JPH0360076A - Manufacture of vertical field effect transistor - Google Patents

Manufacture of vertical field effect transistor

Info

Publication number
JPH0360076A
JPH0360076A JP19474789A JP19474789A JPH0360076A JP H0360076 A JPH0360076 A JP H0360076A JP 19474789 A JP19474789 A JP 19474789A JP 19474789 A JP19474789 A JP 19474789A JP H0360076 A JPH0360076 A JP H0360076A
Authority
JP
Japan
Prior art keywords
channel
region
source
gas containing
molecular layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19474789A
Other languages
Japanese (ja)
Inventor
Tadao Akamine
忠男 赤嶺
Kenji Aoki
健二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP19474789A priority Critical patent/JPH0360076A/en
Publication of JPH0360076A publication Critical patent/JPH0360076A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To severely control the thicknesses and impurity concentrations of source, channel and drain regions by forming the source, channel and drain regions on a semiconductor substrate by molecular layer epitaxy. CONSTITUTION:After an oxide film 2 is formed on a silicon substrate 1, three layers of a source region 3, a channel region 4 and a drain region 5 are formed in a state that the oxide film of an element forming part is removed by etching by a molecular layer epitaxy. In this case, semiconductor component element gas is introduced at a predetermined temperature with a time chart of a predetermined pressure as one cycle. This cycle is repeated to easily form a transistor having several thousands Angstrom of a channel length, and impurity concentration distribution is variously controlled to easily weaken a drain electric field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 縦型電界効果トランジスタの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a vertical field effect transistor.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板表面に分子層エピタキシャル成長
法を用いて、ソース領域、チャネル領域、ドレイン領域
を形成することにより、それぞれの領域の厚さ、及び不
純物密度を厳密に制御することを可能にした縦型電界効
果トランジスタの製造方法である。
The present invention makes it possible to strictly control the thickness and impurity density of each region by forming a source region, a channel region, and a drain region on the surface of a semiconductor substrate using a molecular layer epitaxial growth method. This is a method for manufacturing a vertical field effect transistor.

〔従来の技術〕[Conventional technology]

従来の技術において、縦型電界効果トランジスタを形成
する際、イオン注入や通常のエピタキシャル技術を用い
て、P型及びn型の領域を形成していた。
In the prior art, when forming vertical field effect transistors, ion implantation or conventional epitaxial techniques were used to form P-type and n-type regions.

〔発明が解決しようとするLl!!!り上記従来の技術
においては、P型n型P型の三層またはn型P型n型の
三層のような半導体薄膜を形成する際、それぞれの層、
特に中間の層を数百Å以下の厚さに制御性よく形成する
ことはイオン注入においては不純物がガウシアン分布を
とるため、通常のエピタキシャル技術においては不純物
のオートドーピング及び固相拡散影響が大きいため困難
であった。
[Ll that the invention tries to solve! ! ! In the above conventional technology, when forming a semiconductor thin film such as three layers of P type, n type, and P type or three layers of n type, P type, and n type, each layer,
In particular, it is important to form the intermediate layer to a thickness of several hundred Å or less with good control because in ion implantation, impurities have a Gaussian distribution, and in normal epitaxial technology, the effects of autodoping and solid phase diffusion of impurities are large. It was difficult.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明においては、分子層
エピタキシャル成長法を用いて、P型n型P型、又はn
型P型n型の三層であるところのソース領域、チャネル
領域、ドレイン領域を分子層エピタキシャル成長法によ
り形成することとした。
In order to solve the above problems, in the present invention, using a molecular layer epitaxial growth method, P-type, n-type, P-type, or n-type
The source region, channel region, and drain region, which are three layers of P type and n type, were formed by molecular layer epitaxial growth.

