JP2891932B2 - Vertical field-effect transistor - Google Patents

Vertical field-effect transistor

Info

Publication number
JP2891932B2
JP2891932B2 JP8136685A JP13668596A JP2891932B2 JP 2891932 B2 JP2891932 B2 JP 2891932B2 JP 8136685 A JP8136685 A JP 8136685A JP 13668596 A JP13668596 A JP 13668596A JP 2891932 B2 JP2891932 B2 JP 2891932B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
insulating film
effect transistor
vertical field
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8136685A
Other languages
Japanese (ja)
Other versions
JPH09321289A (en
Inventor
直之 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP8136685A priority Critical patent/JP2891932B2/en
Publication of JPH09321289A publication Critical patent/JPH09321289A/en
Application granted granted Critical
Publication of JP2891932B2 publication Critical patent/JP2891932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • H01L21/2815Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects part or whole of the electrode is a sidewall spacer or made by a similar technique, e.g. transformation under mask, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は縦型電界効果トラン
ジスタに関し、特にその特性を改善するための縦型電界
効果トランジスタの構造に関する。
The present invention relates to a vertical field effect transistor, and more particularly to a structure of a vertical field effect transistor for improving its characteristics.

【0002】[0002]

【従来の技術】従来、縦型電界効果トランジスタではオ
ン抵抗を低減するため、半導体基板の表面に溝が形成さ
れこの溝の側面がチャネル領域として用いられる。この
ようにして、単位面積当たりのチャネル幅が大きくさ
れ、縦型電界効果トランジスタの駆動能力が増大するよ
うになる。
2. Description of the Related Art Conventionally, in a vertical field effect transistor, a groove is formed on the surface of a semiconductor substrate to reduce the on-resistance, and the side surface of the groove is used as a channel region. Thus, the channel width per unit area is increased, and the driving capability of the vertical field effect transistor is increased.

【0003】以下、図5に基づいて従来の技術を説明す
る。図5は、従来の技術の縦型電界効果トランジスタの
断面図である。図5に示すように、N+ 型半導体基体2
1上にエピタキシャル成長によりN- 型半導体層22が
形成される。そして、このN- 型半導体層22の上層部
がP型導電層に変えられ、P型ベース領域23が形成さ
れている。さらに、このP型ベース領域23の表面領域
にN+ 型ソース領域24が形成されている。
Hereinafter, a conventional technique will be described with reference to FIG. FIG. 5 is a sectional view of a conventional vertical field effect transistor. As shown in FIG. 5, the N + type semiconductor substrate 2
An N -type semiconductor layer 22 is formed on the substrate 1 by epitaxial growth. Then, the upper part of the N type semiconductor layer 22 is changed to a P type conductive layer, and a P type base region 23 is formed. Further, an N + type source region 24 is formed in a surface region of the P type base region 23.

【0004】そして、このN+ 型ソース領域24および
P型ベース領域23がドライエッチングされ、溝25が
形成される。この溝25の側壁にゲート絶縁膜26とゲ
ート電極27とが形成されている。このゲート電極27
を被覆するように層間絶縁膜28が形成されている。こ
の層間絶縁膜28のP型ベース領域23の表面およびN
+ 型ソース領域24が露出され、これらと電気的に接続
するソース電極29が形成されている。また、N+ 型半
導体基板21の裏面には、ドレイン電極30が形成され
ている。
Then, the N + type source region 24 and the P type base region 23 are dry-etched to form a groove 25. A gate insulating film 26 and a gate electrode 27 are formed on the side wall of the groove 25. This gate electrode 27
Is formed so as to cover. The surface of P-type base region 23 of this interlayer insulating film 28 and N
The + type source region 24 is exposed, and a source electrode 29 electrically connected thereto is formed. On the back surface of the N + type semiconductor substrate 21, a drain electrode 30 is formed.

【0005】[0005]

【発明が解決しようとする課題】上述した従来技術であ
る溝構造の縦型電界効果トランジスタでは、溝の形成が
ドライエッチングで行われるため、溝側壁に結晶欠陥が
残留したり金属汚染が生じやすくなり、この溝側壁に形
成されるゲート絶縁膜26の絶縁耐圧が低下するように
なる。このような縦型電界効果トランジスタは、100
V程度の高耐圧動作される。このため、ゲート絶縁膜の
わずかな耐圧劣化が縦型電界効果トランジスタの信頼性
を大きく損なうようになる。
In the above-mentioned vertical field effect transistor having a groove structure according to the prior art, since the grooves are formed by dry etching, crystal defects remain on the side walls of the grooves and metal contamination is likely to occur. As a result, the withstand voltage of the gate insulating film 26 formed on the side wall of the trench decreases. Such a vertical field effect transistor has 100
A high withstand voltage operation of about V is performed. For this reason, a slight deterioration in the breakdown voltage of the gate insulating film greatly impairs the reliability of the vertical field effect transistor.

