manufacturing method thereof
JPH0693494B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS62217666A (en) Mis transistor
JPS60210861A (en) Semiconductor device
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
JPS6124833B2 (en)
JPH09213939A (en) Semiconductor device
JPS62156873A (en) Semiconductor device
JPS61119078A (en) Mos semiconductor device
JPH05251694A (en) Mos type semiconductor device and its manufacture
US5550064A (en) Method for fabricating high-voltage complementary metal-oxide-semiconductor transistors
JPH10116983A (en) Semiconductor device and its manufacture
JPS62262462A (en) Semiconductor device
JPH10321871A (en) Semiconductor device having soi structure and manufacture thereof
JPH067556B2 (en) MIS type semiconductor device
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JPS6159672B2 (en)
JPS63142676A (en) Manufacture of semiconductor device
JPH0491481A (en) Mis field effect transistor
JPH06105715B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0521789A (en) Field effect type transistor and its manufacture
US20020089021A1 (en) Semiconductor device with an anti-doped region
JP2896960B2 (en) Semiconductor device and manufacturing method thereof