JPS59222923A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPS59222923A
JPS59222923A JP9830383A JP9830383A JPS59222923A JP S59222923 A JPS59222923 A JP S59222923A JP 9830383 A JP9830383 A JP 9830383A JP 9830383 A JP9830383 A JP 9830383A JP S59222923 A JPS59222923 A JP S59222923A
Authority
JP
Japan
Prior art keywords
silicon
insulating film
substrate
polycrystalline silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9830383A
Other languages
Japanese (ja)
Inventor
Akihiko Ishitani
石谷 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9830383A priority Critical patent/JPS59222923A/en
Publication of JPS59222923A publication Critical patent/JPS59222923A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable to manufacture a selective epitaxially grown substrate having flat surface by a method wherein a polycrystalline silicon is inserted as a buffer layer between an insulating film and epitaxially grown silicon. CONSTITUTION:An insulating film 2 is partially provided on a silicon substrate 1, and polycrystalline silicon 13 is coated on the side wall of said insulating film only. When an epitaxial silicon layer 4 is selectively grown on the exposed surface 3 of the silicon substrate, a very flat surface having no irregularity of facet in the vicinity of the interface of the insulating film can be obtained. The polycrystalline silicon is to be formed in the thickness within 500-800Angstrom .

Description

【発明の詳細な説明】 本発明は絶縁膜領域を有する単結晶基板上に選択的にシ
リコンエピタキシャル層を成長させるような半導体基板
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor substrate in which a silicon epitaxial layer is selectively grown on a single crystal substrate having an insulating film region.

従来の半導体デバイスでは、シリコン基板にイオン注入
又は不純物拡散法を用いて所望のP型又はN型の伝導型
にして能動素子とし、能動嶌子間の分離はPN接合ちる
いは部分酸化(LOGO8)法を用いていた。しかるに
、接合の浮遊容量の増大や部分酸化工程中の寸法変化が
あり、素子の高速化高密度化の障害となっていた。
In conventional semiconductor devices, a silicon substrate is made into a desired P-type or N-type conductivity type by using ion implantation or impurity diffusion methods, and is made into an active element. ) method was used. However, there is an increase in the stray capacitance of the junction and a dimensional change during the partial oxidation process, which has been an obstacle to increasing the speed and density of the device.

上記の欠点を補う技術として5O8(St on 5a
pphire)を基板に用いる方法がある。基板が絶縁
体であるため浮遊容量が少なく、素子の高速化、高密度
化に有利である。一方、基板とシリコンエピタキシャル
層は異種接合されているので、格子定数の不整合による
基板−シリコン界面の格子欠陥が多くリーク電流の発生
が欠点となっていた。
5O8 (Ston 5a) is a technology that compensates for the above drawbacks.
There is a method of using pphire as a substrate. Since the substrate is an insulator, there is little stray capacitance, which is advantageous for increasing the speed and density of devices. On the other hand, since the substrate and the silicon epitaxial layer are dissimilarly bonded, there are many lattice defects at the substrate-silicon interface due to mismatching of lattice constants, which causes leakage current.

さらに新しい絶縁基板上のシリコン膜の単結晶化技術と
してグラフオエピタキシィ技術とブリッジングエピタキ
シィ技術がある。
Furthermore, there are graphite epitaxy technology and bridging epitaxy technology as new single crystallization technologies for silicon films on insulating substrates.

前者は、アゲライド・フィジックス・レターズ第35巻
第1番71〜74頁1979年(Applied Ph
ysicsLetter++、 Vol 35. Nl
 1 、 pp71−74 、1979 )に記載され
ておシ、石英基板に溝加工を飽し、多結晶シリコンのC
VD膜を基板全面に成長し、レーザ照射によって単結晶
化しようとするものである。
The former is published in Agelide Physics Letters, Vol. 35, No. 1, pp. 71-74, 1979 (Applied Ph.
ics Letter++, Vol 35. Nl
1, pp. 71-74, 1979).
In this method, a VD film is grown on the entire surface of a substrate and is made into a single crystal by laser irradiation.

後者は、ジャパン・ジャーナル・オプ・アプライド・フ
ィジックス第19巻、第1頁L23〜L26頁1980
年(Japan Journal of Applte
d Physics、 Vol 19 。
The latter is published in Japan Journal of Applied Physics, Volume 19, Pages 1, L23-L26, 1980.
Year (Japan Journal of Applte)
d Physics, Vol 19.