【0006】また、この従来の技術では、縦型電界効果
トランジスタのオン抵抗が大きくばらつくようになる。
これは上述したように、ドライエッチングにより形成さ
れる溝の深さがばらつき易く、チャネル長の制御が難し
くなるためである。特に、この縦型電界効果トランジス
タのオン抵抗はチャネル長に敏感であるため、通常のド
ライエッチング技術でのエッチング制御では対応できな
い。
Further, according to this conventional technique, the on-resistance of the vertical field effect transistor greatly varies.
This is because, as described above, the depth of the groove formed by dry etching tends to vary, making it difficult to control the channel length. In particular, the on-resistance of this vertical field-effect transistor is sensitive to the channel length, and cannot be dealt with by etching control using ordinary dry etching technology.

【0007】本発明の目的は、高耐圧用の縦型電界効果
トランジスタにおいてゲート絶縁膜の信頼性を高めると
共に、縦型電界効果トランジスタの駆動能力およびその
安定性を向上させることにある。
It is an object of the present invention to improve the reliability of a gate insulating film in a high breakdown voltage vertical field effect transistor, and to improve the driving capability and stability of the vertical field effect transistor.

【0008】[0008]

【課題を解決するための手段】このために、本発明の縦
型電界効果トランジスタでは、一導電型の高濃度不純物
を含有する半導体基体と、前記半導体基体上に形成され
た同導電型の低濃度不純物を含有する第1の半導体層
と、前記第1の半導体層の所定の領域に形成された素子
分離絶縁膜層とを有し、前記第1の半導体層上と前記素
子分離絶縁膜層の一部表面上とに選択的に逆導電型の第
2の半導体層が形成され、しかも、前記第2の半導体層
の側壁面と前記素子分離絶縁膜層の表面との接触角度が
90度を超えるように形成され、前記第2の半導体層上
に同導電型の高濃度不純物を含有する第3の半導体層が
形成され、前記第2の半導体層の側壁面に形成されたゲ
ート絶縁膜および前記素子分離絶縁膜を被覆するように
ゲート電極が形成される
For this purpose, in the vertical field effect transistor of the present invention, a semiconductor substrate containing a high-concentration impurity of one conductivity type and a low conductivity type semiconductor formed on the semiconductor substrate are provided. and a first semiconductor layer and said first element are formed in a predetermined region of the semiconductor layer isolation insulating film layer containing impurity concentration, the said first semiconductor layer above containing
A second semiconductor layer of selectively opposite conductivity type formed in and on a part of the surface of the child isolation insulating layer, moreover, the second semiconductor layer
The contact angle between the side wall surface of the device and the surface of the element isolation insulating film layer is
A third semiconductor layer containing the same conductivity type high-concentration impurity is formed on the second semiconductor layer, the third semiconductor layer being formed so as to exceed 90 degrees, and a gate formed on a side wall surface of the second semiconductor layer; A gate electrode is formed to cover the insulating film and the element isolation insulating film.

【0009】高耐圧用の縦型電界効果トランジスタで
は、前記半導体基体および第1の半導体層がドレイン領
域となり、前記第2の半導体層がベース領域となり、前
記第3の半導体層がソース領域となるように形成されて
いる。
In the vertical field effect transistor for high withstand voltage, the semiconductor substrate and the first semiconductor layer serve as a drain region, the second semiconductor layer serves as a base region, and the third semiconductor layer serves as a source region. It is formed as follows.

【0010】ここで、前記第1の半導体層および素子分
離絶縁膜層の表面が{100}面となる同一平面に形成
され、前記第2の半導体層の側壁面が{111}面ある
いは{311}面となるように形成されるとよい。
Here, the first semiconductor layer and the element
Formed on the same plane where the surface of the insulating layer is {100}
And the side wall surface of the second semiconductor layer has a {111} plane
Alternatively, it may be formed so as to have a {311} plane.

【0011】ここで、前記第2の半導体層および第3の
半導体層が分子線エピタキシャル成長法で形成される。
Here, the second semiconductor layer and the third semiconductor layer are formed by a molecular beam epitaxial growth method.

【0012】あるいは、前記第2の半導体層が化学的気
相成長法で形成される
Alternatively, the second semiconductor layer is formed by a chemical vapor deposition method.

【0013】あるいは、前記第2の半導体層の側壁面は
前記素子分離絶縁膜の表面に対し垂直になるように形成
され、前記ゲート電極が導電体材の反応性イオンエッチ
ングによるエッチバックで前記第2の半導体層の側壁部
に形成されている。
Alternatively, a side wall surface of the second semiconductor layer is formed so as to be perpendicular to a surface of the element isolation insulating film, and the gate electrode is etched back by reactive ion etching of a conductive material. The second semiconductor layer is formed on the side wall.