〔作用〕[Effect]

分子層エピタキシャル成長法によれば、通常のエピタキ
シャル技術を用いた場合に比較して、オートドーピング
及び固相拡散が非常に低く抑えられるため、縦型電界効
果トランジスタのソース領域、チャネル領域、ドレイン
領域のそれぞれの膜厚を数百Å以下の厚さに、数原子層
の精度で形成することができ、しかも不純物濃度分布を
厳密に制御することが可能となる。
According to the molecular layer epitaxial growth method, autodoping and solid phase diffusion are suppressed to a much lower level than when using normal epitaxial techniques, so that the source, channel, and drain regions of vertical field effect transistors can be Each film can be formed to a thickness of several hundred angstroms or less with an accuracy of several atomic layers, and the impurity concentration distribution can be precisely controlled.

〔実施例〕〔Example〕

以下に、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図は、本発明の実施例を示す。第1図(alは、シ
リコン基板1上に、酸化膜2を形7i!後、素子形成部
分の酸化膜をエツチングにより除いたところを示す。
FIG. 1 shows an embodiment of the invention. FIG. 1 (al) shows the state where the oxide film 2 was formed on the silicon substrate 1, and the oxide film in the element formation area was removed by etching.

第1囲い)は、分子層エピタキシャル成長法を用いて、
ソース領域3.チャネル領域4.ドレイン領域5の三つ
の層を形成したところを示す。この際、分子層エピタキ
シャル法では、ガス分子の平均自由工程が長いため、ア
スペクト比率lO程度であっても形成可能である。
The first box) uses the molecular layer epitaxial growth method,
Source area 3. Channel region 4. The formation of the three layers of the drain region 5 is shown. In this case, in the molecular layer epitaxial method, since the mean free path of gas molecules is long, it is possible to form even an aspect ratio of about 1O.

この際、シリコン分子層エピタキシャル成長法によって
、温度825℃において半導体成分元素ガスとして例え
ば5itlzcJzと不純物元素を含むガスとして例え
ばB2H6又はAsH*とを、第2図に示すような圧力
のタイムチャートを1サイクルとして、導入した場合、
5iHzcJtの導入時圧力を1.5 X 10−’f
orrとすると、5znaの導入時圧力の5i11.c
l、導入時圧力に対する比に従って、第4図に示すよう
にな不純物濃度で、第3図に示すような厚さの薄膜が形
成される。このサイクルを繰り返すことで望みの伝導型
、不純物濃度、膜厚の半導体薄膜を得ることができる。
At this time, using the silicon molecular layer epitaxial growth method, a semiconductor component element gas such as 5itlzcJz and a gas containing an impurity element such as B2H6 or AsH* are grown at a temperature of 825° C. for one cycle under a pressure time chart as shown in FIG. If introduced as,
The pressure at the time of introduction of 5iHzcJt is 1.5 x 10-'f
orr, the pressure at the time of introduction of 5zna is 5i11. c.
According to the ratio of 1 to the pressure at the time of introduction, a thin film having an impurity concentration as shown in FIG. 4 and a thickness as shown in FIG. 3 is formed. By repeating this cycle, a semiconductor thin film having a desired conductivity type, impurity concentration, and film thickness can be obtained.

例えば、5IR1dzの圧力を1.5X10−’yor
r+BJiの5iHzeJzに対する圧力比を4X10
−”にすれば、100サイクルで260人、B濃度1.
5X10”(am−”)のソース領域が形成され、続い
てAsToを5iHtdzに対してlXl0−の圧力比
で導入すれば、300サイクルで、270人、 As濃
度1.0X10”(am−3)のチャネル領域が形成さ
れ、続いてソース領域と同様にして260人のドレイン
領域が形成できる。
For example, the pressure of 5IR1dz is 1.5X10-'yor
The pressure ratio of r+BJi to 5iHzJz is 4X10
-", 260 people in 100 cycles, B concentration 1.
If a 5X10"(am-") source region is formed and then AsTo is introduced at a pressure ratio of 1X10- to 5iHtdz, then in 300 cycles, 270 people and an As concentration of 1.0X10" (am-3) will be obtained. A channel region is formed, followed by a drain region in the same manner as the source region.