隘1.ppL23〜L 26 、1980 )に記載さ
れておシ、それによると半導体単結晶基板に部分的に絶
縁膜を形成し、さらに多結晶シリコン膜を基板の全面に
堆積しレーザー照射により基板を種結晶とする再結晶化
を施し、絶縁基板上にも単結晶層を形成しようとするも
のである。しかしながら、いずれの方法も単結晶化の程
度、絶縁膜上の結晶欠陥等に問題がちシ、実用に耐える
デバイス特性を得るまでに至っていない。
Number 1. ppL23-L26, 1980), according to which an insulating film is partially formed on a semiconductor single crystal substrate, a polycrystalline silicon film is further deposited on the entire surface of the substrate, and the substrate is seeded with a seed crystal by laser irradiation. The aim is to perform recrystallization to form a single crystal layer even on an insulating substrate. However, all of these methods tend to have problems with the degree of single crystallization, crystal defects on the insulating film, etc., and have not yet reached the point where device characteristics that can withstand practical use have been obtained.

これらの技術に対して選択エビタキ倉ヤル技術がある。For these techniques, there is a selection technique.

これは、半導体単結晶基板上に部分的に絶縁膜を形成し
、その絶縁膜上には堆積しないで露出した基板領域のみ
にエピタキシャル成長し、素子の能動領域とするもので
ある。このエピタキシャル方法は同種接合であるため極
めて高品質な結晶性を示し、しかも簡便で量産性に富ん
だ優れた特性をもつ。
In this method, an insulating film is partially formed on a semiconductor single crystal substrate, and epitaxial growth is performed only on the exposed substrate region without depositing on the insulating film, which becomes the active region of the device. Since this epitaxial method uses homogeneous junctions, it exhibits extremely high quality crystallinity, and has the excellent characteristics of being simple and easy to mass-produce.

しかし、従来の選択エピタキシャル方法では、単結晶基
板上に絶縁膜を形成した後、絶縁膜を部分的に開口して
形成していたので、絶縁膜とエピタキシャル膜との界面
は界面張力の影響を強く受けて7アセツトが形成される
。例えば、(100)基板を用いると、(111)面を
有する4回対称ファセットが生成され、(111)基板
を用いると表面は平坦であるが絶縁膜−エピタキシャル
膜界面は非対称性形状の凹凸のファセットが形成される
。これらの原因は界面の材質が不連続的であることから
来るものである。
However, in the conventional selective epitaxial method, after forming an insulating film on a single crystal substrate, the insulating film is partially opened, so the interface between the insulating film and the epitaxial film is not affected by interfacial tension. 7 assets are formed due to strong impact. For example, when a (100) substrate is used, a 4-fold symmetrical facet with a (111) plane is generated, and when a (111) substrate is used, the surface is flat, but the insulating film-epitaxial film interface has an asymmetric shape of unevenness. Facets are formed. These causes come from the fact that the interface material is discontinuous.

このように従来の方法による基板上に形成された絶縁ゲ
ート電界効果型トランジスタは表面の凹凸のためゲート
絶縁膜の耐圧が低く配線の断線も起こり易く、シかも結
晶欠陥によるソースとドレイン間に絶縁膜界面を介した
大きなリーク電流が発生するという欠点があった。
Insulated gate field effect transistors formed on substrates using conventional methods have a low withstand voltage of the gate insulating film due to the unevenness of the surface, and are prone to wire breakage. The drawback is that a large leakage current occurs through the membrane interface.

本発明は、単結晶基板方位に依存しないで、極めて平坦
な表面が得られる選択エピタキシャル成長基板の製造方
法を提供することを目的としている。
An object of the present invention is to provide a method for manufacturing a selective epitaxial growth substrate that can obtain an extremely flat surface without depending on the orientation of the single crystal substrate.

すなわち、異なる物質量の界面には界面張力が働き、フ
ァセットの形成はこの界面張力の大小によって左右され
る。絶縁膜の表面張力とエピタキシャル成長したシリコ
ンの表面張力及び絶縁膜とエピタキシャル成長したシリ
コン間の界面張力の間にはヤングの方程式と呼ばれる次
の関係式が成立する。
That is, interfacial tension acts at the interface between different amounts of substances, and the formation of facets is influenced by the magnitude of this interfacial tension. The following relational expression called Young's equation holds true between the surface tension of the insulating film, the surface tension of the epitaxially grown silicon, and the interfacial tension between the insulating film and the epitaxially grown silicon.

r s、 −rs−1−r、CO3θ= 0     
   (1)r8゜:絶縁膜とエピタキシャル成長した
シリコンの間の界面張力 rs:シリコンの表面張力 r□ :絶縁膜の表面張力 θ :絶縁膜とエピタキシャル成長したシリコンの間の
接触角 ファセットを抑制するためには接触角を90CVc近づ
けることが必要である。そして界面張力rJシリコンの
表面張力r8に近づけることによってファセットを抑制
することができる。
r s, -rs-1-r, CO3θ=0
(1) r8゜: Interfacial tension between the insulating film and epitaxially grown silicon rs: Surface tension of silicon r□: Surface tension of the insulating film θ: To suppress the contact angle facet between the insulating film and epitaxially grown silicon It is necessary to bring the contact angle closer to 90CVc. Facets can be suppressed by bringing the interfacial tension rJ close to the surface tension r8 of silicon.