【0014】本発明では、縦型電界効果トランジスタの
チャネル領域あるいはベース領域になる第2の半導体層
が第1の半導体層上に選択的に所定の膜厚になるように
堆積される。このため、形成された第2の半導体層の側
壁面の結晶性品質は高く、この側壁面の清浄度も非常に
よくなる。また、第2の半導体層の膜厚の制御性も非常
に高い。そして、第2の半導体層の側壁面と素子分離絶
縁膜層の表面との接触角度が90度を超えるように形成
され、上記側壁面にゲート絶縁膜が均一に形成されるよ
うになる。
According to the present invention, a second semiconductor layer serving as a channel region or a base region of a vertical field effect transistor is selectively deposited on the first semiconductor layer so as to have a predetermined thickness. Therefore, the crystal quality of the side wall surface of the formed second semiconductor layer is high, and the cleanliness of the side wall surface is also very good. Further, the controllability of the thickness of the second semiconductor layer is very high. Then, the side wall surface of the second semiconductor layer is isolated from the element isolation.
Formed so that the contact angle with the surface of the rim layer exceeds 90 degrees
The gate insulating film is formed uniformly on the side wall surface.
Swell.

【0015】このために、ゲート絶縁膜の品質が大幅に
向上するようになる。また、縦型電界効果トランジスタ
の性能は向上しそのバラツキが低減するようになる。
For this reason, the quality of the gate insulating film is greatly improved. In addition, the performance of the vertical field-effect transistor is improved and its variation is reduced.

【0016】また、ゲート電極はドレイン領域となるN
+ 型半導体基体上に厚い絶縁膜を介して形成される。
The gate electrode is formed of N serving as a drain region.
It is formed on a + type semiconductor substrate via a thick insulating film.

【0017】このため、縦型電界効果トランジスタのゲ
ートとドレイン間の寄生容量が低減し縦型電界効果トラ
ンジスタの駆動能力が大幅に向上する。
Therefore, the parasitic capacitance between the gate and the drain of the vertical field effect transistor is reduced, and the driving capability of the vertical field effect transistor is greatly improved.

【0018】[0018]

【発明の実施の形態】次に、本発明の第1の実施の形態
を図1に基づいて説明する。図1は本発明の縦型電界効
果トランジスタの断面構造図である。
Next, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional structural view of a vertical field effect transistor of the present invention.

【0019】図1に示すように、N+ 型半導体基体1の
表面にエピタキシャル成長法により、第1の半導体層と
してN- 型半導体層2が形成されている。そして、素子
分離絶縁膜3が複数のN- 型半導体層2間に形成され
る。このN- 型半導体層2表面に選択的に第1の半導体
層としてP型ベース領域4が形成されている。さらに、
このP型ベース領域4上に第3の半導体層としてN++
ソース領域5が形成されている。ここで、これらのP型
ベース領域4とN++型ソース領域5とは、N- 型半導体
層2面に対して垂直になるように形成されている。ここ
で、このP型ベース領域4とN++型ソース領域5とは分
子線エピタキシャル成長法すなわちMBE(Molec
ular Beam Epitaxy)法でN- 型半導
体層2上に選択的に成長されたものである。
As shown in FIG. 1, an N type semiconductor layer 2 is formed as a first semiconductor layer on the surface of an N + type semiconductor substrate 1 by an epitaxial growth method. Then, an element isolation insulating film 3 is formed between the plurality of N -type semiconductor layers 2. A P-type base region 4 is selectively formed as a first semiconductor layer on the surface of the N -type semiconductor layer 2. further,
On this P-type base region 4, an N ++ type source region 5 is formed as a third semiconductor layer. Here, the P-type base region 4 and the N ++ -type source region 5 are formed so as to be perpendicular to the surface of the N -type semiconductor layer 2. Here, the P-type base region 4 and the N ++ -type source region 5 are formed by a molecular beam epitaxial growth method, that is, MBE (Molec).
This is selectively grown on the N -type semiconductor layer 2 by the method of “ultra-beam epitaxy”.

【0020】このようにして形成されたP型ベース領域
4とN++型ソース領域5の側壁にゲート絶縁膜6が形成
されている。そして、ゲート電極7が素子分離絶縁膜3
上に形成されている。また、このゲート電極7はゲート
絶縁膜6を被覆している。
A gate insulating film 6 is formed on the side walls of the P-type base region 4 and the N ++- type source region 5 thus formed. Then, the gate electrode 7 is formed of the element isolation insulating film 3.
Is formed on. The gate electrode 7 covers the gate insulating film 6.

【0021】このゲート電極7を被覆するように層間絶
縁膜8が形成されている。この層間絶縁膜8のN++型ソ
ース領域5が露出され、これらと電気的に接続するソー
ス電極9が形成されている。また、N+ 型半導体基板1
の裏面には、ドレイン電極10が形成されている。
An interlayer insulating film 8 is formed so as to cover the gate electrode 7. The N ++ type source region 5 of the interlayer insulating film 8 is exposed, and a source electrode 9 electrically connected thereto is formed. Also, the N + type semiconductor substrate 1
The drain electrode 10 is formed on the back surface of the substrate.

【0022】次に、本発明の第1の実施の形態の縦型電
界効果トランジスタの製造方法を図2と図3に基づいて
説明する。
Next, a method of manufacturing the vertical field effect transistor according to the first embodiment of the present invention will be described with reference to FIGS.