以上のように分子層エピタキシャル成長法によれば、ソ
ース領域、チャネル領域、ドレイン領域の不純物濃度及
び膜厚を非常に精密に制御できることから、第5図のよ
うな不′4@¥yJflA度分布にすることで、接合付
近の電界を弱める構造にすることも容易にできる。先に
述べたように又チャネル長、数千A以下のトランジスタ
の形成も容易である。
As described above, according to the molecular layer epitaxial growth method, the impurity concentration and film thickness of the source region, channel region, and drain region can be controlled very precisely, so that the impurity concentration distribution as shown in Fig. 5 can be achieved. By doing so, it is possible to easily create a structure that weakens the electric field near the junction. As mentioned above, it is also easy to form a transistor with a channel length of several thousand amperes or less.

続いて、第1図fclは、ゲート形成のため酸化膜のエ
ツチングを行ったところを示す。次に、第1図(dlは
熱酸化又はCVDによって、ゲート絶縁膜6を形成した
ところである。第1図telは、多結晶シリコンの堆積
と、フォトリソ工程、エツチングを行ってゲート電極7
を形成したところを示す。
Subsequently, FIG. 1 fcl shows the oxide film being etched to form a gate. Next, in FIG. 1 (dl shows the gate insulating film 6 formed by thermal oxidation or CVD. In FIG. 1 tel, the gate electrode 7 is formed by depositing polycrystalline silicon, photolithography, and etching.
The figure shows the formation of the .

〔発明の効果〕〔Effect of the invention〕

以上述べたように、分子層エピタキシャル成長法を用い
ることで、チャネル長が数千人のトランジスタが容易に
形成できる他、不純物濃度分布をさまざまにコントロー
ルして、ドレイン電界を弱めることも容易にできる。
As described above, by using the molecular layer epitaxial growth method, not only can transistors with channel lengths of several thousand lengths be easily formed, but also the drain electric field can be easily weakened by controlling the impurity concentration distribution in various ways.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施例を示す工程順断面図、第2
図は分子層エビタシャル成長法におけるガス導入圧力の
一例のタイムチャート、第3図は B、H,の導入時圧
力の5iHzCjzに対する比と、1サイクルあたり成
長膜厚の関係を表わす図、第4図はBJ、の導入時圧力
の5iHzdzに対する比と膜中の84度の関係を示す
る図、第5図は接合の電界を弱める構造の不純物濃度分
布を示す図である。 ・シリコン基牟反 ・酸化膜 ・ソース領域 ・チャネル領域 ・ドレイン領域 ・ゲート絶縁膜 ・ゲート電極 ・B?s度 ・At濃度
Fig. 1 is a cross-sectional view showing an example of the method of the present invention in the order of steps;
The figure is a time chart of an example of the gas introduction pressure in the molecular layer evitital growth method. Figure 3 is a diagram showing the relationship between the ratio of the pressure at the time of introduction of B, H, to 5iHzCjz and the film thickness grown per cycle. Figure 4 5 is a diagram showing the relationship between the ratio of the pressure at the time of introduction of BJ to 5 iHzdz and 84 degrees in the film, and FIG. 5 is a diagram showing the impurity concentration distribution of the structure that weakens the electric field of the junction.・Silicon substrate ・Oxide film ・Source region ・Channel region ・Drain region ・Gate insulating film ・Gate electrode ・B? s degrees/At concentration