絶縁膜とエピタキシャル成長したシリコンの間の界面張
力は非常に大きいのでそれらの間に多結晶シリコンをバ
ッファ層として入れた場合、その多結晶シリコンの厚さ
によってエピタキシャル成長したシリコンとの間の界面
張力が異なシ、結果としてファセットの大きさが異なる
ことを見い出し、本発明をなすに至った。
The interfacial tension between an insulating film and epitaxially grown silicon is very large, so if polycrystalline silicon is placed between them as a buffer layer, the interfacial tension between it and the epitaxially grown silicon will vary depending on the thickness of the polycrystalline silicon. As a result, they discovered that the size of the facets differed, leading to the present invention.

従来の方法と本発明の方法の相違を図を用いて詳しく説
明する。
Differences between the conventional method and the method of the present invention will be explained in detail using figures.

第1図は従来の方法で形成した(1oo)基板上のエピ
タキシャル成長膜の形状を示した概略断面図である。(
100)シリコン基板1に絶縁膜2が部分的に開口され
、シリコン基板表面3が露出し、その領域のみにエピタ
キシャルシリコン層4が成長されている。この時、絶縁
膜−エピタキシャルシリコン界面からテーパー状の4回
対称性ファセット5が形成される。
FIG. 1 is a schematic cross-sectional view showing the shape of an epitaxially grown film on a (1oo) substrate formed by a conventional method. (
100) Insulating film 2 is partially opened in silicon substrate 1, silicon substrate surface 3 is exposed, and epitaxial silicon layer 4 is grown only in that region. At this time, a tapered four-fold symmetrical facet 5 is formed from the insulating film-epitaxial silicon interface.

第2図は本発明の方法で形成したエピタキシャルシリコ
ン膜の形状を第1図に対比して示した概略断面図である
。シリコン基板1に絶縁膜2が部分的に開口され、その
絶縁膜側壁にのみ多結晶シリコン13で被覆されている
。露出したシリコン基板表面3に選択的にエピタキシャ
ルシリコンNI4を成長すると、絶縁膜界面付近には凹
凸やファセットはなく、極めて平坦な表面形状を得るこ
とができる。
FIG. 2 is a schematic cross-sectional view showing the shape of an epitaxial silicon film formed by the method of the present invention in comparison with FIG. An insulating film 2 is partially opened in a silicon substrate 1, and only the side walls of the insulating film are covered with polycrystalline silicon 13. When epitaxial silicon NI4 is selectively grown on the exposed silicon substrate surface 3, an extremely flat surface can be obtained without unevenness or facets near the insulating film interface.

次に図を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using the drawings.

第3図は本発明によって得られる半導体基板をその製造
工程を顔を追って示した模式的断面図である。例えば、
1Ω拳α程度の比抵抗を有する(100)シリコン基板
11の上に1000℃で熱酸化し、約1μmの膜厚のS
i0g膜を堆積した後、通常の写真蝕刻技術と反応性イ
オンエツチング法によって500又程度のSi0g膜を
残し、且つ垂直壁面を持つSiへ絶縁膜パターン12を
形成する。5ooX程度の5to=膜は後の多結晶シリ
コン13のエツチングマスクに用いる。
FIG. 3 is a schematic cross-sectional view showing the manufacturing process of a semiconductor substrate obtained by the present invention. for example,
A (100) silicon substrate 11 having a resistivity of approximately 1 Ω is thermally oxidized at 1000°C to form an S film with a thickness of approximately 1 μm.
After depositing the i0g film, an insulating film pattern 12 is formed on the Si having vertical walls, leaving about 500 layers of the Si0g film, using conventional photolithography and reactive ion etching. The 5to= film of about 5ooX is used as an etching mask for the polycrystalline silicon 13 later.