【0023】図2(a)に示すように、結晶面が(10
0)面のN+ 型シリコン基体のようなN+ 型半導体基体
1上に膜厚が2μm程度のシリコンのエピタキシャル層
が形成され,N- 型半導体層2が設けられる。このN-
型半導体層2が第1の半導体層である。
As shown in FIG. 2A, the crystal plane is (10)
A silicon epitaxial layer having a thickness of about 2 μm is formed on an N + type semiconductor substrate 1 such as the N + type silicon substrate on the 0) plane, and an N type semiconductor layer 2 is provided. The N -
The type semiconductor layer 2 is a first semiconductor layer.

【0024】次に、このN- 型半導体層2の所定の領域
がエッチングされ、さらに、このエッチングされた領域
が選択的に酸化される。そして、N+ 型半導体基体1に
達する厚いシリコン酸化膜が形成される。次に、この厚
いシリコン酸化膜の表面は、化学的機械研磨(CMP)
の方法で研削される。このCMP法で平坦化された素子
分離絶縁膜3が形成される。ここで、素子分離絶縁膜3
の表面はN- 型半導体層2の表面と同一平面になるよう
に機械研磨される。
Next, a predetermined region of the N - type semiconductor layer 2 is etched, and the etched region is selectively oxidized. Then, a thick silicon oxide film reaching the N + type semiconductor substrate 1 is formed. Next, the surface of this thick silicon oxide film is subjected to chemical mechanical polishing (CMP).
It is ground by the method of. An element isolation insulating film 3 planarized by the CMP method is formed. Here, the element isolation insulating film 3
Is mechanically polished so as to be flush with the surface of the N type semiconductor layer 2.

【0025】次に、図2(b)に示すように、導電型が
P型のシリコン膜がN- 型半導体層2上にMBE法で選
択成長される。このP型のシリコン膜が第2の半導体層
となる。そして、膜厚が2μm程度のこのP型のシリコ
ン膜がP型ベース領域4となる。ここで、このP型ベー
ス領域4は、素子分離絶縁膜3の表面に対し垂直になる
ように形成される。すなわち、(100)面と同価な面
が形成される。また、このP型のシリコン膜の選択成長
では、横方向への結晶成長は抑制される。すなわち、P
型ベース領域4の素子分離絶縁膜3上へのせり出しはほ
とんど生じないことになる。
Next, as shown in FIG. 2B, a P-type silicon film is selectively grown on the N type semiconductor layer 2 by the MBE method. This P-type silicon film becomes the second semiconductor layer. This P-type silicon film having a thickness of about 2 μm becomes the P-type base region 4. Here, the P-type base region 4 is formed so as to be perpendicular to the surface of the element isolation insulating film 3. That is, a plane equivalent to the (100) plane is formed. In the selective growth of the P-type silicon film, the crystal growth in the lateral direction is suppressed. That is, P
The protrusion of the mold base region 4 on the element isolation insulating film 3 hardly occurs.

【0026】続いて、MBE法で第3の半導体層が形成
される。この第3の半導体層にN++ソース領域5が形成
される。ここで、このN++ソース領域5の膜厚は1μm
に設定される。また、この場合には、砒素不純物が固溶
限界以上に含まれ、通常の場合よりこの領域の電気抵抗
は小さくなる。
Subsequently, a third semiconductor layer is formed by MBE. An N ++ source region 5 is formed in the third semiconductor layer. Here, the film thickness of the N ++ source region 5 is 1 μm.
Is set to Further, in this case, the arsenic impurity is contained in excess of the solid solution limit, and the electric resistance in this region becomes smaller than in the normal case.

【0027】次に、全面が熱酸化されゲート絶縁膜6が
形成される。ここで、このゲート絶縁膜6の膜厚は50
nm程度に設定される。
Next, the entire surface is thermally oxidized to form a gate insulating film 6. Here, the thickness of the gate insulating film 6 is 50
It is set to about nm.

【0028】次に、図2(c)に示すように、全面にリ
ン不純物を含有する多結晶シリコン膜11が化学気相成
長(CVD)法で堆積される。ここで、この多結晶シリ
コン膜11の膜厚は3μm程度である。
Next, as shown in FIG. 2C, a polycrystalline silicon film 11 containing a phosphorus impurity is deposited on the entire surface by a chemical vapor deposition (CVD) method. Here, the thickness of the polycrystalline silicon film 11 is about 3 μm.

【0029】次に、反応性イオンエッチング(以下、R
IEという)で全面の異方性エッチングが行われる。す
なわち、多結晶シリコン膜11のエッチバックが施され
る。このエッチバックにより、N++型ソース領域5上の
多結晶シリコン膜はエッチング除去される。そして、図
3(a)に示すように、サイドウォール状のゲート電極
7がP型ベース領域4とN++型ソース領域5の側壁に形
成される。なお、このゲート電極7は素子分離絶縁膜3
上にも形成される。
Next, reactive ion etching (hereinafter referred to as R
IE), the entire surface is anisotropically etched. That is, the polycrystalline silicon film 11 is etched back. By this etch back, the polycrystalline silicon film on the N ++ type source region 5 is removed by etching. Then, as shown in FIG. 3A, a sidewall-shaped gate electrode 7 is formed on the side walls of the P-type base region 4 and the N ++- type source region 5. Note that this gate electrode 7 is used for the element isolation insulating film 3.
Also formed on top.