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に、分子層エピタキシャル成長法を用い
て、半導体の成分元素を含むガスと、ドナー又はアクセ
プターの不純物元素を含むガスとにより、ソース又はド
レイン領域を形成し、次に、ソース又はドレイン領域と
逆の伝導型の不純物元素を含むガスと半導体の成分元素
を含むガスとでチャネル領域を形成し、次にチャネル領
域と逆の伝導型の不純物元素を含むガスと半導体の成分
元素を含むガスとでソース又はドレイン領域を形成する
ことで、ソース領域、チャネル領域、ドレイン領域の不
純物密度分布及びチャネル長を厳密に制御することを特
徴とする縦型電界効果トランジスタの製造方法。
A source or drain region is formed on the surface of the semiconductor substrate using a molecular layer epitaxial growth method using a gas containing component elements of the semiconductor and a gas containing an impurity element as a donor or acceptor. A channel region is formed with a gas containing an impurity element of opposite conductivity type and a gas containing a semiconductor component element, and then a gas containing an impurity element of opposite conductivity type and a gas containing a semiconductor component element are formed. 1. A method for manufacturing a vertical field effect transistor, characterized in that the impurity density distribution and channel length of the source region, channel region, and drain region are strictly controlled by forming the source or drain region.
JP19474789A 1989-07-27 1989-07-27 Manufacture of vertical field effect transistor Pending JPH0360076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19474789A JPH0360076A (en) 1989-07-27 1989-07-27 Manufacture of vertical field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19474789A JPH0360076A (en) 1989-07-27 1989-07-27 Manufacture of vertical field effect transistor

Publications (1)

Publication Number Publication Date
JPH0360076A true JPH0360076A (en) 1991-03-15

Family

ID=16329558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19474789A Pending JPH0360076A (en) 1989-07-27 1989-07-27 Manufacture of vertical field effect transistor

Country Status (1)

Country Link
JP (1) JPH0360076A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232576A (en) * 1995-06-16 1997-09-05 Interuniv Micro Electro Centrum Vzw Vertical misfet device, cmos process integration and ram application
JPH09321289A (en) * 1996-05-30 1997-12-12 Nec Yamagata Ltd Vertical field-effect transistor
JP2006294995A (en) * 2005-04-13 2006-10-26 Nec Corp Field-effect transistor and its manufacturing method
JP2009253273A (en) * 2008-04-10 2009-10-29 Hynix Semiconductor Inc Method of fabricating vertical transistor in high integrated semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232576A (en) * 1995-06-16 1997-09-05 Interuniv Micro Electro Centrum Vzw Vertical misfet device, cmos process integration and ram application
JPH09321289A (en) * 1996-05-30 1997-12-12 Nec Yamagata Ltd Vertical field-effect transistor
JP2006294995A (en) * 2005-04-13 2006-10-26 Nec Corp Field-effect transistor and its manufacturing method
JP2009253273A (en) * 2008-04-10 2009-10-29 Hynix Semiconductor Inc Method of fabricating vertical transistor in high integrated semiconductor device

Similar Documents

Publication Publication Date Title
US5170231A (en) Silicon carbide field-effect transistor with improved breakdown voltage and low leakage current
JP2746225B2 (en) Semiconductor device and manufacturing method thereof
US6495409B1 (en) MOS transistor having aluminum nitride gate structure and method of manufacturing same
JP2882410B2 (en) Method of fabricating MOS transistor gate with high germanium content
US4029527A (en) Method of producing a doped zone of a given conductivity type in a semiconductor body
US4873203A (en) Method for formation of insulation film on silicon buried in trench
JPH0360076A (en) Manufacture of vertical field effect transistor
EP0230840B1 (en) Permeable base transistor and process for its manufacture
JPS6313378A (en) Semiconductor device and manufacture thereof
JPH04102375A (en) Thin film transistor
JP3243933B2 (en) Quantization function element and method of manufacturing the same
JPH07169709A (en) Manufacture of semiconductor device
JPH04326576A (en) Manufacture of semiconductor device
JPH0470771B2 (en)
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPS6351677A (en) Semiconductor device provided with junction-type effect transistor
JP2753276B2 (en) Vapor growth of semiconductor thin films
JPS59222923A (en) Manufacture of semiconductor substrate
JPS6097662A (en) Manufacture of semiconductor device
JPH02119123A (en) Manufacture of semiconductor device
JPS63250839A (en) Manufacture of semiconductor device
JPH036856A (en) Insulated gate semiconductor device and its manufacture
JPH0360075A (en) Manufacture of vertical field effect transistor
JPS587867A (en) Manufacture of semiconductor device
JPH02135779A (en) Insulated-gate field-effect transistor and manufacture thereof