次に、多結晶シリコン13をCVD法で約800λの膜
厚で堆積し、同時にP型不純物であるボロンをB−3 10cIIL  程度にドープすると、第3図(ILI
となる。続いて、反応性イオンエツチング技術(例えば
CCl2F + Oxガスを用いた異方性エツチング)
等を用いて異方的に多結晶シリコンをエツチングすると
5iO1膜12の側壁にのみ多結晶シリコンが初期の膜
厚で残る。この時第3図[blが得られる。
Next, polycrystalline silicon 13 is deposited to a thickness of about 800λ using the CVD method, and at the same time boron, which is a P-type impurity, is doped to about 10cIIL of B-3.
becomes. Subsequently, reactive ion etching techniques (e.g. anisotropic etching using CCl2F + Ox gas)
When polycrystalline silicon is etched anisotropically using etching, polycrystalline silicon remains at the initial thickness only on the side walls of the 5iO1 film 12. At this time, FIG. 3 [bl] is obtained.

通常の希釈された7ツ酸液でSi0g膜をエツチングす
るとシリコン基板表面14が露出し、続いて5iHz 
Cfl*と水素から構成されるガス系にH(4を犬凡I
Vo1チ程度加え、900℃から110σCの範囲の温
度で選択的にエピタキシャル成長するとS ioz膜1
2ト幅は約300OAであった。
Etching the Si0g film with a normal diluted hexafluoride solution exposes the silicon substrate surface 14, followed by 5iHz etching.
In the gas system composed of Cfl* and hydrogen, H (4 is
When selectively epitaxially grown at a temperature in the range of 900°C to 110σC in addition to Vo1
The two-tone width was approximately 300OA.

同様の工程によりて多結晶シリコン層の厚さを50OA
とした場合ファセット幅は約6000Aになった。すな
わち、多結晶シリコン層が薄いと絶縁膜  −と多結晶
シリコンの間の界面張力が十分に緩和さレス、多結晶シ
リコンとエピタキシャルシリコン間の界面張力が大きく
なってファセットが大きくなる。一方、多結晶シリコン
層が厚いと選択エピタキシャル成長の一つの目的である
素子分離への応用において分離領域が増すことになシ、
不都合である。
The thickness of the polycrystalline silicon layer was increased to 50OA using the same process.
In this case, the facet width was approximately 6000A. That is, when the polycrystalline silicon layer is thin, the interfacial tension between the insulating film and the polycrystalline silicon is sufficiently relaxed, and the interfacial tension between the polycrystalline silicon and the epitaxial silicon becomes large, resulting in a large facet. On the other hand, if the polycrystalline silicon layer is thick, the isolation area will increase in device isolation applications, which is one of the purposes of selective epitaxial growth.
It's inconvenient.

第4図に絶縁膜厚さが1μmのときの多結晶シリコン厚
さと形成される7アセツト幅の関係を示す。
FIG. 4 shows the relationship between the thickness of the polycrystalline silicon and the width of the seven assets formed when the thickness of the insulating film is 1 μm.

ファセット幅は多結晶シリコン厚さの増大と共に反比例
して減少する。多結晶シリコンの厚さがgooAあれば
ファセット幅は約3000λにも減少しxoooi以上
厚くしてもファセット幅の減少には大きな効果がない。
Facet width decreases inversely with increasing polycrystalline silicon thickness. If the thickness of the polycrystalline silicon is gooA, the facet width will be reduced to about 3000λ, and even if it is thicker than xoooi, there will be no significant effect in reducing the facet width.

多結晶シリコン層の厚さが5001のとき7アセツト幅
は約6000λに増大する。LOCO8法による素子分
離の限界は2μm強であり、通常のフォトリングラフィ
による分離壁の厚さを1μmとするとき、多結晶シリコ
ン層を500又とすると分離領域は両側のファセットを
入れて約2.2μmとなるので、LOCO8より優れた
素子分離法として選択エピタキシャル成長を利用する場
合、多結晶シリコン層の厚さは最低500λは必要であ
る。また、本発明はシリコン基板の面方位が(511)
、 (110)。
When the thickness of the polycrystalline silicon layer is 500 mm, the width of the 7 assets increases to about 6000 λ. The limit of device isolation using the LOCO8 method is a little over 2 μm. If the thickness of the isolation wall using normal photolithography is 1 μm, and the polycrystalline silicon layer has 500 layers, the isolation region will be approximately 2 μm including the facets on both sides. .2 μm. Therefore, when selective epitaxial growth is used as an element isolation method superior to LOCO8, the thickness of the polycrystalline silicon layer must be at least 500λ. Further, in the present invention, the plane orientation of the silicon substrate is (511).
, (110).