【0030】次に、図3(b)に示すように、ゲート電
極7を被覆するように層間絶縁膜8が形成される。ここ
で、この層間絶縁膜8は、CVD法で堆積される膜厚が
1μm程度のPSG(リンガラスを含むシリコン酸化
膜)である。そして、N++型ソース領域5上の層間絶縁
膜8にコンタクト孔が設けられる。次に、コンタクト孔
を通してN++型ソース領域5に電気接続するソース電極
9が形成される。このソース電極9は、膜厚が3μm程
度のアルミニウム金属である。
Next, as shown in FIG. 3B, an interlayer insulating film 8 is formed so as to cover the gate electrode 7. Here, the interlayer insulating film 8 is a PSG (silicon oxide film containing phosphor glass) having a thickness of about 1 μm deposited by the CVD method. Then, a contact hole is provided in the interlayer insulating film 8 on the N ++ type source region 5. Next, a source electrode 9 electrically connected to the N ++ type source region 5 through the contact hole is formed. The source electrode 9 is an aluminum metal having a thickness of about 3 μm.

【0031】最後に、ドレイン電極がN+ 型半導体基体
1の裏面に形成され、図1で説明した本発明の縦型電界
効果トランジスタが形成される。
Finally, a drain electrode is formed on the back surface of the N + type semiconductor substrate 1, and the vertical field effect transistor of the present invention described with reference to FIG. 1 is formed.

【0032】本発明の縦型電界効果トランジスタでは、
P型ベース領域4あるいはN++型ソース領域5がドライ
エッチングの方法でなく、MBEによる半導体膜の選択
成長で行われる。このため、P型ベース領域4の側壁に
は結晶欠陥はなく、また金属汚染もない。そして、側壁
に形成されるゲート絶縁膜6の絶縁耐圧は大幅に向上す
るようになる。
In the vertical field effect transistor according to the present invention,
The P-type base region 4 or the N ++- type source region 5 is formed not by a dry etching method but by selective growth of a semiconductor film by MBE. Therefore, there is no crystal defect on the side wall of the P-type base region 4 and no metal contamination. Then, the withstand voltage of the gate insulating film 6 formed on the side wall is greatly improved.

【0033】また、本発明の場合では、縦型電界効果ト
ランジスタのオン抵抗のバラツキが非常に小さくなる。
これは上述したように、P型ベース領域を形成するMB
E法はその膜厚制御に非常に優れているためである。
Further, in the case of the present invention, the variation in the on-resistance of the vertical field effect transistor is very small.
This is, as described above, the MB forming the P-type base region.
This is because the E method is very excellent in controlling the film thickness.

【0034】また、本発明ではゲート電極が膜厚の厚い
素子分離絶縁膜上に形成されるため、縦型電界効果トラ
ンジスタのゲートとドレイン間の寄生容量が大幅に低減
するようになる。この寄生容量の値は、従来の場合の1
/20程度に減少する。このため、縦型電界効果トラン
ジスタの動作時の帰還容量が低減し、スイッチ速度が大
幅に向上するようになる。
In the present invention, since the gate electrode is formed on the element isolation insulating film having a large thickness, the parasitic capacitance between the gate and the drain of the vertical field effect transistor is greatly reduced. The value of this parasitic capacitance is 1 in the conventional case.
/ 20 or so. For this reason, the feedback capacitance during the operation of the vertical field effect transistor is reduced, and the switching speed is greatly improved.

【0035】次に、本発明の第2の実施の形態を図4に
基づいて説明する。図4は、第2の実施の形態の縦型電
界効果トランジスタの断面図である。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a sectional view of a vertical field effect transistor according to the second embodiment.

【0036】この第2の実施の形態では、P型ベース領
域の側壁面が素子分離絶縁膜に対し傾斜するように形成
される。他は第1の実施の形態で説明したのとほぼ同一
である。すなわち、図4に示すように、結晶面が(10
0)のN+ 型半導体基体1の表面にエピタキシャル成長
法によりN- 型半導体層2が形成されている。そして、
素子分離絶縁膜3が複数のN- 型半導体層2間に形成さ
れる。このN- 型半導体層2表面に選択的にP型ベース
領域4aが形成されている。さらに、このP型ベース領
域4a上にN+ 型ソース領域5aが形成される。ここ
で、これらのP型ベース領域4aとN+ 型ソース領域5
aとは、素子分離絶縁膜3あるいはN- 型半導体層2面
に対して一定の傾斜角度を有するように形成される。こ
こで、このP型ベース領域4aとN+ 型ソース領域5a
とは選択CVD法でN- 型半導体層2上に選択的に成長
されたものである。
In the second embodiment, the side wall surface of the P-type base region is formed so as to be inclined with respect to the element isolation insulating film. Others are almost the same as those described in the first embodiment. That is, as shown in FIG.
-Type semiconductor layer 2 is formed - N by epitaxial growth in the N + semiconductor substrate 1 of the surface of 0). And
An element isolation insulating film 3 is formed between the plurality of N type semiconductor layers 2. P-type base region 4a is selectively formed on the surface of N - type semiconductor layer 2. Further, N + type source region 5a is formed on P type base region 4a. Here, these P type base region 4a and N + type source region 5
“a” is formed so as to have a certain inclination angle with respect to the element isolation insulating film 3 or the surface of the N type semiconductor layer 2. Here, the P-type base region 4a and the N + -type source region 5a
Is selectively grown on the N type semiconductor layer 2 by the selective CVD method.

【0037】以下、P型ベース領域4aとN+ 型ソース
領域5aの側壁にゲート絶縁膜6が形成されている。そ
して、ゲート電極7aがこのゲート絶縁膜6および素子
分離絶縁膜3を被覆するように形成されている。ここ
で、このゲート電極7aは凹部全体を埋設するように形
成される。
Hereinafter, a gate insulating film 6 is formed on the side walls of the P-type base region 4a and the N + -type source region 5a. The gate electrode 7a is formed so as to cover the gate insulating film 6 and the element isolation insulating film 3. Here, the gate electrode 7a is formed so as to bury the entire recess.

【0038】そして、このゲート電極7aを被覆するよ
うに層間絶縁膜8が形成されている。この層間絶縁膜8
のN+ 型ソース領域5aが露出され、これらと電気的に
接続するソース電極9が形成されている。また、N+
半導体基板1の裏面には、ドレイン電極10が形成され
ている。
Then, an interlayer insulating film 8 is formed so as to cover the gate electrode 7a. This interlayer insulating film 8
The N + -type source region 5a is exposed, a source electrode 9 electrically connected to these are formed. On the back surface of the N + type semiconductor substrate 1, a drain electrode 10 is formed.

【0039】この第2の実施の形態では、P型ベース領
域4aの側壁面が(111)あるいは(311)等とな
り(100)から傾斜した面になる。このため、チャネ
ル領域の電子の易動度が向上し、縦型電界効果トランジ
スタの動作速度が高まるようになる。
In the second embodiment, the side wall surface of the P-type base region 4a becomes (111) or (311) or the like, and is a surface inclined from (100). Therefore, the mobility of electrons in the channel region is improved, and the operation speed of the vertical field-effect transistor is increased.

【0040】さらに、 P型ベース領域4aの側壁面と
素子分離絶縁膜3表面との間の接触角度は90度以上に
なるので、ゲート絶縁膜6がP型ベース領域4a面に均
一に形成されるようになる。通常、このゲート絶縁膜は
熱酸化で形成されるが、上記の接触角度が小さい場合に
は、酸化されるP型ベース領域4a表面の素子分離絶縁
膜3との接触部での酸化が抑制される。このため、この
接触部のゲート絶縁膜厚が小さくなる。
Furthermore, since the contact angle between the side wall surface of the P-type base region 4a and the surface of the element isolation insulating film 3 is 90 degrees or more, the gate insulating film 6 is formed uniformly on the P-type base region 4a surface. Become so. Normally, the gate insulating film is formed by thermal oxidation. However, when the contact angle is small, the oxidation at the contact portion of the surface of the oxidized P-type base region 4a with the element isolation insulating film 3 is suppressed. You. Therefore, the thickness of the gate insulating film at the contact portion is reduced.

【0041】上記の実施の形態では、縦型電界効果トラ
ンジスタがNチャネル型の場合が説明された。本発明は
Nチャネル型に限定されるものでなく、Pチャネル型で
も同様に形成されるものである。
In the above embodiment, the case where the vertical field-effect transistor is an N-channel type has been described. The present invention is not limited to the N-channel type, but is similarly formed in the P-channel type.

【0042】[0042]

【発明の効果】以上に説明したように、本発明の縦型電
界効果トランジスタでは、P型ベース領域4あるいはN
++型ソース領域5がドライエッチングの方法でなく、分
子線エピタキシャル成長法あるいは化学的気相成長法に
よる半導体膜の選択成長で行われる。
As described above, in the vertical field effect transistor according to the present invention, the P type base region 4 or the N type
The ++ type source region 5 is formed not by a dry etching method but by selective growth of a semiconductor film by a molecular beam epitaxial growth method or a chemical vapor deposition method.

【0043】このため、P型ベース領域の側壁には結晶
欠陥はなく、また金属汚染もない。そして、側壁に形成
されるゲート絶縁膜の絶縁耐圧は大幅に向上する。
Therefore, there is no crystal defect on the side wall of the P-type base region and no metal contamination. Then, the withstand voltage of the gate insulating film formed on the side wall is greatly improved.