(111)等であっても有効である。(111) etc. are also valid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来方法および本発明のリコン基
板、2・−・・・・絶縁膜、3・・・・・・露出された
シリコンM板、4・・・・・・エピタキシャルシリコン
層、5・・・・・・テーパー状ファセット、11・・・
・・・一般的な面をもつシリコン基板、12・・・・・
・Si(%絶縁膜、13・・・・・・不純物がドープさ
れた多結晶シリコン、14・・・・・・露出されたシリ
コン基板、15・・・・i・エピタキシャルシリコン層
、16・・・・・・チャネルストッパー領域をそれぞれ
示す。 1°、雪、°1.・1’、:2:、、+、i:i7.1
−?噂竿 1  図 半 2 図 亨 3 口
Figures 1 and 2 show recon substrates according to the conventional method and the present invention, 2... insulating film, 3... exposed silicon M plate, 4... epitaxial silicon. Layer, 5...Tapered facet, 11...
...Silicon substrate with a general surface, 12...
- Si (% insulating film, 13... polycrystalline silicon doped with impurities, 14... exposed silicon substrate, 15... i. epitaxial silicon layer, 16... ...The channel stopper regions are shown respectively. 1°, snow, °1.・1', :2:,, +, i:i7.1
−? Rumor pole 1 figure and half 2 figure 3 mouth

Claims (1)

【特許請求の範囲】[Claims] si単結晶基板上に部分的に絶縁膜を設け、該絶縁膜の
側壁にのみ厚さtが500k<4 <80OAであるよ
うな多結晶シリコン薄膜を形成し、該絶縁膜開口部にの
みシリコン膜をエピタキシャル成長させることを特徴と
した半導体基板の製造方法。
An insulating film is partially provided on a Si single crystal substrate, a polycrystalline silicon thin film with a thickness t of 500 k < 4 < 80 OA is formed only on the side wall of the insulating film, and silicon is formed only in the opening of the insulating film. A method for manufacturing a semiconductor substrate, characterized by epitaxially growing a film.
JP9830383A 1983-06-02 1983-06-02 Manufacture of semiconductor substrate Pending JPS59222923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9830383A JPS59222923A (en) 1983-06-02 1983-06-02 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9830383A JPS59222923A (en) 1983-06-02 1983-06-02 Manufacture of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS59222923A true JPS59222923A (en) 1984-12-14

Family

ID=14216152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9830383A Pending JPS59222923A (en) 1983-06-02 1983-06-02 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS59222923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202284A (en) * 1989-12-01 1993-04-13 Hewlett-Packard Company Selective and non-selective deposition of Si1-x Gex on a Si subsrate that is partially masked with SiO2
US5213989A (en) * 1992-06-24 1993-05-25 Motorola, Inc. Method for forming a grown bipolar electrode contact using a sidewall seed

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202284A (en) * 1989-12-01 1993-04-13 Hewlett-Packard Company Selective and non-selective deposition of Si1-x Gex on a Si subsrate that is partially masked with SiO2
US5213989A (en) * 1992-06-24 1993-05-25 Motorola, Inc. Method for forming a grown bipolar electrode contact using a sidewall seed

Similar Documents

Publication Publication Date Title
US5266813A (en) Isolation technique for silicon germanium devices
JP2542448B2 (en) Field effect transistor and method of manufacturing the same
US4199384A (en) Method of making a planar semiconductor on insulating substrate device utilizing the deposition of a dual dielectric layer between device islands
JPH0449251B2 (en)
JPH09115921A (en) Semiconductor device and its manufacture
JP2654055B2 (en) Manufacturing method of semiconductor substrate
JPH01196873A (en) Silicon carbide semiconductor device
US5433168A (en) Method of producing semiconductor substrate
JPS6232608B2 (en)
JPH0563439B2 (en)
JPS59222923A (en) Manufacture of semiconductor substrate
JPH0582441A (en) Silicon carbide bipolar semiconductor device and its manufacture
JPH0574669A (en) Manufacture of semiconductor device
JPH0113210B2 (en)
JPS6060716A (en) Manufacture of semiconductor substrate
JPH11233440A (en) Semiconductor device
JPH0360076A (en) Manufacture of vertical field effect transistor
JP2527016B2 (en) Method for manufacturing semiconductor film
JPS58131748A (en) Formation of interelement isolation region
JPH04373121A (en) Manufacture of crystal base material
JPH02203564A (en) Silicon carbide semiconductor device
JPS6232609B2 (en)
JPH01214110A (en) Manufacture of semiconductor device
JP2527015B2 (en) Method for manufacturing semiconductor film
KR940008013B1 (en) Manufacturing method of silicon thin film