【0044】また、本発明の場合では、縦型電界効果ト
ランジスタのオン抵抗のバラツキが非常に小さくなる。
これは上述したように、P型ベース領域を結晶成長させ
る方法はその膜厚制御に非常に優れているためである。
その中でも特に分子線エピタキシャル成長法では、オン
抵抗のバラツキは従来の1/10以下になる。
Further, in the case of the present invention, the variation in the on-resistance of the vertical field effect transistor becomes very small.
This is because, as described above, the method of growing a P-type base region crystal is very excellent in controlling the film thickness.
Among them, especially in the molecular beam epitaxial growth method, the variation of the on-resistance becomes 1/10 or less of the conventional one.

【0045】また、本発明ではゲート電極が膜厚の厚い
素子分離絶縁膜上に形成されるため、縦型電界効果トラ
ンジスタのゲートとドレイン間の寄生容量が大幅に低減
するようになる。このため、縦型電界効果トランジスタ
の動作時の帰還容量が低減し、スイッチ速度が大幅に向
上するようになる。
In the present invention, since the gate electrode is formed on the element isolation insulating film having a large thickness, the parasitic capacitance between the gate and the drain of the vertical field effect transistor is greatly reduced. For this reason, the feedback capacitance during the operation of the vertical field effect transistor is reduced, and the switching speed is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の縦型電界効果トラ
ンジスタの断面図である
FIG. 1 is a sectional view of a vertical field effect transistor according to a first embodiment of the present invention.

【図2】上記縦型電界効果トランジスタの製造工程順の
断面図である。
FIG. 2 is a sectional view of the vertical field effect transistor in the order of manufacturing steps.

【図3】上記縦型電界効果トランジスタの製造工程順の
断面図である。
FIG. 3 is a sectional view of the vertical field-effect transistor in the order of manufacturing steps.

【図4】本発明の第2の実施の形態の縦型電界効果トラ
ンジスタの断面図である
FIG. 4 is a cross-sectional view of a vertical field effect transistor according to a second embodiment of the present invention.

【図5】従来の技術を説明する縦型電界効果トランジス
タの断面図である。
FIG. 5 is a cross-sectional view of a vertical field effect transistor illustrating a conventional technique.

【符号の説明】[Explanation of symbols]

1,21 N+ 型半導体基体 2,22 N- 型半導体層 3 素子分離絶縁膜 4,4a,23 P型ベース領域 5 N++型ソース領域 5a,24 N+ 型ソース領域 6,26 ゲート絶縁膜 7,7a,27 ゲート電極 8,28 層間絶縁膜 9,29 ソース電極 10,30 ドレイン電極 11 多結晶シリコン膜 25 溝1,21 N + type semiconductor substrate 2,22 N type semiconductor layer 3 Element isolation insulating film 4,4a, 23 P type base region 5N ++ type source region 5a, 24 N + type source region 6,26 Gate insulation Film 7, 7a, 27 Gate electrode 8, 28 Interlayer insulating film 9, 29 Source electrode 10, 30 Drain electrode 11 Polycrystalline silicon film 25 Groove

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一導電型の高濃度不純物を含有する半導
体基体と、前記半導体基体上に形成された同導電型の低
濃度不純物を含有する第1の半導体層と、前記第1の半
導体層の所定の領域に形成された素子分離絶縁膜層とを
有し、前記第1の半導体層上と前記素子分離絶縁膜層の
一部表面上とに選択的に逆導電型の第2の半導体層が形
成され、しかも、前記第2の半導体層の側壁面と前記素
子分離絶縁膜層の表面との接触角度が90度を超えるよ
うに形成され、前記第2の半導体層上に同導電型の高濃
度不純物を含有する第3の半導体層が形成され、前記第
2の半導体層の側壁面に形成されたゲート絶縁膜および
前記素子分離絶縁膜を被覆するようにゲート電極が形
成されていることを特徴とする縦型電界効果トランジス
タ。
1. A semiconductor substrate containing a high-concentration impurity of one conductivity type, a first semiconductor layer containing a low-concentration impurity of the same conductivity type formed on the semiconductor substrate, and the first semiconductor layer And a device isolation insulating film layer formed in a predetermined area of the first semiconductor layer and the device isolation insulating film layer.
A second semiconductor layer of the opposite conductivity type is selectively formed on a part of the surface, and the side wall surface of the second semiconductor layer and the second semiconductor layer are selectively formed.
The contact angle with the surface of the element isolation insulating film layer exceeds 90 degrees.
A third semiconductor layer containing a high-concentration impurity of the same conductivity type is formed on the second semiconductor layer; a gate insulating film formed on a side wall surface of the second semiconductor layer; A vertical field-effect transistor, wherein a gate electrode is formed so as to cover the isolation insulating film layer .
【請求項2】 前記第1の半導体層および素子分離絶縁
膜層の表面が{100}面となる同一平面に形成され、
前記第2の半導体層の側壁面が{111}面あるいは
{311}面となるように形成されていることを特徴と
する請求項1記載の縦型電界効果トランジスタ。
2. The first semiconductor layer and element isolation insulation.
The surface of the film layer is formed on the same plane as the {100} plane,
The side wall surface of the second semiconductor layer is {111} plane or
Vertical field effect transistor of claim 1, wherein that you have been formed so that the {311} plane.
【請求項3】 前記半導体基体および第1の半導体層が
ドレイン領域であり、前記第2の半導体層がベース領域
であり、前記第3の半導体層がソース領域であり高耐圧
用トランジスタとなっていることを特徴とする請求項1
または請求項2記載の縦型電界効果トランジスタ。
3. The semiconductor substrate and the first semiconductor layer,
A drain region, wherein the second semiconductor layer is a base region;
Wherein the third semiconductor layer is a source region and has a high breakdown voltage.
2. The transistor according to claim 1, wherein:
Or a vertical field effect transistor according to claim 2.
【請求項4】 前記第2の半導体層および第3の半導体
層が分子線エピタキシャル成長法で形成されていること
を特徴とする請求項1、請求項2または請求項3記載の
縦型電界効果トランジスタ。
4. The vertical field effect transistor according to claim 1, wherein said second semiconductor layer and said third semiconductor layer are formed by a molecular beam epitaxial growth method. .
【請求項5】 前記第2の半導体層が化学的気相成長法
で形成されていることを特徴とする請求項1、請求項2
または請求項3記載の縦型電界効果トランジスタ。
5. The semiconductor device according to claim 1, wherein said second semiconductor layer is formed by a chemical vapor deposition method.
A vertical field effect transistor according to claim 3.
JP8136685A 1996-05-30 1996-05-30 Vertical field-effect transistor Expired - Fee Related JP2891932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8136685A JP2891932B2 (en) 1996-05-30 1996-05-30 Vertical field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8136685A JP2891932B2 (en) 1996-05-30 1996-05-30 Vertical field-effect transistor

Publications (2)

Publication Number Publication Date
JPH09321289A JPH09321289A (en) 1997-12-12
JP2891932B2 true JP2891932B2 (en) 1999-05-17

Family

ID=15181088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8136685A Expired - Fee Related JP2891932B2 (en) 1996-05-30 1996-05-30 Vertical field-effect transistor

Country Status (1)

Country Link
JP (1) JP2891932B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057331A (en) * 2000-08-11 2002-02-22 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2009164589A (en) 2007-12-12 2009-07-23 Elpida Memory Inc Semiconductor device and method for manufacturing the same
JP2011086679A (en) 2009-10-13 2011-04-28 Elpida Memory Inc Semiconductor device and method for manufacturing semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025254A (en) * 1983-07-21 1985-02-08 Nec Corp Wiring method of integrated circuit
JP2647884B2 (en) * 1988-01-27 1997-08-27 株式会社日立製作所 Method for manufacturing semiconductor device
JPH0360076A (en) * 1989-07-27 1991-03-15 Seiko Instr Inc Manufacture of vertical field effect transistor
JPH05218338A (en) * 1992-01-31 1993-08-27 Ricoh Co Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH09321289A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP4071951B2 (en) Method for manufacturing field effect transistor
US8263444B2 (en) Methods of forming semiconductor-on-insulating (SOI) field effect transistors with body contacts
JP3395603B2 (en) Semiconductor device including lateral MOS element
US7361956B2 (en) Semiconductor device having partially insulated field effect transistor (PiFET) and method of fabricating the same
US5723376A (en) Method of manufacturing SiC semiconductor device having double oxide film formation to reduce film defects
US7312126B2 (en) Process for producing a layer arrangement, and layer arrangement for use as a dual gate field-effect transistor
JP3472655B2 (en) Semiconductor device
KR100696197B1 (en) Multiple-gate MOS transistor using the Si substrate and a method for manufacturing the same
KR100335525B1 (en) Semiconductor device and method for producing the same
US5920108A (en) Late process method and apparatus for trench isolation
KR100233976B1 (en) Semiconductor device including trench isolation structure and method of manufacturing thereof
US20080283960A1 (en) Production of a Carrier Wafer Contact in Trench Insulated Integrated Soi Circuits Having High-Voltage Components
US20050199948A1 (en) Fin field effect transistors with epitaxial extension layers and methods of forming the same
US20070102756A1 (en) FinFET transistor fabricated in bulk semiconducting material
US4845051A (en) Buried gate JFET
US5872044A (en) Late process method for trench isolation
US6495406B1 (en) Method of forming lightly doped drain MOS transistor including forming spacers on gate electrode pattern before exposing gate insulator
US6900102B2 (en) Methods of forming double gate electrodes using tunnel and trench
KR100718178B1 (en) Semiconductor device and semiconductor device manufacturing method
KR20020010918A (en) Double gate mosfet transistor and method for the production thereof
JP2891932B2 (en) Vertical field-effect transistor
US6764921B2 (en) Semiconductor device and method for fabricating the same
JP2961692B2 (en) High voltage element and method of manufacturing the same
US6812522B2 (en) Lateral type power MOS transistor having trench gate formed on silicon-on-insulator (SOI) substrate
JPH10190002A (en) High voltage device with insulated gate pinchi-off structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990126

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees